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ABSTRACT To address the problem of low efficiency and ineffective utilization of resources in the
distribution of fresh produce at the end of the city, and taking into account the seasonal characteristics
of the logistics demand of fresh produce. An innovative rolling adjustment framework model based on
data-driven for optimizing fresh produce joint distribution network was proposed, which follows seasonal
changes. The cycle of the adjustment framework was divided according to seasonal changes, with each
cycle including four steps: fresh produce logistics demand prediction, fresh produce joint distribution
network optimization, data collection, and parameters adjustment of the prediction model, further to achieve
data-driven optimization of joint distribution network for fresh produce. A catastrophe adaptive genetic
algorithm with variable neighborhood search (CAGA-VNS) is developed to solve the fresh produce joint
distribution network optimization model. Finally, several numerical experiments are conducted to validate
the model and algorithm. The results demonstrate that: 1) the rolling adjustment framework model can
provide effective fresh produce distribution network optimization decisions when the fresh produce demand
changes according to the season changes. 2) The CAGA-VNS algorithm can be more stable with the lowest
difference percentage being 9.16%. 3) distribution center sharing strategy can effectively improve utilization
of resources, reduce the total distribution cost of 19.46% and save travel distance of 14.72%.

INDEX TERMS Fresh produce, distribution network optimization, data-driven, distribution center sharing,
CAGA-VNS, seasonality.

I. INTRODUCTION
With the development of big data science, a new change has
taken place in the traditional management decision paradigm,
and a new management decision paradigm has emerged—
data-driven management decision paradigm [1]. In the past
decades companies have invested heavily in information tech-
nologies and digitalization. Increased computing power and
the explosion of data have changed the way organisations
capture data, analyse information, and make decisions. These
changes provide opportunities for the operations manage-
ment community to develop new models for data driven
decision-making, and might become more and more appli-
cable to logistics and supply chain management. However,

The associate editor coordinating the review of this manuscript and
approving it for publication was Liandong Zhu.

the research on how to integrate the big data analysis and OR
models to drive business performance improvements is still
in its infancy [2].
Data driven demand prediction of fresh produce and opti-

mization of distribution based on demand prediction of fresh
produce has been proven to of great value to fresh produce
distribution [3]. Such optimization problem of fresh produce
distribution decisions is often theoretically optimal due to
assumptions that demand is deterministic or follows cer-
tain known statistical distributions. However, in real-world
fresh produce distribution, the distribution process can be
divided into multiple stages through corresponding informa-
tion collection and fresh produce demand prediction can be
realized with the help of data science during the fresh produce
distribution. Hence, issues concerning how tomake fresh pro-
duce joint network optimization decisions under restrained
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distribution resource and periodically acquired fresh produce
demand and its corresponding features information should be
addressed.

This paper is specifically motivated by making fresh
produce distribution network optimization decisions in
real-world fresh produce distribution. The logistics demand
for fresh produce is booming sharply, however, fresh produce
logistics distribution network in last mile has become one of
the bottlenecks in the development of fresh produce industry,
which cannot provide corresponding services for the existing
demand. There are two obvious reasons existing: on one
hand, fresh produce has short shelf lives and the change
characteristics of maturity and seasonality, which is different
from other produce. Enterprises have had to adapt quickly
and respond to the change of demand given their special
seasonality; On the other hand, the characteristics of urban
last-miles’ customers’ dispersion and small batch make the
logistics distribution of agricultural products more difficult,
with repeated transportation, roundabout transportation and
other unreasonable transportation situations existing.

Joint distribution is an effective mean of solving this
problem. Joint distribution can improve the distribution effi-
ciency of fresh produce by integrating distribution resources.
Accordingly, higher requirements are put forward to the
optimization of urban last-mile fresh produce distribution net-
work. In order to further improve the distribution efficiency of
fresh produce and respond to the constant adjustment of fresh
produce demand, how to make rural fresh produce quickly
move to the dining table with the help of accurate and fast
logistics distribution network is a problem that we urgently
need to solve at present [4].

To address the above challenges, the main contribution of
our study is that an innovative data-driven urban last-mile
fresh produce joint distribution network is designed. Con-
sidering the seasonality of fresh produce logistics demand,
from the perspective of data-driven, this paper innovatively
formulates a rolling adjustment framework model of fresh
produce joint distribution network optimization that fol-
lows the seasonal change. The rolling adjustment framework
model in each decision-making cycle includes the following
parts: fresh produce logistics demand prediction, fresh pro-
duce joint distribution network optimization, data collection
and processing, and parameters adjustment of the prediction
model. More specifically for the above rolling adjustment
framework model, in each decision-making cycle, the agri-
cultural demand prediction model is fitted. Then a mixed
integer programming is applied to solve a fresh produce joint
distribution network optimization problem (FPJDOP) based
on agricultural demand prediction. While the optimal FPJ-
DOP decisions derived, a rolling-horizon manner is taken and
implemented only the optimal solution for the immediately
next cycle, the uncertain parameters of the prediction model
are also updated to obtain the optimal demand for the next
cycle. For the part of constructing the optimization model of
the joint distribution network, based on the strategy of distri-
bution center sharing, the sum of the total cost was minimized

by optimizing the minimum number of distribution centers
and the shortest delivery distance of vehicles. To solve the
optimization model, this paper proposed a catastrophe adap-
tive genetic algorithm with variable neighborhood search.

The rest of this paper is organized as follows. Section II
reviews the literature and fills the research gap. Section III
introduces the data-driven fresh produce joint distribution
network optimization rolling adjustment framework model
and presents the mathematical formulation of fresh produce
joint distribution network. Section IV shows the solving
approach of the formulation in Section III and a catastro-
phe adaptive genetic algorithm with variable neighborhood
search is developed. Section V provides the computational
results and analyses the performance of the solving approach.
Finally, Section VI gives a summary of our major contribu-
tions and delineates the future research directions.

II. LITERATURE REVIEW
Given that this work intends to explicitly focus on data-driven
fresh produce joint distribution network optimization under
distribution center sharing, the relevant literature is catego-
rized into three main streams, which include fresh produce
distribution network optimization, joint distribution network
optimization and data driven optimization. Afterwards, based
on the existing literature and analysing the research gaps, the
main contributions of this study are presented.

A. FRESH PRODUCE DISTRIBUTION NETWORK
OPTIMIZATION
Fresh produce distribution logistics network has been proven
of great value to fresh produce distribution [5], [6], [7],
[8]. Motivated by reducing carbon emission and promot-
ing the development of fresh e-commerce. Chen et al.
[9]studied the fresh produce multi-compartment vehicle rout-
ing problem with time window (MCVRPTW) and proposed
a variable neighborhood search (VNS) approach with the
key steps of local search and shaking to solve the prob-
lem. Han et al. [10] explored the impact of the agricultural
Internet of Things (IOT) and the special requirements of
each distribution channel on joint planning of production
and distribution of fresh produce. Ma et al. [11]discussed
a perishable food location-routing problem with conflict
and coordination (PFLRP-CC) between a fresh food seller
and a hired transportation company and developed a hybrid
algorithm to solve the problem. Zhang et al. [12]established
a multi-objective optimization model, including minimizing
distribution cost, freshness of fresh produce, carbon emis-
sions. The main target method and fruit fly algorithm were
used to solve it. Wei and Wang [13]designed a fuzzy C
means clustering-improved simulated annealing (FCM-ISA)
algorithm to solve continuous location problem of fresh
produce distribution centers. Bortolini et al. [14]extended
the problem to multi-modal distribution networks of fresh
produce to minimize operating cost, carbon footprint and
delivery time goals. A unique tool called Food Distribution
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Planner is applied to deal with the distribution of fresh
fruits and vegetables based on a set of Italian producers to
several European retailers. Jaigirdar et al. [15] investigated a
multi-objective optimization model of distribution network
for perishable goods. The CPLEX solver and a weighted
sum method were considered to solve it. Golestani et al. [16]
formulated a mixed-integer linear programming (MINLP)
for hub location problem, considering multi-item and multi
temperature joint distribution for perishable produce. The
GAMS software and ε-Constraint method were adopted to
solved this bi-objective model.

It is important to note that the existing publications only
address the perishable nature and short shelf lives of fresh
produce and do not address importance the seasonality nature
on fresh produce distribution. For example, in the north of
China, fresh produce is harvested once a year, while fresh
produce is harvested twice a year or even more in the south of
China. If the demand is predicted not accurately, the fresh pro-
duce distribution network configuration will not be designed
reasonably. By taking the gaps into consideration, consider-
ing the seasonality of fresh produce, this paper establishes
innovatively a rolling adjustment framework model which
optimize the fresh produce joint distribution network from the
perspective of data-driven.

B. JOINT DISTRIBUTION NETWORK OPTIMIZATION
Sheng et al. [17] focused on rural electronic commerce
logistics distribution, introduced a joint distribution strategy
sharing customers and vehicles to address the simultane-
ous pick-up and delivery. Wang et al. [18] formulated a
mathematical model of multi-depot green vehicle routing
problem based on a vehicle sharing strategy. The Clarke
and Wright savings heuristic algorithm combined with the
sweep Algorithm and the multi-objective particle swarm
optimization algorithm was designed. Li et al. [19] found
shared depot resources more beneficial for multi-depot vehi-
cle routing problem compared to unshared depots strategy.
Wang et al. [20] investigated a collaborative multiple cen-
ters vehicle routing problem with simultaneous delivery and
pick-up (CVRPSDP) which shared vehicles and customers.
The adoption of k-means and non-dominated sorting genetic
algorithm-II (NSGA-II) constituted a hybrid algorithm to
solve the problem. In the light of the issues low loading rate
and cost of distribution, Wang [21] came up with a joint
distribution pattern which is based on cargo resources and
remaining vehicle resources. An improved genetic algorithm
with dynamic parameters was built to solve the model.
In comparison with the published articles in the domain, the
essence of joint distribution is the integration of resource such
as depots, vehicles, customers or cargos.

C. DATA DRIVEN OPTIMIZATION
In recent years, data-driven optimization approaches are
widely used to management decisions or operations research,
which can better improve efficiency or reduce costs with the
help of data resource and big data analysis. Liu et al. [22]

highlighted the fuzzy boundary and time-varying deci-
sion scenarios of an expected epidemic outbreak and pro-
posed an innovative decision framework for optimizing the
epidemic-logistics network based on data-driven. Under this
new decision framework, the entire emergency response
process could be converted to an interactive evolution pro-
cess of data learning and resource optimization. Du et al.
[23] investigated Cholera has clear spatial variation in its
transmission pattern, proposed a data-driven optimization
approach to determine the optimal strategy of intervention
resource allocation at each period and each community in
a rolling-horizon manner. At each period, they integrated
single-period model parameter fitting and scenario-based on
stochastic programming to make decisions under uncertainty
with newly acquired system understanding. Du [24] held the
opinion of the interplay of epidemic detection and health-
care resource allocation requiring joint decision optimization.
Amulti-stage joint decision-making approach for data-driven
outbreak detection and dynamic allocation of healthcare
resource was proposed. Xiang [25] extended [22] research
study, considering the limited resource of the government and
the need for emergency procurement from external suppliers,
aiming at the problem of choosing the optimal time point
for the start of emergency procurement, the rule for judging
the optimal time for stopping (or starting procurement) of
epidemic observation was designed, and the boundary char-
acteristics and influencing factors of the optimal stopping
time were obtained by combining with theoretical analy-
sis, and a data-driven model was constructed based on the
cyclic decision-making idea of ‘‘epidemic prediction, emer-
gency effect comparison, stop-time judgment, and parameter
update’’. A data driven methodology which employed the
empirical risk minimisation (ERP) principle was introduced
in the inventorymanagement, Clausen and Li [26] formulated
a big data driven dynamic order-up-to level inventory model
which took multiple features into account and did not need
classical distributional assumptions and designed a machine
learning algorithm to solve the model. In view of the prob-
lem of unseasonable order assignments and long distribution
distance, taking Meituan and Eleme as examples, Xiong
and Yan [27] analysed the mechanism of dynamic real-time
optimization and the mechanism of algorithm optimization
mechanism for the intelligent delivery order dispatching on
the delivery platform. To tackle the challenge of uncertain
delivery time in last-mile food delivery, Chu et al. [28] pro-
posed a data-driven optimization approach that combined
machine learning techniques with capacitated vehicle rout-
ing problem and used a new smart predict-then-optimize
framework. An efficient mini-batching gradient and heuristic
algorithms were designed to solve the joint order assignment
and routing problem. However, fresh produce distribution
network optimization based on data-driven is not common.

D. GAP ANALYSIS AND CONTRIBUTIONS
To sum up, there have been certain achievements in research
on the optimization of fresh produce distribution network
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optimization, joint distribution, and data-driven optimization,
but there are still some research gap existing: (1) no scholar
has combined the optimization of fresh produce joint dis-
tribution network under distribution center sharing strategy
with data-driven optimization approach, so as to improve
the delivery efficiency of fresh produce; (2) no scholar has
included the impact of seasonality in fresh produce logistics
demand into the optimization of fresh produce distribu-
tion network; (3) scholars always use sensitivity analysis to
discuss the impact of fresh produce demand on the opti-
mization of fresh produce distribution network. However,
fresh produce prediction and fresh produce joint distribu-
tion network optimization are multi-stage decision-making
optimization problems with mutual influence and coupling,
which need decision-making optimization jointly. In response
to the gaps of the above research, an innovative rolling adjust-
ment framework model based on data-driven for optimizing
fresh produce joint distribution network was proposed, which
follows seasonal changes. The cycle of the rolling adjust-
ment framework model was divided according to seasonal
changes, with each cycle including four steps: fresh produce
logistics demand prediction, fresh produce joint distribu-
tion network optimization, data collection, and parameters
adjustment of the prediction model. Based on the strategy
of sharing distribution centers, a catastrophe adaptive genetic
algorithm with variable neighborhood search (CAGA-VNS)
is proposed. The crossover operator and mutation operator
are adaptively set to avoid premature convergence. Whereas
dynamic catastrophe mechanism and neighborhood search
structures are introduced to improve the quality of solution,
numerical experiments are taken to test the effectiveness and
superiority of the algorithm.

III. FRAMEWORK MODEL FORMULATION
This section explains the investigated fresh produce joint dis-
tribution network rolling adjustment framework model based
on data-driven. The rolling adjustment framework model
involves the following four steps. First, the support vector
machine optimized by the grey wolf optimizer and nonlinear
principal component analysis (NLPCA) is used to forecast
seasonal logistics demand of fresh produce in the future one
cycle. Secondly, according to the demand forecasting results,
the CAGA-VNS algorithm is designed to further optimize the
joint distribution network of fresh produce (FPJDOP). Then,
executing the real-world fresh produce distribution network
according to the computational results of FPJDOP, collect
and record the new actual data of fresh produce logistics
demand and its corresponding data in real-world distribution
network. Finally, new actual data will be incorporated into the
prediction model, and the parameters of the prediction model
will be adjusted to improve the accuracy of the prediction
model, as shown in Figure 1.

A. A BRIEF REVIEW OF GREY WOLF OPTIMIZER (GWO)
The GWO is a swarm intelligent algorithm that simulates
the group hunting behaviour of grey wolf packs. A social

FIGURE 1. The rolling adjustment framework model of fresh produce
joint distribution network optimization based on data-driven.

hierarchy exists in a wolf pack; to model this when designing
the GWO, the algorithm regards the fittest solution in each
iteration as the alpha wolf (α). Sequentially, the second- and
third-best solutions are named beta (β) and delta (δ) wolves,
respectively. The rest of the candidate solutions are assumed
to be ϕ wolves. In the GWO algorithm, the hunting behaviour
is guided by the α, β and δ wolves, which theϕ wolves follow.
A mathematical model of wolf encircling behaviour is

represented by the equations:

D⃗ =

∣∣∣H⃗ · X⃗p (t) − X⃗ (t)
∣∣∣ (1)

X⃗ (t + 1) = X⃗p (t) − A⃗ · D⃗ (2)

A⃗ = 2a⃗ · r⃗1 − a⃗ (3)

H⃗ = 2 · r⃗2 (4)

where D⃗ denotes the distance between the prey and the wolf,
t is the current iteration, X⃗p (t) is the position of the prey at
iteration t , X⃗ is the position vector of a wolf, r1 and r2 ∈[0,1]
are random vectors and vary linearly from 2 to 0, A⃗ and H⃗
are the coefficient vectors of wolves α, β and δ, A⃗ and H⃗ are
updated by (3) and (4).

The mathematical model of hunting behaviour is repre-
sented by the equations:

D⃗α =

∣∣∣H⃗1 · X⃗α (t) − X⃗ (t)
∣∣∣

D⃗β =

∣∣∣H⃗2 · X⃗β (t) − X⃗ (t)
∣∣∣

D⃗δ =

∣∣∣H⃗3 · X⃗δ (t) − X⃗ (t)
∣∣∣

(5)


X⃗1 = X⃗α (t) − A⃗1 ·

(
D⃗α

)
X⃗2 = X⃗β (t) − A⃗2 ·

(
D⃗β

)
X⃗3 = X⃗δ (t) − A⃗3 ·

(
D⃗δ

) (6)

X⃗ (t + 1) =
X⃗1 + X⃗2 + X⃗3

3
(7)

where Eq. (5) denotes the distance between wolves ϕ andα,
β and δ, the position of prey is calculated by (6)&(7).
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B. FRESH PRODUCE LOGISTICS DEMAND FORECASTING
BY NLPCA-GWO-SVR
Aiming at improving the forecasting performance of fresh
produce logistics demand. First, the effects of factors related
to fresh produce are focused on, customers and logistics
distribution enterprises on fresh produce logistics demand
prediction. In this fresh produce joint distribution network,
for each customer, exacting the following features, such
as season, fresh produce price, average wage, and calcu-
late the average delivery time damaged fresh produce ratio
as the input of the NLPCA-GWO-SVR prediction model.
There may be complex nonlinear correlations between these
input features, the correlations between the features logistics
demand may cause information overlap. That is, using the
SVR model directly may produce a ‘‘dimensionality disas-
ter’’ in the input variables. On this basis, this paper uses
NLPCA to reduce the dimensionality of the input features of
a traditional SVR and eliminate their correlations. Moreover,
the predictive accuracy of SVR has a severe dependence on
the penalty factor and kernel parameters, GWO algorithm is
used to optimize the penalty factor, and bandwidth parameters
of the kernel function of the SVR model. Then, the NLPCA-
GWO-SVR prediction model is constructed, because of its
superiority in learning and modelling nonlinear and complex
relationships, SVR has been deployed in various disciplines
[29], [30]. Due to space limitations, the concepts related
to nonlinear principal component analysis (NLPCA) and
support vector regression (SVR) will not be discussed here.
More details on NLPCA, GWO and SVR can refer to [31].
Figure 2 illustrates the flowchart of NLPCA-GWO-SVR
prediction model.

C. FRESH PRODUCE JOINT DISTRIBUTION NETWORK
OPTIMIZATION MODEL FORMULATION
1) PROBLEM DESCRIPTION
In order to improve the efficiency of fresh produce at urban
last mile and reduce the waste caused by the repeated
allocation of distribution resource, a distribution center
resource sharing strategy is introduced to tackle this problem.
Figure 3(a) introduces a typical fresh produce distribu-
tion network without sharing centers which deploys four
distribution centers and eight vehicles to serve customers.
As figure 3(a) shows, unreasonable distribution phenomena
such as cross transportation and roundabout transportation
may occur, and it is easy to violate the customer’s time
window, and may even reduce the freshness of fresh pro-
duce. Figure 3(b) illustrates the implementation and influence
of distribution center resource sharing, where only three
distribution centers and six vehicles are deployed. Each cus-
tomer is served by the closest distribution centers, improving
utilization of distribution centers and eliminating long and
empty-vehicle trips.

In this FPJDOP, the decision-making issues that need to be
considered in this problem include:

(i) Determining the number of joint distribution centers
from potential distribution centers;

FIGURE 2. The flowchart of NLPCA-GWO-SVR prediction model.

(ii) Reassigning all customers of each enterprise;
(iii) Vehicle routine arrangement for each joint distribution

center;

2) MODEL ASSUMPTIONS
To represent the real-world conditions of the fresh produce
joint distribution network as close as possible, model assump-
tions are designed as follows:

(i) Each distribution center has the same type of vehicles,
and the driving speed of the vehicles between each node is
constant;

(ii) The geographical location and service time window of
each customer node are known;

(iii) Each order of an enterprise at an identical customer
node cannot be split;

(iv) Each vehicle can be used for (at most) one route, and
it must start and end at the same depot;

(v) The capacity of vehicle is limited and customers’
demand cannot exceed the vehicle capacity.

According to the above description and assumption, the
parameters are defined in Table 1.
S = H∪G(i, j ∈ S), H = {i|i = 1, 2, . . . , N} is the set

of customers, G = {r|r = 1, 2, . . . , R} is the set of potential
distribution centers, V = {k|k = 1, 2, . . . , 0} is the set of
vehicles, T= {t|t =1, 2, . . . , 8} is the set of decision cycles.

The following variables are defined in Table 2.

3) OBJECTIVE COST ANALYSIS
The total objective cost is consisted of five parts:
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FIGURE 3. Comparison of before and after achieving joint distribution
under distribution center sharing.

1) Fixed cost of opening common distribution centers,
which is related to the number of chosen distribution centers,
can be calculated by:

f1 (t) =

∑
r∈G

Frzr (8)

2) Fixed cost of vehicles, which is corresponding to the
number of used vehicles, can be described as:

f2 (t) =

∑
r∈G

∑
k∈V

ckxrik (9)

3) Travel cost, which only need to consider the effect of
distance, for simplicity. Travel cost can be calculated by:

f3 (t) =

∑
k∈V

∑
i∈S

∑
j∈S

cijdijxijk (10)

TABLE 1. Parameters.

TABLE 2. Variables.

4) Timewindow violation cost, which is bound up to arrival
time of vehicles, can be calculated by:

f4 (t) =

∑
i∈H

[max {ETi − Ti, 0} + max {Ti − LTi, 0}] (11)

5) Damage cost, which is interrelated to the maturity
change of fresh produce, if the maturity is not out of a
consistent limit, damage cost will not be generated. Damage
cost can be obtained by:

f5 (t) = P ·

(
1 − e

−fave
∑
i∈G

∑
j∈G

∑
k∈K

xijk tij
)

(12)

4) MATHEMATICAL MODELING
For each decision cycle t , themathematical model of FPJDOP
is defined as follows.

minf1 (t) + f2 (t) + f3 (t) + f4 (t) + f5 (t) (13)∑
k∈V

∑
i∈S

xijk = 1, ∀j ∈ H (14)∑
i∈S

∑
j∈H

qjxijk ≤ Qk , ∀k ∈ V (15)

∑
i∈S

xipk −

∑
j∈S

xpjk = 0, ∀k ∈ V , p ∈ S (16)

∑
r∈G

∑
j∈H

xrjk ≤ 1, ∀k ∈ V (17)

∑
k∈V

∑
j∈H

xrjk − zr ≥ 0, ∀r ∈ G (18)
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FIGURE 4. The flowchart of CAGA-VNS algorithm.∑
r∈G

∑
i∈H

xrik +

∑
j∈H

∑
r∈G

xjrk = 0, ∀r ∈ G, k ∈ V (19)

∑
i∈S

∑
j∈S

xijk ≤

∣∣∣SRk ∣∣∣− 1, ∀k ∈ V (20)

In the above model, the objective function (13) minimizes
the total cost in each decision cycle, where the first compo-
nent is the fixed cost of opening common distribution centers,
the second component is the fixed cost of vehicles, the third
component is the travel cost, the fourth component is the
time window violation cost, and the last component is the
damage cost. Constraint (14) forces each customer can only
be served by one vehicle. Constraint (15) ensures that the
vehicle capacity cannot be exceeded. Constraint (16) means
that the vehicle must leave the node after arrival. Constraint
(17) states each vehicle can only depart from at most one
distribution center. Constraint (18) vehicles can be dispatched
to serve customers only if the distribution center is selected.
Constraint (19) forces each vehicle to depart from and return
to the same distribution center, if employed. Constraint (20)
eliminates the sub-tour.

D. DATA COLLECTION
According to the above FPJDOP model and correspond-
ing solution methodology, enterprises will adjust the actual
fresh produce joint distribution network according to the
best solution of this problem, that is, determine which joint
distribution center to use, how to allocate all customers
and arrange the vehicle routing. After the implementation
of the actual fresh produce joint distribution network, new
features are generated such as delivery time and other fea-
tures such as seasonality will be known early, which are fed

FIGURE 5. Chromosome coding.

into the NLPCA-GWO-SVR model to reforecast the fresh
produce logistics demand. Aiming at the problems of errors
between the actual logistics demand and the predicted logis-
tics demand, the parameters of the prediction model need to
be adjusted combining data-driven approaches.

E. PARAMETERS ADJUSTMENT OF THE PREDICTION
MODEL
Under the rolling adjustment framework model established in
this paper, for each decision cycle, when the fresh produce
joint distribution network optimization (Section B) result
execution is over (Section C), the indicator data related
to agricultural product logistics demand within the deci-
sion cycle has been obtained, and parameters (c, σ ) of the
NLPCA-GWO-SVR prediction model need to be adjusted.
A prediction model with rolling time domain framework is
proposed [32], the actual logistics demand in decision cycle t
will be considered as a new index put into the NLPCA-GWO-
SVR model when predicting the logistics demand in (t+1)
decision cycle.

IV. SOLUTION APPROACH OF THE ROLLING
ADJUSTMENT FRAMEWORK MODEL
A. SOLUTION APPROACH OF THE MATHEMATICAL
MODEL OF FPJDOP
Genetic algorithm (GA) is a highly parallel algorithm with
strong global search ability, which is developed from the
natural selection and evolution ideas of the biological world
and has a wide range of applications in dealing with NP-hard
problems [33], [34]. However, GA has the disadvantage of
easily falling into local optima. To improve this disadvantage,
a catastrophe adaptive genetic algorithm with variable neigh-
borhood search (CAGA-VNS), which is more suitable for
solving the model of fresh produce joint distribution network
established in this paper. Figure 4 illustrates the flowchart of
CAGA-VNS algorithm.

1) ENCODING AND THE DECODING
The natural number coding method is used to encode
chromosomes in CAGA-VNS population. Each chromo-
some consists of three substrings, for example, there are
9 customers, 3 vehicles and 3 potential distribution centers.
Figure 5 illustrates the process of chromosome coding.
1) Substring1 shows which vehicle is responsible for each

customer. There are N locations in substring1, each of which
is randomly generated from 1 to K (K is the maximum
number of vehicles that can be selected). If the value at the nth
location is k, it means that the customer at the corresponding
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locus is served by the vehicle k, and the customer at the
corresponding locus is determined by the value above the
corresponding gene in substring2.

2) Substring1 and substring2 correspond one-to-one to
determine the delivery routine of each vehicle. There are N
locations in substring2, each of which is randomly generated
from 1 to N (N is the number of customers).

3) Substring3 shows which distribution center each vehicle
belongs to. As seen in substring1, there are K vehicles served,
substring3 is related to substring1, so there are K locations in
substring3, and the value of each location in substring 3 is up
to the number of potential distribution centers, each of which
is randomly generated from 1 to R (R is the total number of
potential distribution centers). If the value at the kth locus
is r, it means that the r distribution center is selected and
the vehicle k belongs to distribution center r, meanwhile the
vehicle k starts from the distribution center r and returns to the
same. If distribution center r is not showing up in substring3,
the potential distribution center r is not selected.

The value of second gene in substring3 is 3, while the
value of the second gene in corresponding substring2 is 3,
which means that customer 3 is delivered by vehicle 3. Sim-
ilarly, customer 4 & 8 are also delivered by vehicle3. The
distribution route of vehicle 3 is {Customer3→Customer4→
Customer8}. The value of the third gene in substring3 is 1,
indicating that vehicle 3 belongs to distribution center 1
(DC1). Therefore, the complete distribution route of vehi-
cle 1 is {DC1→ Customer3→ Customer4→ Customer8→
DC1}. Similarly, the chromosome can be decoding as fol-
lows:

Vehicle1: DC3→ Customer1→ Customer9→
Customer5→ DC3
Vehicle1: DC3→ Customer7→ Customer2→
Customer6→ DC3
Vehicle1: DC1→ Customer3→ Customer4→
Customer8→ DC1
As shown in substring3, DC2 is not selected.

2) INITIALIZING THE POPULATION AND FITNESS
Chromosomes are randomly generated. Each chromosome
corresponds to a feasible solution and a corresponding fitness
value can be calculated, as expressed by (21), which indicates
that the objective of the mathematical model is to achieve the
minimum total cost.

fit = 1
/
Ft (21)

where Ft represents the total cost, fit is the fitness value of a
chromosome. The smaller the total cost, the higher the fitness
value, the better the genes of the chromosome.

3) GENETIC OPERATION
a: CROSSOVER OPERATION
Due to the chromosome designed in this paper consisting of
three substrings, and each substring has a different range.
Crossover operation is operated, respectively. OX crossover
is adopted to substring1∼substring3. Taking substring2 as

FIGURE 6. Chromosome coding.

FIGURE 7. The process of mutation operation.

an example to demonstrate the crossover process, the cross-
ing area selected by the two parent individuals is between
two vertical lines, Parent A = 731|4829|65, Parent B =

973|6514|82, place the cross-section in B at the front of A
and the cross-section in A at the front of B, to get A1 and B1:
A1 = 6514|731482965, B1 = 4829|973651482. By sequen-
tially deleting the same natural number as the self-crossing
fragments of A1 and B1, the final legal chromosomes are
obtained: A2 = 651473829, B2 = 482973651. OX crossover
has advantage of maintaining the diversity of population, the
process of OX crossover is shown in Figure 6.

b: MUTATION OPERATION
Randomly choose a chromosome from the population to
perform two-points mutation. Mutation rate pm is defined by
cloud generator according the whole level of the population
and the chosen population, and generate a random number
rand ∈ [0,1], if rand < pm, then perform mutation to the
chosen chromosome, randomly choose two gene to get the
new individual C ′. Figure 7 shows the process of mutation.

c: DYNAMIC CATASTROPHIC MECHANISM
When the genetic algorithm iterates multiple times and its
optimal solution does not change, catastrophic mechanism
needs to be called. Set the initial value of the catastrophic
counter ch = 0, and the critical value of the catastrophic
mechanism CH = 0. If the optimal solution changes, ch =

0; otherwise ch = ch+1. When ch ≥ CH, catastrophic
mechanism works. SN chromosomes with low fitness in the
population will be eliminated, and SN chromosomes will
be randomly generated and added to the current population,
to improve the diversity of the population. SN is not constant,
but changes with the number of iterations, the number of
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FIGURE 8. Neighborhood structures.

eliminated chromosomes SN can be calculated by:

SN =

[
SN0 ∗ exp

{
−

λ ∗ iter_GA
iter_GA_max

}]
(22)

where SN is the number of chromosomes that will be elimi-
nated, SN0 is the preset catastrophic scale, λ is a controlling
parameter, iter_GA is the number of current iteration of GA,
iter_GA_max is the number of maximum iteration of GA.

d: SELECTION OPERATION
A combination of elite retention and roulette wheel is adopted
to select individuals to enter the next generation, which not
only preserve the diversity of the population whereas inherit-
ing the optimal solution, but also improve the convergence
speed of the population and enhance the search ability of
the algorithm. The specific selection process is as follows:
the individuals in the parent population are arranged in the
order of fitness value from high to low, and the first 10% of
the individuals are directly put into the offspring population,
and the rest are selected by roulette wheel. The probability of
selection can be obtained by:

P (xi) = fit (xi)
/ ∑

i∈popsize
fit (xi) (23)

where fit(xi) is the fitness value of chromosome xi, P(xi) is
the selected probability of chromosome xi.

e: VARIABLE NEIGHBORHOOD SEARCHING
Neighborhood structures are the key to improve the solving
efficiency and quality of CAGA-VNS algorithm. Figure 8(a),
(b)∼ (e) show the original routine and routines with different
neighborhood structures.

Neighborhood Structure 1 (NS1): selects gene with maxi-
mum andminimum-value and then exchanges their positions.

Neighborhood Structure 2 (NS2): elects two genes ran-
domly, then swaps their positions.

Neighborhood Structure 3 (NS3): randomly selects two
genes from left to right, shifts the second gene to the first
gene’s neighbor and the units between two gene to the right.

Neighborhood Structure 4 (NS4): based on NS3, reverse
two chosen gene.

B. SOLVING PROCESS OF THE ROLLING ADJUSTMENT
FRAMEWORK MODEL
Based on the CAGA-VNS hybrid algorithm designed and
the rolling time domain algorithm, sequentially solves the
optimal solution of the static problem in each decision cycles,
when solving the static problem in the next decision cycle,
the relevant parameters in the previous decision cycle will be
used as input parameters for the prediction model in the next
decision cycle. The detailed steps of the rolling adjustment
framework model proposed are given as follows:
Step1: Initialize the parameters of CAGA-VNS algorithm,

initial decision cycle t = 1.
Step2:Divide randomly the original real-world instance set

into three subsets: a training set, a validation set, and a test set.
The training subset has 70 percent of the instances [3] and is
used to optimize the SVR parameters. The second subset has
15 percents of the instances that are utilized to monitor the
validation error in each training epoch. Then, the rest of the
instances are used as the testing data for the NLPCA-GWO-
SVR prediction model. Finally, the predicted output logistics
demand results are used as input for the optimization of the
agricultural product joint distribution network.
Step3: Setting the initial iteration number of CAGA-VNS

algorithm gen1 = 1, Generate chromosomes of CAGA
algorithm randomly. Calculate the fitness value of each chro-
mosome, and record the current optimal solution.
Step4: Conduct genetic operations on chromosomes, and

subsequently incorporate parent and offspring chromosomes
together, gen1 = gen1+1.
Step5: If the optimal solution changes,ch = 0; otherwise,

ch = ch+1.
Step6: If ch ≥ CH, use equation (22) to calculate the

number of eliminated chromosomes with the lowest fitness;
otherwise, record the optimal solution x, and gen2 = 0.
Step7: gen2 = gen2+1, shaking to get x’, perform the

neighborhood search on x’ to find x’’.
Step8: If x’’ is superior to x’, x = x’’; otherwise, turn to

Step9.
Step9: If gen2 ≥ iter_VNS_max, update the optimal solu-

tion and turn to Step10; otherwise, turn to Step7.
Step10: Implement the above optimal solution in current

decision cycle and the actual data on fresh produce logistics
demand will be collected. If t ≤ T , turn to Step2, adjust the
parameters of NLPCA-GWO-SVR prediction model accord-
ing to the newly collecting data; otherwise, stop the rolling
adjustment framework model.

V. NUMERICAL EXPERIMENTS
To verify the effectiveness of the CAGA-VNS algorithm,
experiment 1 is designed based on a standard testing bench-
mark (source: http://www.vrp-rep.org/), and then experiment
2 is carried out to validate the correctness of the rolling
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TABLE 3. pc & pm.

adjustment framework model proposed in this paper, which
is originated form an actual enterprise.

A. EXPERIMENT 1: THE EFFECTIVENESS OF CAGA-VNS
1) EXPERIMENTAL RESULTS
After multiple tests, the specific parameter settings of the
CAGA-VNS algorithm are as follows: popsize = 300,
iter_GA_max = 500, iter_VNS_max = 10, SN0 = 30, λ =

0.75. The probability of crossover and mutation is settled by
the cloud generator adaptively, as Table 3 shows.
where (Ex,En,He) is the controlling parameters of pc&pm,

f̄ is the average value of all the chromosomes in the current
generation, fmax is the optimal fitness value of the current
generation, f ′ is the larger fitness of the two individuals
selected for crossover operation, f is the individual selected
for mutation operation, k1 = k3 = 0.9, k2 = k4 = 0.4,C1 ∼

C4 can be calculated by:

C1 = C3 = 6 · popsize · (iter + 1) (24)

C2 = C4 = 15 − (iter − popsize/2)2 (25)

To validate the performance of the algorithm, the
CAGA-VNS proposed in this paper is compared with
the classical GA, catastrophic adaptive genetic algorithm
(CAGA). Run the above three algorithms 10 times each, and
the running results are shown in Table 4. The last row in
Table 4 represents the percentage of divergence between each
run and the optimal value, the percentage of divergence can
be calculated by (26):

1
10

(
10∑
rt

crrt − min (crrt)
min (crrt)

)
× 100% (26)

where crrt is the running result of the rt time.

2) COMPARATIVE ANALYSIS
As shown in Table 4, Comparing GA and CAGA, dynamic
catastrophic mechanism, the adaptive changes in crossover
probability, and mutation probability can enable GA to
obtain better solutions within the same runtime. CAGA-
VNS has significant advantages, and the optimal solution
obtained by the algorithm is only 5543.08. Moreover, the
smaller the difference percentage is, the more stable the

TABLE 4. Comparison of the three mentioned algorithms.

algorithm is, CAGA-VNS is the most stable algorithm with
the lowest difference percentage being 9.16% among the
three algorithms, followed by the CAGA algorithm with a
difference percentage of 10.51%, and the GA algorithm with
the highest difference percentage being 10.87%. Therefore,
the algorithm designed in this paper has more advantages.

For solving the problem of optimizing the joint distribution
network of fresh produce, CAGA-VNS is more competitive.

B. EXPERIMENT 2: THE CORRECTNESS OF THE ROLLING
ADJUSTMENT FRAMEWORK MODEL
1) REAL-WORLD CASE
For the real-world case, we adopt a representative fresh pro-
duce sales company (Enterprise A) in Shenyang China, which
is highly trusted enterprise with a wide range of business
scope. However, Enterprise A adopts independent delivery to
serve customers, resulting in high costs and low distribution
efficiency and customer satisfaction. Therefore, Enterprise
B is jointed together to perform joint distribution. Table 5
summarizes data with regard to customer nodes in the fresh
produce distribution network in part. Table 6 shows the infor-
mation of potential distribution center. D1∼D4 are potential
distribution centers belonging to Enterprise A, D5∼D10 are
potential distribution centers belonging to Enterprise B.

2) EXPERIMENTAL RESULTS
a: PREDICTION RESULT ANALYSIS
We select the fresh produce demand data of two mentioned
enterprises from 2012 to 2021 (2012Q1∼2021Q4) as the
training test set, with each cycle length of one quarter and
a total of 40 decision cycles. Table 7 shows partly the real
fresh produce demand data for all customers served by the
two companies during the period of Q1 2020.

Comparedwith the original demand, the results of forecast-
ing counterpart forecasted by NLPCA-GWO-SVR are drawn
in Figure 9.
Taken NO.1 customer as an example, the decision-making

cycle range from 2012Q1∼2021Q4, the NLPCA-GWO-SVR
model is used to predict. As seen in Figure 9, the blue line
with solid square represents the collected actual logistics
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TABLE 5. Coordinates and time window of customers.

TABLE 6. Coordinates and opening cost of potential distribution centers.

demand of fresh produce. The solid line with a multiplication
sign in orange represents the prediction result. By comparing
the prediction logistics demand of fresh produce with the
actual changing logistics demand of fresh produce. As seen,
the NLPCA-GWO-SVR model established can basically
meet the actual logistics demand of fresh produce better
after adjusting the parameters of proposed model in each
decision cycle. At the same time, a certain buffer space exists,
which can cope with the logistics demand of fresh produce in
emergencies.

To investigate the superiority of the NLPCA-GWO-SVR
forecasting model, two widely used evaluation measures for
performance comparison are employed, namely, root mean
squared error (RMSE) and mean average percentage error

TABLE 7. Logistics demand data of fresh produce.

FIGURE 9. Comparison between the original demand and the forecasting
counterpart.

(MAPE), which are formally defined as follows:

RMSE =

√√√√√1
J

J∑
j=1

(
yj (t) − ŷj (t)

)2 (27)

MAPE =
1
J

J∑
j=1

∣∣∣∣yj (t) − ŷj (t)
yj (t)

∣∣∣∣ (28)

R2 = 1 −

J∑
j=1

(
yj (t) − ŷj (t)

)2
J∑
j=1

(
yj (t) − ȳj (t)

)2 (29)

where yj (t) is the ground truth value for the logistics demand
of customer j in decision cycle t , whereas ŷj (t) is the pre-
dicted counterpart, ȳj (t) is the mean value of the original
demand.

Table 8 demonstrates the performance comparison in terms
of RMSE, MAPE and R2 evaluation metrics defined above,
comparingwith the baselinemethods using the same training-
test set.
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TABLE 8. Performance comparison of different forecasting models.

FIGURE 10. R2 of the five prediction models.

As seen from Table 8, the proposed NLPCA-GWO-SVR
model achieves an R2 (R-squared, the coefficient of the
determination) of 0.8032, indicating that the forecasting
counterpart is close to the ground truth values. Table 8
also summarizes the performance comparison in terms of
RMSE and MAPE evaluation metrics. As seen, the proposed
NLPCA-GWO-SVR prediction model achieves the lowest
RMSE of 7.5161 and MAPE of 0.1849, which outperforms
baseline models, such as BP and RF, and shows its ability to
implicitly discover complex nonlinear relationships between
demand and the influential factors by detecting all possible
interactions between predictor variables. The well trained
NLPCA-GWO-SVR model with a high prediction accuracy
can be implemented for inputting demand parameter, which
will be further used in FPJDOP.

Furthermore, Figure 10, 11, 12 present the R-squared,
RMSE,MAPE after making a 5-time prediction. There are no
exceptional points in these figures. It is clear that the NLPCA-
GWO-SVR prediction model has the highest R-squared,
compared with other four prediction models in figure 10.
However, observing the height of the box, it can be seen that
its volatility is relatively high. Figure 11 draws the results
of five prediction models for RMSE, NLPCA-GWO-SVR
prediction model also achieves the lowest RMSE, and the box
of this model is relatively short, its RMSE distribution is very
stable, as well as Figure 12. In a nutshell, the predictionmodel
established in this paper achieves a good prediction accuracy,
the model fits very well, and basically captures the change
trend of the original sample.

FIGURE 11. RMSE of the five prediction models.

FIGURE 12. MAPE of the five prediction models.

Meanwhile, to verify the robustness of the proposed
NLPCA-GWO-SVR prediction model with high changing
fresh produce logistics demand, a new experiment with high
changing signals is carried out. 300 samples of fresh produce
demand are generated randomly. Figure 13 shows the result
of ground truth value of fresh produce logistics demand
and the forecasting counter counterpart. The NLPCA-GWO-
SVR prediction model achieve a RMSE of 2.1045 in the
testing period, a MAPE of 0.1175 in the testing period, which
proves the proposed prediction model still has good fitting
ability.

b: JOINT DISTRIBUTION CENTER SETTINGS FOR DIFFERENT
DECISION CYCLES
Figure 14 shows the number of distribution centers selected
in 10 decision-making cycles from 2018Q1 to 2020Q2. For
example, in the cycle 2018Q1, five distribution centers (D2,
D4, D6, D7, D9) are selected according to the optimization
results, which covered the logistics demand of fresh produce
of 35%, 22%, 18%, 15% and 10%, respectively. In the cycle
2018Q4, only four distribution centers (D5, D7, D9, D10)
need to be selected to cover the demand for agricultural prod-
ucts of 47%, 34%, 11% and 8%, respectively. That is, through
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FIGURE 13. The forecasting result with high changing signals.

FIGURE 14. The number of joint distribution center setting in different
decision cycles.

the distribution center sharing strategy proposed in this paper,
it can be seen that the number of distribution centers has
been reduced and the utilization rate of distribution centers
has been improved. In the joint distribution network of fresh
produce at the end of the city, the setting up of joint distribu-
tion centers not only can better cover the logistics demands
of customers, but also can make full use of joint distribution
to form scale benefits and improve the utilization rate of
distribution center. Therefore, with the seasonal changes in
the logistics demand of fresh produce, it is necessary for the
distribution network to make corresponding adjustments to
help save enterprise costs while quickly delivering the fresh
produce to customers.

c: DISTRIBUTION ROUTING ARRANGEMENTS FOR
DIFFERENT DECISION CYCLES
Table 9 displays the optimal distribution routes and costs for
the cycles 2018Q4 and 2019Q4. In two different optimization
cycles, different optimal number of distribution centers are
selected, where number 0 is used to separate different vehicles
within the same distribution center. In the cycle 2018Q4,
four distribution centers were selected, including D1, D5, D7

TABLE 9. The optimal distribution routines and cost in different cycles.

TABLE 10. Comparison on computational results of two strategies.

and D9, respectively. In the cycle 2019Q4, three distribution
centers were selected, including D2, D7 and D9, respectively.
The selection of distribution centers in the two phases is
very different, except D7 and D9. Therefore, reselecting the
distribution centers and optimizing the routines in different
cycles is necessary.

d: COMPARISON BETWEEN DISTRIBUTION CENTER
SHARING STRATEGY AND NON-SHARED STRATEGY
With the above algorithm parameters unchanged, using data
from the cycle 2018Q3, this paper compares the distribution
network optimization under distribution center sharing strat-
egy (named Strategy A) with the distribution network opti-
mization under the independent distribution mode (named
Strategy B). Run the two programs 10 times, and take the
average value as the final result, as shown in Table 10. TD rep-
resents the total delivery distance (unit: kilometers), TC is the
total cost (unit: Yuan), VN is the number of delivery vehicle.

As can be seen from Table 10, from the perspective of total
travel distance TD, the joint distribution strategy designed in
this paper (Strategy A) is superior to traditional independent
distribution (Strategy B), with the former saving travel dis-
tance of 14.72%, compared to the latter; In terms of TC, the
former saves up to the cost of 19.46%, compared to the latter,
while the former’s solution reduces the use of distribution

111166 VOLUME 11, 2023



M. Zhu, X. Zhou: Research on Data-Driven Fresh Produce Joint Distribution Network Optimization

FIGURE 15. Comparison of costs under sharing and unsharing strategies.

centers and improves the utilization rate of distribution cen-
ters compared to the latter; Regarding the number of delivery
vehicles, the former uses fewer vehicles of 20% than the
latter. The distribution scheme of the joint distribution strat-
egy designed in this paper is far superior to the traditional
independent distribution strategy, which can simultaneously
reduce the use of distribution centers and vehicles, shorten
the distribution distance, and reduce the cost.

As shown in Figure 15, comparing the optimization results
of a joint distribution network based on distribution center
sharing with the traditional independent distribution net-
work optimization results in the various costs, each itemized
cost is lower than the cost generated under the independent
distribution mode. In terms of the opening cost of the distri-
bution centers, the former saves 20% compared to the latter,
reducing the use of the distribution center, and improving
the utilization rate of the distribution centers. With respect
to the time window penalty cost, it can be seen that the
distribution center sharing strategy reduces the violation of
customer time windows to a certain extent; Regarding the
cost of fresh produce damage, the distribution center sharing
strategy can help enterprises to quickly deliver agricultural
products to end customers while reducing the loss of fresh
produce.

VI. CONCLUSION
The research on fresh produce joint distribution network
optimization has become an essential field in agricultural
logistics management. The seasonality changes and maturity
changes in the demand for fresh produce themselves make
the distribution of urban fresh produce significantly different
from industrial products. With that in mind, an innovative
rolling adjustment framework model based on data-driven
is presented for optimizing the distribution network of fresh
produce. Each decision cycle under this framework model
encompasses four progressive links, i.e., the forecast of fresh
produce logistics demand, joint distribution network opti-
mization of fresh produce, data collection and processing,
and parameters adjustment of the prediction model. The main
theoretical contributions of this paper can be summarized.

First, from the data-driven perspective, a rolling adjustment
framework model for the optimization of agricultural joint
distribution network is constructed, which is not one-off dis-
tribution network optimization in the traditional sense, and
has strong applicability; In addition, the implementation of
joint distribution network based on the distribution center
sharing strategy enables the distribution resources of fresh
produce at the end of the city to be rationally allocated accord-
ing to the logistics demands of fresh produce, and improves
the utilization rate of distribution centers. It provides a new
way of thinking for the optimization of the urban last-mile
logistics distribution network of fresh produce in China, and
also provides some instructive decision reference for related
enterprises.

Nevertheless, in this paper some directions are suggested
for further research. One exciting research path would inves-
tigate the optimization of fresh produce distribution network
under low-carbon background, due to global warming which
is mainly caused by carbon dioxide emission and poses
growing threat to environment and human beings. Another
promising future research path would introduce disruption
management to fresh produce distribution network to cope
with the disruption.
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