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ABSTRACT This paper makes several contributions to antenna selection techniques for massive
multiple-input multiple-output (mMIMO) systems using artificial neural networks. First, binary cross
entropy is adopted as the loss function for network training instead of the conventional cross entropy, which
reduces the number of nodes in the output layer from

( NR
NRS

)
to NR, where NR and NRS are the number of

candidate antennas and the number of selected antennas, respectively. In mMIMO systems, which have a
large number of antennas, binary cross entropy is essential. We also demonstrate that the channel matrix
is practically sufficient information to train the network, excluding the signal-to-noise ratio (SNR) factor
present in the capacity formula. Since a single label is generated for a given mMIMO channel regardless
of SNR, the size of training data is reduced significantly. When the channel matrix without pre-processing
is inputted into a neural network for feature extraction, which is referred to as pure connectionist feature
extraction, we show that the convolutional neural network (CNN) extracts features more successfully than
the fully connected network (FCN). We also show that hybrid feature extraction, in which features are
first extracted symbolically from the channel matrix and then connectionist features are extracted from the
symbolic features, offers significant performance improvement over pure connectionist feature extraction
from the raw data. However, when features are extracted in a hybrid manner, FCN achieves marginally better
performance than CNN, contrary to the pure connectionist feature extraction. Finally, when the networks in
the hybrid feature extraction are pruned to be suitable for deployment in mobile devices, we show that FCN
is a better choice, as it is more robust to severe pruning than CNN. We conducted computer simulations to
demonstrate the effectiveness of the proposed approaches.

INDEX TERMS Antenna selection, neural network, massive MIMO.

I. INTRODUCTION
When 30-300 GHz frequency band, known as mmWave
band, is used with multiple-input multiple-output (MIMO)
systems for wireless communications, wide bandwidth and
multiple data streams enable higher data rates. However,
the benefit comes with an increased cost of the RF chains
that include analog-to-digital converters (ADCs) of which
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operating speed is in proportion to the spectral bandwidth [1].
Antenna selection techniques retain the benefits of massive
MIMO (mMIMO) systems by activating only a subset of
antennas instead of full antenna arrays, thereby requiring a
small number of the costly RF chains [2].

Various symbolic approaches to antenna selection have
been proposed. In [3], the binary particle swarm optimization
technique was used to select a subset of transmit and receive
antennas. In [4], the lattice reduction-based selection method
was proposed assuming maximum likelihood detection at
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the receiver side. In [5], the branch and bound method
was used for efficient antenna selection, pruning away
unnecessary branches of the search tree based on the concept
of maximizing the minimum singular value. In [6], it was
shown that most of the channel capacity can be achieved by
acquiring a small portion of channel state information. In [7],
antenna selection techniques are proposed based on greedy
algorithms. In [8], an efficient antenna selection method was
proposed by using the concept of minimizing cross-entropy
which originated in machine learning.

Besides the aforementioned symbolic approaches, con-
nectionist approaches have been proposed using neural
networks in selecting antennas. The main benefit of the
artificial neural network-based technique is that a large
portion of the computational burden of antenna selection is
shifted to off-line training [9]. Furthermore, the complexity
in the inference stage of the antenna selection is fixed,
thus amenable to hardware implementation fulfilling delay
constraints [10]. Two neural network architectures have been
used for the purpose of antenna selection: the convolutional
neural network (CNN) [1] and the fully connected network
(FCN) [9], [11]. Although other machine learning techniques
such as k-nearest neighbors (k-NN) and support vector
machine (SVM) algorithms can also be applied to antenna
selection [12], we focus on CNN and FCN in this paper.
Unlike in [13] and [14], where the antenna selection and
beamformer design were jointly addressed using the neural
network, we focus on the antenna selection.

In this paper, we first show that the adoption of binary
cross entropy is quite essential in training the neural
networks for the purpose of antenna selection, given a large
number of antennas of massive multiple-input multiple-
output (mMIMO) systems, thus a large number of the
candidate set of selected antennas. Adopting the binary cross
entropy, we can generate short labels for the supervised
learning of the networks. When the conventional cross-
entropy is used, the length of labels is

( NR
NRS

)
, where NR and

NRS are the number of candidate antennas and the number of
selected antennas, respectively, however, the length of labels
is as short as NR when the binary cross entropy is adopted.
The channel capacity formula that is maximized by selecting
antennas is a function of the signal-to-noise ratio (SNR)
and the channel matrix. We show that the channel matrix
excluding the SNR factor is practically sufficient information
in generating the short labels.

When applied to antenna selection, neural networks are
composed of a feature extraction module and a classifier
module [15]. In this paper, we consider two feature extrac-
tion strategies: pure connectionist feature extraction and
hybrid symbolic-connectionist feature extraction. In the pure
connectionist feature extraction, the CNN or FCN extracts
features from the raw data, i.e., the channel matrix. In the
hybrid feature extraction, the symbolic features are first
extracted from the raw data, then the CNN or FCN extracts
features from the symbolic features. Then the final features

from the pure or hybrid feature extraction module are passed
to the classifier module to select a set of antennas. We show
that CNN functions better than FCN as a pure connectionist
feature extractor. However, when features are extracted in
the hybrid manner, the FCN achieves a marginally better
performance than the CNN. Finally, when the networks are
pruned to be suitable for deployment in mobile devices [16],
[17], the hybrid symbolic-connectionist feature extraction
using FCN is shown to be quite a better choice, being more
robust to severe pruning. We performed a set of computer
simulations to demonstrate the effectiveness of the proposed
approach.

II. MASSIVE MIMO SYSTEMS WITH
ANTENNA SELECTION
In this section, we describe the spatially multiplexed multiple
antenna systems with antenna selection. Letting NT and
NR denote the number of transmit and receive antennas,
respectively, the relationship between the transmitted and
received symbol vectors can be expressed as follows:

ysel =
1

√
NT

PHx + zsel (1)

where x = [x1 x2 · · · xNT ]
T denotes the transmitted symbol

vector, ysel = [ysel(1) y
sel
(2) · · · y

sel
(NRS )

]T with NRS ≤ NR, and
ysel(s) denotes the received signal at the s-th (1 ≤ s ≤ NRS )
selected antenna. The matrixH denotes an NR ×NT channel,
in which hji denotes the standard unit power Rayleigh-fading
complex gain between the i-th transmit antenna and the
j-th receive antenna, whereas zsel = [zsel(1) z

sel
(2) · · · z

sel
(NRS )

]T

with zsel(s) denoting the additive white Gaussian noise with
zero mean and variance σ 2

z at the s-th selected receiving
antenna. Finally, an NRS × NR antenna selection matrix is
given as

P =

[
esel(1) esel(2) · · · esel(NRS )

]T
(2)

where esel(s) denotes the unit column vector of length NR with
1 at the s-th selected position and 0s at the other positions.
There are

( NR
NRS

)
possible antenna selection matrices, and we

let P denote the set of all the selection matrices. We assume
E{|xi|2} = 1, i = 1, 2, · · · ,NT , thus the signal-to-noise ratio
per receive antenna is ρ =

1
NT σ 2

z
.

The optimal antenna selection is described as

Popt
SpecEff+ = argmax

P∈P
log2 det

(
INRS + ρPHHHPH

)
= argmax

P∈P
det

(
INRS + ρPHHHPH

)
. (3)

When the i-th antenna set that corresponds to Pi ∈ P is the
optimal for the given channel H, the label for the network
training is given as

dlong =

[
0i−1 1 0

( NR
NRS

)−i

]
(4)
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where 0a denotes a row vector with a zeros. We note that the
length of the label vector is as long as

( NR
NRS

)
. The length of

the label vector is
( NR
NRS

)
. The network can be considered as a

classification of channel matrices Hs into
( NR
NRS

)
classes, and

each class corresponds to Pi.

III. RELATED WORKS
In this section, we review previous antenna selection
techniques using artificial neural networks. We consider
neural networks with L+1 layers. The layer index is denoted
as l = 0, 1, · · · ,L, the input and output layers are denoted as
the 0-th and the L-th layer, respectively. We note that a layer
means a set of a fully connected (or a convolutional) layer,
a batch normalization layer, and an activation layer.

A. INPUT DATA OF THE NEURAL NETWORKS
In previous neural network(NN)-based antenna selection
techniques, various data were inputted to the artificial NN.
The channel matrixH in (1) is composed ofNR×NT complex
numbers. In [12], the input data is composed of 2 matrices
Re{H} and Im{H}; real part and imaginary part matrices, thus
the three dimensional size of the input data is NR × NT × 2.
In [1], [13], and [14], the input data is composed of 3 matrices
or channels; real part matrix, imaginary part matrix, and
absolute value matrix, thus the data size is NR × NT × 3.
In [11], NR × NR symmetric matrix is constructed as HHH ,
then the input data is composed of 1 channel with the absolute
values of each entry. In [9], each NR × 1 channel vector is
expanded into a NR×NR matrix of which the lower triangular
part is ignored due to the symmetry. Thus, the input data is
composed of NT × N 2

R real numbers.
In this paper, the NR × NT × 2 real numbers of the

channel matrix H are referred to as raw data because no data
processing is performed. We name |H| or |HHH

| symbolic
features becauseH is processed symbolically without the aid
of neural networks.

B. FULLY CONNECTED NETWORK-BASED APPROACH
In [11], a fully connected network (FCN) was used for the
antenna selection. The weighted sum s(l)i of the i-th node of
the l-th layer, i = 1, 2, · · · ,N (l), l = 1, 2, · · · ,L, is

s(l)i =

N (l−1)∑
j=1

w(l)
i,j f

(l−1)
j (5)

where f (l−1)
j denotes the j-th feature value of the (l − 1)-th

layer, and w(l)
i,j , i = 1, 2, · · · ,N (l), j = 1, 2, · · · ,N (l−1),

denotes the connection strength between the i-th node of the
l-th layer and the j-th feature value of the (l − 1)-th layer.
Then the weighted sums are normalized, scaled, and

shifted to be

s̃(l)i = γ
(l)
i

(
s(l)i − µ

(l)
i

σ
(l)
i

)
+ β

(l)
i (6)

where γ
(l)
i and β

(l)
i are optimized in the backward learning,

minimizing the loss function of the network [18], [19]. Note
that the bias parameters are not present in (5) due to the
shifting parameter β

(l)
i in (6) ([20], p.343).

Then, an activation function produces the feature values of
the l-th layer as

f (l)i =

{
s̃(l)i , if s̃(l)i ≥ 0

exp{s̃(l)i } − 1, else
, (7)

where we assumed exponential linear unit (ELU) activation
function with parameter α = 1 for the hidden layers (l =

1, 2, · · · ,L − 1) ([20], p.336). The activation function of the
final layer is addressed in Section III-D.

C. CONVOLUTIONAL NETWORK-BASED APPROACH
In [1], a convolutional neural network (CNN) was used for
the antenna selection. A CNN is composed of a number
of convolutional layers and a few fully connected layers.
We assume that the l-th layer is a convolutional layer and
the previous (l − 1)-th layer outputs N (l−1)

fmap feature maps

f (l−1)
i,j,k , i = 1, 2, · · · ,N (l−1)

hght , j = 1, 2, · · · ,N (l−1)
wdth , k =

1, 2, · · · ,N (l−1)
fmap . Each two dimensional feature map of

the (l − 1)-th layer is assumed to be of size N (l−1)
hght ×

N (l−1)
wdth . We denote the N (l)

fmap convolution kernels as

w(l)
u,v,k ′,k , u = 1, 2, · · · ,W (l)

hght, v = 1, 2, · · · ,W (l)
wdth, k

′
=

1, 2, · · · ,N (l−1)
fmap , k = 1, 2, · · · ,N (l)

fmap. Each three dimen-
sional convolution kernel of the l-th layer is of size
W (l)

hght×,W (l)
wdth ×N (l−1)

fmap . Then, the weighted sum s(l)i,j,k of the
(i, j)-th neuron of the k-th feature map of the l-th layer, i =

1, 2, · · · ,N (l)
hght, j = 1, 2, · · · ,N (l)

wdth, k = 1, 2, · · · ,N (l)
fmap, is

s(l)i,j,k =

W (l)
hght∑
u=1

W (l)
wdth∑
v=1

N (l−1)
fmap∑
k ′=1

w(l)
u,v,k ′,k f

(l−1)
u′(i,u),v′(j,v),k ′ (8)

with u′(i, u) = (i− 1) × s(l)H + u, v′(i, v) = (j− 1) × s(l)V + v.
The symbols s(l)H and s(l)V denote the horizontal and vertical
strides of the l-th layer, respectively. There are cases when
u′(N (l)

hght,W
(l)
hght) > N (l−1)

hght or v′(N (l)
wdth,W

(l)
wdth) > N (l−1)

wdth .

In those cases, we can either adopt smaller N (l)
hght and N

(l)
wdth

and discard a few features of the previous layers, or let those
cases happen and use 0 feature values, which is referred to as
zero padding. In this paper, we adopt the zero padding option.

Once the weighted sums are calculated, the mini-batch
normalization and the activation are performed similarly as in
the fully connected network, producing N (l)

fmap feature maps,

each of size N (l)
hght × N (l)

wdth. In general, a pooling layer is
inserted between the convolutional weighted sum in (8) and
the batch normalization, however, it is skipped in the paper.1

If the l-th convolution layer is followed by a fully connected
layer, the feature values are flattened into one dimensional

1We tried the inclusion of the pooling layers in the simulations but
observed only degraded performance.
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vector of length N (l)
hght × N (l)

wdth × N (l)
fmap. Batch normalization

in the final fully connected layer is also the same as (6) but
the corresponding activation is the softmax addressed in the
following Section.

D. CROSS ENTROPY AS A LOSS FUNCTION
The activation function of the output layer (the L-th layer)
for both CNN in Section III-B and FCN in Section III-C,
is assumed to be the softmax, producing the following
features f (L)[m]i , i = 1, 2, · · · ,N (L),m = 1, 2, · · · ,NMB

f (L)[m]i =
exp{s̃(L)[m]i }∑N (L)

k=1 exp{s̃
(L)[m]
k }

, (9)

where NMB denotes the batch size. Using the label dlong =

[d1 d2 · · · dN (L) ] in (4) for the supervised learning, the cross-
entropy between the network output f(L) and label dlong is
estimated as

H (f(L),dlong) ≈
1

NMB

NMB∑
m=1

N (L)∑
i=1

{
−d [m]i ln f (L)[m]i

}
. (10)

We note that N (L)
=
( NR
NRS

)
.

IV. COMPLEXITY ANALYSIS OF NEURAL NETWORKS
From the perspective of implementation as an embedded
system in mobile devices, the inference complexity of
a neural network is important. In order to compare the
performance of CNN and FCN with various input shapes,
the inference complexities need to be the same for a
fair comparison. In this section, we analyze the inference
complexities of FCN and CNN, and then, use the analysis
results in the following Section to set the network parameters
such as the number of neurons or the kernels so that the
complexity stays the same regardless of the adoption of CNN
or FCN with various input data shapes.

A. COMPLEXITY OF FULLY CONNECTED NETWORK
The complexity of the l-th layer is N (l)

× N (l−1) multiplica-
tions in (5), about N (l)/2 exponential function calculations in
(7) assuming half of s̃(l)i , i = 1, 2, · · · ,N (l) are less than 0.
Once the two values µ

(l)
i and σ

(l)
i are fixed in the inference

phase, and γ
(l)
i and β

(l)
i are fixed at the end of the machine

learning, the process in (6) can be implemented using a
single multiplication and a single addition. Thus, translating
one exponential function calculation into 2 multiplications
for the sake of simplicity, the overall complexity of the
fully connected neural network in the phase of inference is
given as

CompFC =

L∑
l=1

{
N (l)

×

(
N (l−1)

+ 2
)}

. (11)

Assuming that all hidden layers have the same number of
nodes, i.e. N (l)

= NFC, l = 1, 2, · · · ,L − 1, the complexity

is expressed as

CompFC = (L − 2)N 2
FC +

{
N (0)

+ N (L)
+ 2L − 2

}
× NFC + 2N (L). (12)

B. COMPLEXITY OF CONVOLUTIONAL NETWORK
We assume LCN convolutional layers, that is followed by LFC
fully connected layers, thus LCN + LFC + 1 layers in total,
including the input layer.

Assuming N (l−1)
fmap feature maps of the (l − 1)-th layer,

the complexity of the weighted sum in (8) requires W (l)
hght ×

W (l)
wdth × N (l−1)

fmap for each neuron of a feature map, thus

W (l)
hght×W

(l)
wdth×N

(l−1)
fmap ×N (l)

hght×N
(l)
wdth×N

(l)
fmap considering all

N (l)
fmap feature maps. We note that the number of parameters in

N (l)
fmap convolution kernels isW

(l)
hght×W (l)

wdth×N (l−1)
fmap ×N (l)

fmap,

and each kernel is used N (l)
hght × N (l)

wdth times. In this paper,

we adopt small kernels with W (l)
hght = 2, W (l)

wdth = 2 for
all convolutional layers. With these small kernels and small
strides s(l)H = 1, 2 and s(l)V = 1, 2, we haveN (l)

hght = N (l−1)
hght /s(l)V

and N (l)
wdth = N (l−1)

wdth /s(l)H , assuming the zero padding and
N (l−1)
hght and N (l−1)

wdth being multiples of 2.

CompCN =

LCN∑
l=1

(2 + 4 × N (l−1)
fmap

)
×

N (l−1)
hght

s(l)V

×
N (l−1)
wdth

s(l)H
× N (l)

fmap

}
. (13)

CompFC =

L∑
l=LCN+1

{
N (l)

×

(
N (l−1)

+ 2
)}

. (14)

V. PROPOSED ANTENNA SELECTION TECHNIQUE FOR
MASSIVE MIMO SYSTEMS USING ARTIFICIAL
NEURAL NETWORK
In this section, we propose an antenna selection technique
using a neural network with binary cross entropy and hybrid
symbolic-connectionist feature extraction.

A. ADOPTION OF BINARY CROSS ENTROPY
Instead of conventional cross entropy using (9) and (10) as
the loss function for network training, we adopt binary cross
entropy that assumes the following short label.

dshort = [d1 d2 · · · dN (L) ],with N (L)
= NR. (15)

The short label is composed of NRS ones that denote the
selected antenna indices and NR − NRS zeros. Note that the
length of the long label in (4) is N (L)

=
( NR
NRS

)
and the length

of the short label is only NR. If NR = 16 and NRS = 8,
the long label dlong is as long as 12, 870 but the short label
is of length 16. If binary cross entropy is adopted, sigmoid
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activation is used in the output layer.

f (L)[m]i =
1

1 + exp
{
−s̃(L)[m]i

} , i = 1, 2, · · · ,NR. (16)

Then using the short label dshort = [d1 d2 · · · dNR ] for the
supervised learning, the binary cross entropy between the
network output f(L) and the short label dshort is estimated as

H (f(L),dshort) ≈
1

NMB

NMB∑
m=1

NR∑
i=1

{
−d [m]i ln f (L)[m]i

}
. (17)

Given a large number of antennas in massive MIMO sys-
tems, the adoption of binary cross entropy and consequently
the use of the short label is almost essential.

B. SHORT LABEL GENERATION
The optimal antenna selection in (3) can be considered as the
following nonlinear function.

Popt
capacity = 8capacity(ρ,H), (18)

with domainR×CNR×NT and rangeP . In an effort to facilitate
the short label generation, we simplify the objective function
in (3) or (18) as

Popt
simplified = argmax

P∈P
det

(
PHHHPH

)
= 8simplified(H). (19)

Thus the optimal precoder Popt
simplified is independent of SNR.

Fig. 1 compares the capacity achieved by the optimal antenna
selection in (3) and the simplified antenna selection in
(19) when NT = 8, NR = 16, NRS = 8. It can be
observed that the capacity achieved by Popt

simplified is very
close to the optimal performance. There is practically no
performance degradation when SNR is higher than 0[dB],
and only a negligible performance degradation occurs by
the simplification when the SNR is lower than 0[dB].
Based on the observations, we use henceforth the simplified
optimization (19) in generating the short labels.

C. CNN VS FCN FOR PURE CONNECTIONIST
FEATURE EXTRACTION
Not only in [1] but also in [21] and [22], CNN was used
for the classification of non-image data. The convolutional
neural network (CNN) is known to successfully extract visual
features. Due to the inherent characteristic of convolutional
structure, the local visual features are extracted by CNN
regardless of their spatial positions in the samples, e.g., Hs
in the antenna selection problem addressed in the paper.
The channel matrices Hs are generated as independent
identical Gaussian random variables, which means there is
no statistical spatial correlation.When a specific channelH is
considered, however, there might be underlying connections
between the visual features and the antenna selection
matrix P. In this regard, it is worth comparing CNN and FCN

FIGURE 1. Spectral efficiency with the optimal antenna selection in (3) or
(18) that uses both SNR and channel matrix and the simplified antenna
selection in (19) that uses only the channel matrix when NT = 8, NR = 16,
NRS = 8. The SNR information is not essential from the perspective of the
antenna selection.

when raw data Re(H) and Im(H) is inputted. An example
of the random matrix with NR = 8 and NT = 4 is
given in Fig. 2(a). Fig. 2(b) is the 8 × 4 × 2 input sample
that corresponds to the random matrix in Fig. 2(a). We call
Re(H) and Im(H) raw data because no data processing is
applied to H.

The CNN is illustrated in Fig.3(a) with the raw data
as input. The input data is of dimension NR × NT × 2,
and the hidden layers that extract connectionist features
are composed of three convolutional layers and a fully
connected layer. For each layer, batch normalization is done
right before the activations. The parameters for exponential
moving averages for the batch normalization are βµ = βσ =

0.99. The stride parameter of the first (l = 1) convolutional
layer is 2, and the strides are set to 1 for the second (l = 2) and
the third (l = 3) convolutional layers. Then a fully connected
layer with sigmoid activation is used as the classifier of
the input samples using the connectionist features from the
hidden layers. We note that the pooling layers are not utilized
in Fig.3(a), which means that the rotated and/or scaled visual
features are not extracted.

When FCN is used for the connectionist feature extraction,
the input data is the one dimensional vector of length
NR × NT × 2, and the hidden layers are composed of four
fully connected layers. In order to compare CNN and FCN
in a fair manner, we adjust the number of kernels of CNN
and the number of neurons of FCN using (11)-(14) so that
the inference complexities of the two structures are the same.
Table 1 shows the number of kernels of the convolutional
layer and the number of neurons of the fully connected layer
so that both networks require about 370,000 multiplications
for inference from a sample.
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FIGURE 2. Illustration of raw data and symbolic features when NT = 4, NR = 8, NRS = 4.
(a) an example of the random channel matrix, (b) 8 × 4 × 2 raw data that is composed of
real and imaginary matrices, (c) 8 × 8 symbolic features of the channel matrix.

The Adam optimizer ([20], page 356) is used for weight
updates in the training phase. In training the networks,
we scheduled the learning rate as

ηtrain =


5 × 10−3, 1 ≤ epoch < 10
5 × 10−4, 10 ≤ epoch < 15
5 × 10−5, 15 ≤ epoch < 20.

(20)

We generated 1, 600, 000 random channels and the corre-
sponding short labels, which are divided into
1, 560, 000 training samples and 40, 000 testing samples.
Upon completion of the training, we have the fol-

lowing two nonlinear inference functions with about
370,000 parameters, approximating (19).

P̂opt,CNN
simplified = 8̂CNN

simplified(H). (21)

P̂opt,FCN
simplified = 8̂FCN

simplified(H). (22)

Fig. 4 compares CNN and FCN in terms of spectral
efficiency for 3 sets of {NT ,NR,NRS}. The spectral efficiency
by the simplified optimal antenna selection log2 det(INRS +

ρPopt
simplifiedHHHPoptH

simplified) is presented as the solid line,
and the spectral efficiency by not choosing the antennas
corresponds to the dotted line which is obtained by fixed
Pno selection = [e1 e2 · · · eNRS ], i.e., selecting the first NRS
antennas regardless of Hs. Performance of the CNN using
(21) and the FCN using (22) are denoted as circles and small
dots, respectively. Fig. 4 shows that the CNN extracts features
better from the raw data than the FCN. It is interesting to

observe that the random channels contain visual features that
are underlying connections to the short labels.

D. CNN VS FCN FOR HYBRID FEATURE EXTRACTION
In [11], a neural network based antenna selection technique
was proposed for a multi-user MISO (multiple input single
output) downlink scenario, where the following symbolic
features were inputted to the neural network for the purpose
of antenna selection. ∣∣HHH

∣∣
max

∣∣HHH
∣∣ , (23)

where | · | means the element-wise absolute values of
the argument matrix, and max | · | denotes the maximum
value among the NR × NR absolute values. Fig. 2(c) is the
8×8 symbolic features that correspond to the random matrix
in Fig. 2(a). It is necessary to check if the information |HHH

|

keeps the essential features of H in (19). In an attempt to
justify the use of (23), we checked the capacity achieved by
the following antenna selection.

Popt
simplified absolute = argmax

P∈P
det

(
P
∣∣∣HHH

∣∣∣PH) . (24)

Comparing (19) and (24), we can observe that the NR × NR
complex values (NR × NR × 2 real values) HHH in (19) are
reduced to NR ×NR real values in (24), which is a dimension
reduction [23].
Fig. 5 compares the spectral efficiency with the optimal

antenna selection in (3) and the simplified antenna selection
in (24) when NT = 8, NR = 16, NRS = 8. It can be
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FIGURE 3. Neural network architecture is chosen for antenna selection depending upon whether the features are extracted in a pure connectionist
manner or in a hybrid symbolic-connectionist manner: (a) Convolutional neural network is chosen when raw data is inputted and the features are
extracted in a pure connectionist manner (b) Fully connected neural network is preferred when the features are extracted in a hybrid manner, i.e., the
symbolically extracted features are inputted to the neural network then the connectionist features are extracted from the symbolic features.

observed that there exists only a slight spectral efficiency
reduction in the high SNR regime due to taking absolute
values. We argue that the information |HHH

| in (24) keeps
the essential features of H or HHH in (19). Furthermore,
the NR × NR numbers in |HHH

| are good features from the
perspective of antenna selection.

Fig. 3(b) illustrates a hybrid feature extraction that
combines the symbolic and connectionist feature extractions.
The raw data H ∈ CNR×NT is composed of NR ×NT × 2 real
numbers. The symbolic features in (23) that are composed
of NR × NR real numbers, are extracted from H. Then
the symbolic features are inputted into the neural network.
In Fig. 3(b), two fully connected layers are used for the
connectionist feature extraction, then another fully connected
layer is used for the classification using the features from
the second hidden layer. Finally, NRS antenna indices are
selected from the output vector with lengthNR of the last fully
connected layer. In this hybrid symbolic and connectionist
feature extraction scenario, the CNN can also be adopted for
the connectionist part. Table 2 shows the number of kernels
of the convolutional layer and the number of neurons of
the fully connected layer so that both networks require the
same number of multiplications for inference from a sample.
We note that about 370,000 multiplications are required for
all the networks in Table 1 and Table 2.

Upon completion of training adopting the same training
optimizer and learning rate schedule as in Section V-C,
we have the following two nonlinear inference functions with
about 370,000 parameters, approximating (19).

P̂opt,Hybrid−CNN
simplified = 8̂

Hybrid−CNN
simplified

( ∣∣HHH
∣∣

max
∣∣HHH

∣∣
)

. (25)

P̂opt,Hybrid−FCN
simplified = 8̂

Hybrid−FCN
simplified

( ∣∣HHH
∣∣

max
∣∣HHH

∣∣
)

. (26)

Fig. 6 compares the Hybrid-CNN and the Hybrid-FCN for
3 sets of {NT ,NR,NRS}. The two networks offer practically
the same spectral efficiency for each set of {NT ,NR,NRS}
when the symbolic features are inputted to the connectionist
feature extraction parts. Comparing Fig. 4 and Fig. 6, we can
also observe that the hybrid feature extraction strategy
in Fig. 3(b) outperforms the pure connectionist feature
extraction in Fig. 3(a).

E. CNN VS FCN WHEN NETWORKS ARE PRUNED
A small number of parameters are desirable when the
nonlinear inference functions are deployed in mobile
devices. In this subsection, we prune to reduce the about
370,000 trained parameters of (25) and (26). We note that the
kernel parameters w(l)

u,v,k ′,k in (8) of the convolutional layer
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FIGURE 4. Comparison of convolutional neural network (CNN) and fully
connected neural network (FCN) in terms of spectral efficiency when raw
data is inputted. CNN extracts features better from the raw data than
the FCN.

TABLE 1. Number of Kernels and Neurons of CNN and FCN for the
Connectionist Feature Extraction. The input data shape for CNN is
2 channels of NR × NT , and the input data shape for FCN is a vector of
length NR × NT × 2. We assumed s(2)

V = s(2)
H = 2 and

s(l )
V = s(l )

H = 1, l ̸= 2 for the CNNs.

FIGURE 5. Spectral efficiency with the optimal antenna selection in (3)
and the simplified antenna selection in (24) when NT = 8, NR = 16,
NRS = 8. The information |HHH | in (24) seems to keep the essential
features of H or HHH in (19). Furthermore, the NR × NR numbers in
|HHH | are the good features from the perspective of antenna selection.

and the neuron parameters w(l)
i,j in (5) are pruned keeping

the batch normalization parameters. The survived weights
after the pruning are retrained with the following learning

VOLUME 11, 2023 111417



J. Kim, H.-S. Lim: Neural Network With Binary Cross Entropy for Antenna Selection

FIGURE 6. Comparison of convolutional neural network (CNN) and fully
connected neural network (FCN) in terms of spectral efficiency when the
symbolic features (or pre-processed data) are inputted. The two networks
offer practically the same spectral efficiency when the symbolic features
are inputted.

TABLE 2. Number of Kernels and Neurons of CNN and FCN for Hybrid
Symbolic and Connectionist Feature Extraction. The input data shape for
CNN is 1 channel of NR × NR , and the input data shape for FCN is a vector
of length NR × NR . We assumed s(2)

V = s(2)
H = 2 and

s(l )
V = s(l )

H = 1, l ̸= 2 for the CNNs.

rate schedule.

ηretrain =


5 × 10−3, 20 ≤ epoch < 30
5 × 10−4, 30 ≤ epoch < 35
5 × 10−5, 35 ≤ epoch < 40.

(27)

Fig. 7 compares the Hybrid-CNN and the Hybrid-FCN
when the networks are pruned for 3 sets of {NT ,NR,NRS}.
The signal-to-noise ratio per receive antenna ρ is fixed
at 20[dB]. The performance by the Hybrid-CNN starts to
degrade when the sparsity is 0.8, and the performance degra-
dation becomes significant when the sparsity is bigger than
0.9. The Hybrid-FCN, however, maintains the performance
when the sparsity is as high as 0.95. From Fig. 7, we can state
that the Hybrid-FCN is more robust to network pruning than
the Hybrid-CNN.

F. FURTHER COMMENTS ON THE COMPLEXITY
In this subsection, we elaborate on how we set the hyper-
parameters in Table 1 and Table 2 so that 4 neural networks
have the same complexity for a givenNT ,NR, andNRS . Step1:
The hyper-parameters are set for the CNN in Table 1 with
input data shape of NR × NT × 2 based on a grid search for
the hyper-parameters with extensive learning and evaluations.
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FIGURE 7. Comparison of convolutional neural network (CNN) and fully
connected neural network (FCN) in terms of spectral efficiency when the
networks are pruned. The symbolic features are inputted into the two
networks. The signal-to-noise ratio per receive antenna ρ is fixed at
20[dB]. The FCN is more robust to network pruning than the CNN.

In the grid search for the hyper-parameters, the number of
CNN kernels (thus the number of feature maps) of all layers
is restricted to be the same, i.e., N (l)

fmap = Nfmap. (We note
that the number of CNN kernels was not fixed for the case
of NT = 8,NR = 16.) Furthermore, the convolution kernel
size is restricted to be 2× 2 for all layers, the strides are also
restricted to be 1 or 2. Table 1(b) shows the result of the grid
search when NT = 6, NR = 12, and NRS = 6. Using (13) and
(14), we can calculate the required number of multiplications
as CompCN + CompFC = 104544 + 89436 = 193980.
The hyper-parameters of the other 3 neural networks are
chosen so that the required complexities are close to 193980.
The complexities can not be exactly the same because the
hyper-parameters are constrained to be integers. We note that
the following Step2-Step4 can be taken in a different order.
Step2: We choose the hyper-parameters of FCN. Applying
N (0)

= 6 × 12 × 2 = 144,N (L)
= 12 to (12), we can

express the complexity of the FCN as (L − 2)N 2
FC + (154 +

2L)NFC + 24. Constraining the complexity to be 193980 and
choosing the number of layers to be L = 5, we have
3N 2

FC + 164NFC + 24 = 193980. Solving the polynomial
equation, we find NFC = N (l)

= 228, l = 1, 2, 3, 4 to be
the integer as shown in Table 1(b). Step3: Then the hyper-
parameters of CNN in Table 2(b) with input data shape of
NR × NR is determined so that CompCN is the same as that
of CNN in Table 1(b). Let us first elaborate on the complexity
of the convolution layers of CNN in Table 2(b). Given the
input data shape of NR × NR, the kernel size of 2 × 2, the
vertical and horizontal strides of 1s, and the number of kernels
of Nfmap, the first hidden layer (l = 1) has the complexity of
NR×NR×2×2×Nfmap+NR×NR×Nfmap×3multiplications,
where NR ×NR ×Nfmap × 3 represents the complexity of the
batch normalizations and the activations. Given the input data
shape (i.e., the output data shape of the first hidden layer)
of NR × NR × Nfmap, the kernel size of 2 × 2, the vertical
and horizontal strides of 2s, and the number of kernels of
Nfmap, the second hidden layer (l = 2) has the complexity
of NR/2×NR/2×Nfmap × 2× 2×Nfmap +NR/2×NR/2×

Nfmap × 3 multiplications, where NR/2 × NR/2 × Nfmap ×

3 represents the complexity of the batch normalizations and
the activations. If additional convolution layers are added
with the kernel size of 2×2, the vertical and horizontal strides
of 1s, and the number of kernels of Nfmap, its complexity
becomes NR × NR × N 2

fmap + NR/2 × NR/2 × Nfmap ×

3 multiplications. If LCN convolution layers are adopted,
the additional convolution layers excluding the first and the
second layers is LCN − 2, thus the total complexity of the
convolution layers is expressed as (LCN − 1)×N 2

R ×N 2
fmap +

7 × N 2
R × Nfmap +

3
4 (LCN − 1)N 2

R × Nfmap. Constraining
the complexity to be the same as CompCN = 104544 in
Table 1(b) and choosing LCN of 3, we obtain Nfmap = 17 as
in Table 2(b). Although the number of convolution layers
in Table 2(b) is the same as in Table 1(b), the number of
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kernels can be determined accordingly if a different number
of hidden convolution layers (LCN ) is adopted. After setting
the hyper-parameters for the convolution layers, the N (4) in
Table 2(b) is calculated so that CompFC in Table 2(b) is
the same as that in Table 1(b). Step4: The final step is to
determine NFC = N (1)

= N (2) in Table 2(b) in a similar
manner as in Step2 but now with choosing the number of
layers L = 3. Note that the complexity of FCN in both
Table 1 and Table 2 is O((L − 2)N 2

FC). The complexities of
CNN in Table 1 and Table 2 are O((LCN − 1) × NR × NT ×

N 2
fmap + (L − LCN − 1) × NR × NT × Nfmap × NFC) and
O((LCN−1)×N 2

R×N 2
fmap+(L−LCN−1)×N 2

R×Nfmap×NFC),
respectively. We emphasize that all O expressions are based
on the assumption that N (L)

≪ NFC.
Wemeasured the time taken to train the model and perform

inference using the trained models. All experiments are con-
ducted in an environment equipped with an Intel i7-6700K
CPU operating at 4.00 GHz and 16.0GB of memory, running
the Windows 10 Pro x64 operating system. The development
tools used include Python 3.9.13, Tensorflow 2.11.0, and
Keras 2.11.0. For the case of {NT = 6, NT = 12, NRS = 6},
For inference on 100,000 samples, CNN takes 6.2 seconds
for raw data and 7.2 seconds for preprocessed data, while
FCN takes 5.2 seconds for raw data and 5.1 seconds for
preprocessed data. The slight variation in inference times
despite having the same number of multiplications can be
attributed to the inherent differences in algorithmic behavior
(initialization, optimization, etc.) between the software-
implemented CNN and FCN.
We emphasize that it has been a conventional practice to

evaluate the time performance of an algorithm based on the
number of multiplications in the telecommunication field.
This practice is particularly appropriate when the trained
model is ultimately implemented in hardware (as a system
semiconductor) on mobile devices. Compared to the number
of adders and comparators, the number of multiplicators that
is required by an algorithm dominantly determines the time
performance of the corresponding semiconductor. Therefore,
reducing the number of multiplications directly benefits in
shortening the execution time which is important for real-
time processing of the algorithm. Our approach aligns with
this industry practice, focusing on a metric that has practical
and direct implications for time performance in hardware
implementation. Thus, although a strict validation for the time
performance is not provided, we argue that the number of
multiplications in Equations (11), (12), (13), and (14) are self-
validating to a good degree.

VI. CONCLUSION
In this paper, we showed that the use of binary cross entropy
is quite essential for an artificial neural network that selects
antennas in mMIMO systems that are equipped with a
large number of antenna arrays. We also showed that the
spectral efficiency formula as the objective function can be
simplified by ignoring the SNR parameter practically without

performance degradation. Omitting the SNR factor, we could
assign a unique label to a mMIMO channel regardless of the
SNR, which in turn facilitates the training data generation.
When the channelmatrix excluding the SNR factor is inputted
to the neural networks and pure connectionist features are
extracted, the CNN outperformed the FCN. However, in the
hybrid scenario where good symbolic features are extracted
first then the connectionist features extracted from the
symbolic features, the Hybrid-CNN and the Hybrid-FCN
offered practically the same performance. Finally, when the
networks are pruned to be amenable to mobile devices, the
Hybrid-FCN turned out to be preferable to the Hybrid-CNN.
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