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ABSTRACT Researchers and practitioners in the fields of science and engineering encounter significant
challenges when it comes to mitigating the proliferation of computer worms, owing to their rapid
spread within computer and communication networks. This study delves into a comprehensive analysis
of the mathematical model governing the hazard of worm propagation in such networks. Specifically,
the mathematical framework employed herein encompasses a system of ordinary differential equations.
In numerous instances, mathematical models have been employed to quantitatively investigate the
propagation patterns of worms across computer networks. In this scholarly article, we present an enhanced
Susceptible-Exposed-Infected-Quarantined-Vaccinated (SEIQV) model, denoted as Susceptible-Exposed-
Infected-Quarantined-Patched (SEIQP), which effectively captures the dissemination dynamics of an insider
threat within a network featuring air gaps. To facilitate the study, we leverage the power of feedforward neural
networks that are trained using the backpropagated Levenberg-Marquardt optimization algorithm. These
neural networks serve as surrogate tools, providing solutions to the SEIQP model. To evaluate the efficacy
of our approach, we meticulously assess their performance across three distinct scenarios. Additionally,
the stability of the mathematical model is examined by manipulating the probability of an insider threat
removing a patch from the host, denoted as η. Our empirical findings conclusively establish the effectiveness
of the proposed approach in addressing the intricate challenges associated with insider threats within network
environments.

INDEX TERMS SEIQV model, insider threat, artificial neural networks, machine learning, system of
differential equations, surrogate solutions, optimization algorithm, anti-virus, numerical solutions, patching.

I. INTRODUCTION
Computer networks have become crucial and necessary
instruments for communicating information, cyber security,
and research in today’s environment. Most computers are
linked to one another in some fashion, whether through the
Internet or within an intranet. While this is an extremely
beneficial feature for communication, Additionally, it lets
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malware, a type of cybercrime, flourish [1].Malware includes
a variety of malicious behavior, such as that displayed
by worms, viruses, spyware, trojans, and rootkits [1], [2],
[3]. It is a widespread security concern for the Internet
infrastructure since it can compromise data integrity and even
lead to theft [4], [5]. Moreover, several researchers have
applied the concept of malicious to Android devices [6], [7].
Due to the distinctions between mobile phones and desktop
computers, the currently used models for the transmission of
computer worms cannot immediately begin their operation in

111034

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-4040-6211
https://orcid.org/0000-0002-7380-6780
https://orcid.org/0000-0002-6963-2482
https://orcid.org/0000-0002-5402-8960
https://orcid.org/0000-0002-8751-9205


M. Sulaiman et al.: Quantitative Analysis of Worm Transmission and Insider Risks in Air-Gapped Networking

a mobile network [8], [9]. Susceptible-Affected-Infectious-
Suspended-Recovered (SAIDR) is a model that is mostly
applicable to mobile networks [10]. However, a variety of
models can be utilized for computer networks. As a result
of the speed at which they spread, computer worms in
computing systems and networks constitute a significant
security risk [11], [12]. As an illustration, the 2001 Code
Red worm infected 359,000 hosts in 24 hours [13], [14]. The
Blaster, Witty, and Conficker worms are just a few of the
newer, more complex worms that have been identified since
2001 [11], [14]. The integrity, confidentiality, and availability
of the system can be compromised by computer worms
used as a delivery mechanism for other malicious activities.
To statistically comprehend spreading characteristics and
develop effective countermeasures or mitigation strategies,
there is a growing need to precisely model computer worm
propagation characteristics.

To effectively combat computer worms, several strategies
have been developed, including patching the vulnerability
[15], eradicating the infection using software designed to
combat viruses [16], and policing the flow of traffic using
intrusion detection technologies [17]. Certain networks have
been air-gapped to prevent them from having direct internet
connectivity to avoid exterior exposure from occurring in
the first place [18]. A networking connection between the
internal networks and the intranet, or the outside world,
is absent in an air-gapped network [19], [20]. Despite this,
the network is still open to insider attacks such as the
transmission of computer worms from within the network.
The following steps might be very helpful for the model.

• For an air-gapped network with insider threats, a mod-
ified version of the SEIQV model is quantitatively
analyzed. For the remainder of this study, we will
refer to our modified SEIQV model as the Susceptible-
Exposed-Infected-Quarantined-Patched (SEIQP) model
to distinguish it from earlier SEIQVmodels described in
the literature.

• To provide quantitative guidance for using containment
measures against a worm with specific characteristics,
additionally, we calculate the SEIQPmodel’s fundamen-
tal reproduction number.

• To decide where resources should be used in the network
to accomplish different goals and results, In the third
stage, we analyze the insider threat’s influence over the
operating variables.

In [21], the worm propagation and insider threat in air-gapped
network is modelled using a modified SEIQV mathematical
framework. The RK-4 approach was used to solve the SEIQP
model. This method is not appropriate for stiff differential
equations because it is computationally expensive, lacks a
built-in error monitoring system, and is not computationally
efficient. It is only stable conditionally. If there are higher-
order ODEs, this procedure may make its implementation
more difficult and perhaps create new sources of error.
However, machine learning algorithms outperforms other

numerical techniques because it is more user-friendly
than conventional approaches, and can handle data-driven
approaches, non-linearity, complexity, high-dimensional data
handling, and complicated patterns. In addition, compared
to other methodologies, it provides us with a solution that
is much closer to the actual solution [22], [23]. These
advantages of machine learning compelled the authors of this
manuscript to the SEIQP model discussed in this paper.

This study’s objective is to examine a modified version
of the SEIQV model for ‘‘worm propagation and insider
threats in the air-gapped network’’ bymaking use of Artificial
Neural Networks (ANNs) to solve the problem. The machine
learning approach provides an additional way to solve the
problem through the use of data. It provides precise numerical
estimates, makes model building easier, lowers processing
costs, and provides robust and adaptable model abilities.
The use of an ANN-based system makes the analysis more
effective, and it also reduces the amount of error. ANNs
have the potential to develop in a number of distinct ways,
each of which is determined by the data that moves through
the network during the course of the learning process,
whether that data is external or internal. An artificial neural
network will employ the Back Propagation method to carry
out simultaneous training in order to improve the overall
effectiveness of a Multilayer Perceptron (MLP) network.
It is the paradigm for complicated multi-layered networks
that are utilized the most since it is efficient, effective, and
easy to understand. The Levenberg-Marquardt algorithm,
is a new converging reliability strategy for artificial neural
networks (ANNs) [24]. It offers a numerical solution to a
wide variety of problems that are caused by computer worms.
To investigate the dispersal of worms and the impacts of
insider risks in a network, we employed a backpropagated
neural network optimized using the Levenberg-Marquardt
approach LMB-NN. The following is an overview of the
most important components that have been proposed in this
manuscript:

• The Levenberg-Marquardt back propagation neural
networks architecture is used to solve an application-
oriented system of ODEs.

• The model for worm propagation and insider threats
in air-gapped networking is analyzed using novel
intelligent computing.

• Solutions of ODEs are predicted and then analyzed by
different performance indices.

• Accuracy, efficiency, validation, convergence analysis,
Mean Square Error (MSE), error histograms, and regres-
sions, were obtained for the design scheme, validating
the accuracy and repeatability of the designed solution.

The rest of the article is structured as follows. The relevant
research on worm transmission and insider threats is covered
in Section II. The problem-solving mathematical model is
in Section III. Moving on to mathematical modeling in
Section IV. Section V, Deciding on the suggested approach
to problem-solving. The design process is provided in
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TABLE 1. Abbreviations and its descriptions.

SectionVI, which also details the feedforward neural network
(FFNN) based approach to problem-solving. Section VII
describes the findings and discusses them, and section VIII
then makes a conclusion.

II. PRELIMINARIES
Spread of malicious objects in computer network and
their control are area of concern for the researcher.
The study of virus spread in computer networks has
frequently used biologically based epidemic models. The
earliest mathematical model for epidemics was created by
Daniel Bernoulli in 1760 [25], [26], but today’s commonly
used models are based on the work of Kermark and
McKendrick, who employed compartmental epidemiological
models to capture [21] the dynamical aspect of epidemics
[27], [28]. Their original Susceptible-Infectious-Recovered
(SIR) model has undergone many changes, including
the addition of new compartments including quarantined
(Q), exposed (E), undiscovered (U), and vaccinated (V).
A number of researchers and scientists have experimented
with and developed a variety of models, some of which
include Susceptible-Exposed-Infectious-Undetected-Reco-
vered (SEIUR) [29], Susceptible-Infected-Susceptible (SIS)
[30], Susceptible-Exposed-Infectious-Susceptible with Vac-
cination (SEIS-V) [31], Susceptible-Infectious-Recovered
(SIR) [32], Susceptible-Infectious-Removed-Susceptible
(SIRS) [33], Susceptible-Exposed-Infectious-Recovered
(SEIR) [34], [35], (SEIQV) [11], Susceptible-Exposed-
Infectious-Recovered-Susceptible (SEIRS) [36], Susceptible-
Exposed-Infectious-Recovered-Susceptible with Vaccination
(SEIRS-V) [37], Susceptible-Exposed-Infectious-Quaran-
tined-Recovered-Susceptible (SEIQRS), and so on. Every
single one of them is an updated version of a biological
spreading disease model. The SEIR model is employed to
mimic the dissemination of the virus over the network [34],
[35]. Using several forms of command and control, the
SEIUR model is being developed to reduce the prevalence
of malicious codes spreading throughout a computer system
[29], [38]. For worms to spread vertically in a network,

researchers had to create a dynamic e-epidemic SEIS-V
model. Applying this model to the study of antivirus
programs will be a massive benefit [31]. Wireless sensor
network viral dynamics were previously studied using SIS
models that concentrated on wired networks [30], [39].
It was also put forward by [40] and study the factors that
contribute to the transmission of malware. that is recurrent
in multilayer topologies that combine two distinct kinds
of networks. Different types of wireless networks in the
Internet of Things [41], [42], where the complexity and
computational capacity of the devices varywidely, are studied
using the SIR model to analyze the spread of jamming
assaults that can damage many levels of communication
for all nodes in the network [32], [43]. The SIRS model
helps to better understand and forecast the scope and rate
of Internet worm propagation and offers practical solutions
for halting its spread [33]. To account for the spread of
malware throughout networks, we develop the SEIRS model
of epidemic transmission, which assumes a constant death
rate for infective nodes and a death rate that is independent
of the source of infection. In the network of computers, the
death of a node is synonymous with the isolating of that node
from the computer network, which prevents the transmission
of dangerous objects evenwhen the anti-malicious software is
continuously running [36], [44], [45]. A malware-spreading
model called SEIRS is dependent on a rumor-dissemination
model that is used to investigate the movement of malware
propagating on scale-free networks (SFNs). This takes
into consideration the distribution of various software
packages across network nodes preventing the spread of
malware [46], [47]. The military has a variety of uses for
wireless sensor networks, including monitoring the activity
of militants in remote places and providing force protection.
Wireless sensor networks can also be utilized in a variety
of other ways [48], [49]. For these kinds of applications,
the SEIRS-V model may be utilized to investigate the
behavior of worms when they attack sensor nodes [37],
[50].The study of distributed cloud data center delivers
real-time cloud services with resilience, dependability,
and security despite the possibility of failure and the
discrete dispersion of data center users. Network failures
harm cloud computing significantly because they result in
widespread service delays and interruptions due to the inter
connectivity of data centers. The ability to do a conspicuous
worldwide search without regard to gradient allows it to
achieve the breakthrough in fault location accuracy [51],
[52]. A brain-like productive service provisioning scheme
with federated learning (BrainIoT) for IIoT. The BrainIoT
scheme is composed of three algorithms, including industrial
knowledge graph-based relation mining, federated learning-
based service prediction, and globally optimized resource
reservation. BrainIoT combines production information into
network optimization, and utilizes the interfactory and
intrafactory relations to enhance the accuracy of service
prediction. The globally optimized resource reservation
algorithm suitably reserves resources for predicted services
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considering various resources [53]. A SEIQRS model for
Internet worms, complete with graded infection rates; in
order to mount an effective defense against worms [54]. With
the use of the SEIQV model, we are able to calculate the
fundamental reproduction amount that determines whether or
not a worm has become extinct [11]. Themajority of currently
available models for worm propagation are geared toward
finding solutions to the issues caused by computer worms.

In order to halt the proliferation of malicious software, net-
work countermeasures like patching and antivirus software
were used before these different portions were implemented.
A substantial amount of study has gone into assessing
the results of various countermeasures in order to offer
networks effective defense tactics [55], [56]. A large-scale
foliaceous epidemic model is used to estimate the best
patching strategies, and an adaptive mitigation technique
is developed to stop the spread of malware. In order to
provide the defense with the optimum approach, the goal
of ‘‘FLIPIT,’’ a game theoretical model, is to perform a
cost-benefit analysis of both patching and virus eradication
(i.e., anti-virus) [57], [58]. The drawbacks of network-based
antivirus programs are examined in [59], which presents a
model to do so. Even though every model has a unique set of
limitations, these models nonetheless yield valuable insights
regarding the role that countermeasures play in preventing the
spread of features.

The assumption of homogeneity acts as a limiting condi-
tion for the vast majority of suggested models of malware
epidemics. [59]. Heterogeneity is taken into account by
certain models, though. The effect that the interval between
infections has on the rate of worm reproduction is investigated
in [60], In [61], network topology fluctuations are accounted
for by means of a spatial-temporal model, There is a
description of the dynamics of multi-group transmission in
[62] and [63] takes into account the possibility of variations
in infection routes.

III. MATHEMATICAL MODEL FOR THE PROBLEM
The exploration of malware propagation in computer net-
works has typically used biologically based epidemicmodels.
In 1760, Daniel Bernoulli developed the first epidemic
model [25]. However, the models that are widely used now
are based on the work of Kermark and McKendrick [21],
whose compartmental epidemiological models best captured
the inherent fluidity of disease transmission [27]. Different
modifications have emerged from their initial Susceptible-
Infectious-Recovered (SIR) model, incorporating new parti-
tions like undiscovered (U), vaccinated (V), quarantined (Q),
and exposed (E). As a result of the fact that malware models
use these chambers, the proposed models include SIR, SIS,
SEIR, SIRS, SEIRS, SEIQRS, SEIQS, SEIRS-V, SEIQV,
SEIUR, SEIS-V, and so on. Network countermeasures like
patching and anti-virus programs were used to prevent the
dissemination of malware, which prompted the construction
of these separate compartments. In order to provide networks
with adequate strategies of defense, a significant amount of

research has been put into evaluating the consequences of a
variety of counter-responses. It is advised to use a patching-
based adaptive mitigation method [17] as a means of slowing
the spread of malware, and a broad stratifying pandemic
model [15] is utilized in order to select the most effective
patching rules to put into effect. References [57] and [64]
suggests using a gaming theoretical model called ‘‘FLIPIT’’
to perform a cost-benefit analysis of both removing (also
known as anti-virus software) and patching in order to
provide the defense the best possible plan of action. The
flaws in virus scanners on a network are studied via the
model described here [59]. Even though each model has
its own unique set of drawbacks, they all shed light on the
important function of countermeasures in halting the spread
of features. The assumption of homogeneity is made by
the overwhelming majority of the models that have been
presented to explain the spread of malware. However, some
models presumptively assume heterogeneity. The variance
in worm spreading caused by the timing of the subsequent
infection, [60], [61] employs a spatial-temporal model to
account for network topology fluctuations, [62] describes the
dynamics of multi-group propagation and [63], [65] takes
into consideration potential changes in infection pathways.
In current history, there has been a discernible rise in the
amount of research conducted on heterogeneous models for
malware propagation. Contrary to the biological models that
served as the basis for their development, not all worm
propagation models suppose an unlimited immune response
after vaccination. Specifically, the concept of SEIQRS-V that
was introduced in [59] makes the assumption that the absence
of anti-virus software updates will, in due course, result in the
computers located within the protected compartment being
free of viruses that are susceptible to infection. The transition
from the recuperated chamber to the susceptible chamber is
presumed to happen similarly in [22] and [66]. The system
in [37] and [67] also makes the assumption that there is
no permanent immunity in the cybersphere, and as a result,
the model offers a transition from compartments that have
been immunized to chambers that are vulnerable. However,
because they assume that there are numerous worms with the
same rate of spreading and network properties, these models
are only useful for understanding the effects of immunity
loss. Although worm propagation models have drawn a
lot of interest, most works in modeling insider risks have
concentrated on escalation, objectives, and assault setup [68].
Only [69] has used a probabilistic epidemic model for insider
threat assessments to demonstrate coordinated external and
internal network strikes.We suggested SEIQPmodel deviates
from all previously described models in three significant
ways:

1) The original infection’s source, also known as the seed,
is an insider threat that occurs within a network that has
been air-gapped.

2) It is possible for the host to lose its immunity if the
patch is maliciously removed from the host by an
insider threat.
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TABLE 2. Explanation of the notations used in the referenced differential
equation.

3) The elimination of the patch from the host as a result of
human error in the application of policy can cause the
host to lose immunity.

IV. PROCEEDING TO MATHEMATICAL MODELING
The SEIQP approach, which represents an insider hazard
as the uploading of a worm into an air-gapped network,
is offered in this section of the article. In more detail, we first
describe the model’s underlying presumptions. Then, the
seven transitions and five compartments of the SEIQP model
are introduced. In the final step of this process, we develop
a set of ODEs that will be utilized to describe the dynamical
system of the model. In the mentioned system of ODE, the
nomenclature is displayed in Table (2).

A. ASSUMPTIONS
The following network presumptions serve as the foundation
for our model: (1) Since the contact network is a full graph,
each host is susceptible to infection by any other host [21].
(2) Due to the homogeneous nature of the network [27], all
hosts are susceptible to the worm’s exploits until they are
patched. (3) The only way for a worm to get into the air-
gapped network is for a malicious insider to get into one
of the hosts on the network and upload it there. (4) The
total amount of hosts that make up the network as a whole
remains unchanged and unchanging over the course of time
[21]. (5)There is only one threat posed by an insider within the
network. (6) There is only one worm involved in the insider
threat, hence numerous worms are not present. (7) Having
the required authorizations and network access, the insider
threat can alter host and/or network policies. (8) The patch
eliminates the threats, but it does not eradicate the worm from
a computer that has already been infected (i.e.; Immunity can
only be acquired from susceptible, contained hosts) [57].
Furthermore, the following assumptions underpin the

properties of our model: Every host is vulnerable to attacks
and worms as long as there hasn’t been an occasion of

FIGURE 1. Diagrammatic representation of worm movement in an
air-gapped network with an insider threat.

an insider potential risk successfully transferring a worm
into a host [59]. (2) Infection rates, denoted by beta, are
constant across time [70]. (3) The worm is always detected
and eliminated by an anti-virus when it detects the host. (4)
After being patched, a host gains immunity and is no more
susceptible to infection [57]. (5) A host may lose immunity
if an insider threat intentionally removes a patch from it [71].
(6) The unintended removal of a patch and the destruction
of host immunity can both be caused by human error in the
application of network policies.

Although these presumptions restrict the model’s appli-
cability to a certain situation, it nevertheless offers insight
into the dynamic nature of worm behavior spreading under
a number of conditions that could develop as a consequence
of insider risk.

B. PROBLEM FORMULATION
Figure (1) reveals the SEIQP model, which was based on
our network, human error, insider threat, and worm infection
assumptions. The dynamics of the air-gapped network are
described by the model’s seven transitions and five sections.
The SEIQP model’s five sections have the same amount of
nodes (N) as the network’s total [70] that is:

N = N (t) = E(t) + I (t) + P(t) + S(t) + Q(t) (1)

The network becomes infectedwith thewormwhen an insider
threat infects any weak host there. The worm then makes
the specified transitions described below to move through the
network of hosts.

• From section S to section E as a consequence of the
worm being exposed, either by the insider threat or by
other nodes that were already infected.

• Due to the vulnerability being patched from chamber S
to chamber P on the vulnerable node.

• After the worm was uploaded and installed, it spread
from compartment E to compartment I and then became
contagious.

• The worm was removed from the node, from chamber
I to chamber S, as a result of the anti-virus program
executing, detecting, and deleting the worm.

• It was transferred from partition I to partition Q once
the infection was found and the node was placed
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TABLE 3. State transitions used in system of differential equations and
their values [21].

in quarantine to get rid of the worm and patch the
vulnerability.

• After the worm was eradicated and the vulnerability was
patched, data was transferred from compartment Q to
compartment P.

• Due to insider threat malevolent behavior or uninten-
tional human error, from compartment P to compartment
S, the node becomes susceptible to infection once more.

Based on these validated transitions, the following system of
ODEs represents the transmission between sections.

dS(t)
dt

= P(t)(η + ξ ) + I (t)θ − S(t)σ − S(t)I (t)β − S(t)ρ,

dE(t)
dt

= S(t)σ + S(t)I (t)β − E(t)γ,

dI (t)
dt

= E(t)γ − I (t)θ − I (t)δ,

dQ(t)
dt

= I (t)δ − Q(t)ϵ,

dP(t)
dt

= S(t)ρ + Q(t)ϵ − P(t)(η + ξ ).

(2)

The rates of change in state that are shown in Table (2) for
each chamber is here denoted by the letters θ , γ , ξ , η, σ , ρ,
β, ϵ and δ and their values are shown in Table (3).

By modifying the value of η, we may establish three
situations to investigate deeply the impact of insider threats
on patch removal.

V. MOVING TOWARD THE PROPOSED METHODOLOGY
This section includes the selection of the optimal method
for solving the given differential equation system. Proposed
methods (numerical technique and machine learning tech-
nique) are judged by using graphs and tables. For assessment
comparing both techniques [72]. The first is the numerical
technique, which requires a mathematical model along the
initial condition or boundary conditions. It delivers focused
data by employing the mathematical model for a specific
problem and its initial condition, and targeted data can be
made closer to the actual solution as the number of iterations

FIGURE 2. Dynamical behavior of system (2) and its error.

FIGURE 3. Dynamical behavior of system (2) and its error.

grows. The second plot is produced by a machine-learning
technique that can only be obtained from the targeted data.
We don’t require a mathematical model of the specified
problem for this kind. In this case, the targeted data and
weights are processed to create a surrogate model [73], [74].
The number of weights in this technique depends on the
amount of neurons, as the amount of neurons increases the
number of weights increases because each neuron contains
three weights. In this study, the machine learning strategy is
favored over the numerical method since it is more efficient.
Furthermore, when compared to other methodologies, it is
most appropriate for real-world challenges.We are examining
the plots of the following three situations along the tables in
this section.

• In the first case (η = 0.05) [21], we analyzed the output
obtained by using a machine learning technique and
targeted data using Table (4). Their difference is shown
in Table (8) and Figure (2).

• In the Second case (η = 0.25) [21], we have examined
the result of the machine learning technique and targeted
data using Table (5). Their difference is indicated in
Table (9) and Figure (3).

• In the third case (η = 0.5) [21], we used a table to
assess the outcome of the machine learning technique
and targeted data (6). Their differences are shown in
Table (10) and Figure (4).

VI. DESIGN METHODOLOGY
Before diving into an optimization method for the neuron
learning operation in FFNN architecture, Here, we’ll start
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FIGURE 4. Dynamical behavior of system (2) and its error.

with the basics structure, and how a feed-forward neural
network works will be outlined.

A. ARTIFICIAL NEURAL NETWORKS USING
FEEDFORWARD NETWORK
McCulloch’s computer model of the human brain, which he
constructed in 1943, was the impetus for the beginning of
research into artificial neural networks (ANN). An extensive
range of complex problems can be learned, recognized,
and handled by ANNs. Only FFNN models are frequently
employed in a variety of applications among all ANNmodels.
A noteworthy aspect of the architectural representation of an
FFNN is that it enables the recognition of a computational
function in network form. This is a feature that is worth
mentioning. Furthermore, an FFNN’s foundation makes it
a well-liked function approximator, with the result that it
can approximate and solve any function or task. A computer
model known as an FFNN is made up of several neurons
connected by weights and layered layer by layer [24].
As displayed in Figure (5), FFNNs have a unique structural
architecture where nodes in one layer are linked to nodes
in the subsequent layer. An FFNN node can process data
using connection weights. The mathematical formula for
calculating the output of a node yi is:

yj = Ai(
n∑
j=1

wjxj + bj), (3)

here, xj denotes the inputs, n for the amount of samples, wj
for the connection weights, the bias vector is indicated by bj
and activation function is symbolized by Ai. The weighted
vectors w1, w2, w3,. . . ., wn, weights and the n-dimensional
input vectors x1, x2, x3. . . ., xn are used to parameterize the
activation function A(x,w). The activation function in this
case is an S-shaped curved sigmoid function (log sigmoid).

Ai =
1

1 + e−(wx+b) . (4)

Implementing a log-sigmoid prevents output values from
spiking since it produces a smooth gradient.

B. METHODOLOGY
This section explains how the connection weights within
the FFNN framework were adjusted to best accommodate

FIGURE 5. A three-layer feed-forward neural network’s architecture.

the approximate solutions of the model. The first step in
solving a problem in Mathematica is to build a reference
solution with a thousand and one points. After that, the
FFNN model is calibrated using relevant parameters such
as the amount of iterations, the activation function, and the
amount of hidden neurons. Thereafter, inputs and outputs
are sent to the FFNN to conduct supervised machine learn-
ing. Figure (6) illustrates the FFNN model’s architecture.
One of the most popular ANN paradigms is the use of
multilayer perceptron (MLP) networks. The FFNN’s input-
hidden-output layers represent ‘‘strengths,’’ which may be
characterized as two-dimensionally stacked quantities called
‘‘weights,’’ as weights in interneuron interactions. New
information is learned by the FFNN and saved in these
links. These weights are used to determine the output signal
quantities for recently tested input signal quantities. Every
layer is connected by a certain sort of computer unit called
a neuron. Backpropagation feed-forward algorithms are the
most often used kind in multilayer perceptron networks
[75]. The ‘‘input layer’’ of the backpropagation feed-forward
mechanism supplies neurons to the neural network that is
arranged. The network is then connected by a minimum of
one ‘‘hidden layer’’, where its actual computation is carried
out via a system of ‘‘weighted linkages’’. The outcome is
displayed in the ‘‘output layer,’’ which is connected to the
following hidden layers. By returning to the input nodes
during backpropagation, an error between the prediction and
the targeted data is corrected. Errors are reduced at the
end of the training procedure. As a result, the data used in
ANNmodels have to be correctly categorized and optimized.
For the input weights specified as an input restriction
in the presence of hidden neurons, the estimated results
have been gathered in the form of performance, regression
analysis, fitness, gradient, accuracy evaluation, and histogram
assessment at the output layer. The fundamental structure
for setting up the suggested ANN models is shown in
Figure (5). The data used to create the ANN model must be
optimized for usage in the prediction node of the artificial
neural networks paradigm [76]. From this forward point,
the data used to train the ANN model have been refined to
yield the best results. The training section was optimized
for 70% of the data, whereas the testing and validation
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FIGURE 6. FFNN modeling framework for modeling approximative
solutions.

FIGURE 7. Flowchart of the design algorithm.

sections were targeted for 15%, and 15%, respectively, of the
data used to build the ANN models. There is no widely
accepted approach for deciding how many neurons to use in
ANNs. As a consequence, several models with different node
counts were looked at, and their prognostication capability
was evaluated throughout the design stage of both MLP
networks. The present experiment’s findings show that the
total amount of nodes with the highest expected efficacy has
been determined. Suggested neural networks (NNs) employ
an architecture made up of 10 highly active neurons that
interact in parallel to resolve the worm-spreading issue with
the sigmoid function of activation. As seen in Figure (6),
the sigmoid activation function’s input values span from +1
to 0. LMB-NN is created by combining the Gauss-Newton
method with the steepest descent. The methodology acts in
a manner similar to the steepest descent method when the
current solution is far from optimal; Although it is sluggish,
it will definitely converge. But if the present solution is
near the optimal solution, then the Gauss-Newton method is
utilized. The figure (7) gives a thorough description of how
the LMB-NN method functions. This technique is often
regarded as the most effective algorithm for training artificial
neural networks since it performs well. The LM technique
was designed to approach second-order training rates without
the need to compute the Hessian matrix, similar to quasi-
Newton approaches. When a sum of squares is the shape that

the performance function takes, that is;

f (W ) =
1
2
eT e, (5)

where eT = [e1,1, e2,1, . . ., ek[M ],1, e1,2, . . ., ek[M ],Q], Q =
L· k[M ] and W consists of all weights of the network. The
well-known recurring calculation creates Newton’s approach
for minimizing performance function.

Wi+1 = Wi − H−1
∇f (W ), (6)

where ∇f(W) is the gradient of f(W ) and f(W) =
1
2e

T e, then

∇f (W ) = JT (x), (7)

Thus, the Hessian matrix may be characterised as follows:

H (x) = JT (x)J (x) + S(x), (8)

where the Jacobian matrix J comprises the first derivatives of
the network errors with respect to weights and biases, and e
is a vector of network errors. If it can be supposed that S(x) is
small when matched to the product of the Jacobian, then the
Hessian matrix can be approximated by the following

H (x) ≈ JT (x)J (x), (9)

so the Gauss Newton algorithm is;

Wi+1 = Wi − [JT (x)J (x)]−1JT (x)e, (10)

The simplified Hessian matrix may need to be invertible,
a potential drawback of this technique. A modified Hessian
matrix can be utilized to solve this issue,

H (x) ≈ JT (x)J (x) + µI , (11)

I stands for the identity matrix, and µ is the quantity that
causes H(x) to be positive definite and thus invertible. The
LM method reflects the most recent alteration in the Hessian
matrix.

Wi+1 = Wi − [JT (x)J (x) + µkI ]−1JT (x)e. (12)

In order to demonstrate that µ can vary while the algorithm
is being executed, µ is now represented as µk . Because it
determines stability (by ensuring that the Hessian can be
inverted) and converging speed, the choice of µ is crucial to
the algorithm’s operation.

C. PERFORMANCE INDICES
The Levenberg-Marquardt neural network technique’s inno-
vative design is implemented in two phases. In the first stage,
the Runge-Kutta technique of order 4 is used to assess a
mathematical model for the propagation of worms and insider
threats. To do this, the reference solution of 1001 data points
is generated using the ‘‘NDSolve’’ function included with
Mathematica. In the second stage, the Levenberg-Marquardt
approach–a proven method in the field of soft computing–is
used with MATLAB’s ‘‘nftool’’ function to correctly train,
validate, and test the issue. The training, validation, testing,
and parameter settings for the LMB-NN method are shown
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TABLE 4. Setting η=0.05.

TABLE 5. Setting η = 0.25.

in Figure (7). Figure (6) shows the computer model for
the design strategy that employs two neural networks [77].
The suggested method’s effectiveness is evaluated using the
fitness function of the model’s mean square error (MSE),
regression R2, error histograms, and absolute errors (AE).
The MSE, R2, and AE are mathematically described as
follows:

Minimize MSE =
1
m
(
m∑
i=1

(xi(t) − x̂i(t))2, (13)

in the above equation, the reference solution is xi(t), while the
updated solution is x̂i(t). Additionally, the connectionweights
are optimized using a LMB-NN method by diminishing the
power function asmuch as possible provided in equation (13).
For perfect modeling of approximative solutions, the MSE
value becomes closer to zero. Locating the point where a
multivariable function is at its lowest point, which is defined
as the sum of squares of non-linear real-valued functions,
is done iteratively using the LMB algorithm.Withwidespread
application in numerous domains, it has established itself as
a common technique for non-linear least-squares issues.

R2 = 1 −

∑m
i=1(x̂i(t) − x̄i(t))2∑m
i=1(xi(t) − x̄i(t))2)

, (14)

AE = |xi(t) − x̂i(t)|. (15)

m is the amount of mesh points, while xi, x̄i, and x̂i stand for
the reference, approximation, and mean of the solution at the
ith input. TheMSE and AE should both equal zero for perfect
fitting, whereas R2 should equal one.

VII. RESULTS AND DISCUSSIONS
The LMB-NN design strategy is implemented in this portion
to look into how to stop worms from spreading and deal with
insider threats in an air-gapped network. Weight training for
LMB-NN is performed [78]. To address this issue of solving
ordinary differential equations, a neural network is employed

TABLE 6. Setting η = 0.5.

FIGURE 8. Design for a given model.

TABLE 7. Convergence of means square error for different scenarios.

(2) with a boundary condition numerically by LMB-NN.
To achieve the solution numerically, three different scenarios
for the model of worm propagation and insider threat in an
air-gapped network are developed. The effect of insider threat
(η) is assumed to be 0.05 in the first case, 0.25 in the second
case, and 0.5 in the third case, and the other terminologies are
kept constant mentioned in Table (2). The details of several
cases are provided as The reference data for neural LMB-NN
are calculated using the Runge-Kutta numerical method. For
each value of η, use NDSolve in theMathematica framework.
The 1001 data points from the numerical technique are tested,
trained, and validated at 70%, 15%, and 15%, respectively.
The convergence of the mean square error (MSE) function
for the cases I, II, and III is depicted in Figures (9), (10),
and (11), respectively. A close examination of the graphical
representation reveals MSE values, which are at peak at the
beginning of the training process, decrease as the number
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TABLE 8. error for setting η = 0.05.

TABLE 9. Error for setting η = 0.25.

TABLE 10. Error by setting η = 0.5.

TABLE 11. Statistical analysis.

of training epochs rises. Further observation reveals that the
lines generated from data obtained throughout the testing,
validation, and training stages of the ANN converge to
the most effective line, which is denoted by dotted lines
in the (1000, 385, 967) epochs. When the ANN achieves

the lowest possible value for MSE in the (1000, 385,
967) epochs, which signifies the conclusion of the training
phase after the repetition of countless epochs, the model’s
training is optimally complete. This process shows that the
ANN models’ high-performance training period is over.
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FIGURE 9. The mean square error of the LMB-NN for the consequences of
an insider threat on the removal of patches for case 1. FIGURE 10. The mean square error of the LMB-NN for the consequences

of an insider threat on the removal of patches for case 2.
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FIGURE 11. The mean square error of the LMB-NN for the consequences
of an insider threat on the removal of patches for case 3.

FIGURE 12. Performing a comparative analysis of the approximate
solutions that were generated by LMB-NN and the numerical solutions
for case 1.
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FIGURE 13. Performing a comparative analysis of the approximate
solutions that were generated by LMB-NN and the numerical solutions
for case 2.

FIGURE 14. Performing a comparative analysis of the approximate
solutions that were generated by LMB-NN and the numerical solutions
for case 3.
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FIGURE 15. Histogram study of the differences between the target data
and approximative solutions for the case 1. FIGURE 16. Histogram study of the differences between the target data

and approximative solutions for the case 2.
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FIGURE 17. Histogram study of the differences between the target data
and approximative solutions for the case 3.

FIGURE 18. LMB-NN Performance depending on gradient, mu, and
validation failures throughout the optimization process for case 3.
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FIGURE 19. LMB-NN Performance depending on gradient, mu, and
validation failures throughout the optimization process for case 2. FIGURE 20. LMB-NN Performance depending on gradient, mu, and

validation failures throughout the optimization process for case 3.
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FIGURE 21. Analyzing the Role of Insider Threat in the removal of Patches
Using Regression.

FIGURE 22. Analyzing the Role of Insider Threat in the removal of Patches
Using Regression.

FIGURE 23. Analyzing the Role of Insider Threat in the removal of Patches
Using Regression.

So the approximations for the performance values in each
case are; 3.4828×10−07, 9.7668×10−06, 4.3424×10−09,
2.3595×10−05, 8.281×10−09 case I, 1.8231×10−07,
8.2145×10−05, 3.2653×10−07, 6.4862×10−08, 1.8853×
10−07 for case II and similarly for case 3 the per-
formance 6.8835×10−08, 8.539×10−05, 9.2951×10−08,
2.8655×10−07, 2.4144×10−06 are illustrated in Figure (9),
(10) and (11) and Table (7). The effectiveness examination
graphs for all MLP network frameworks are shown in
Figures (12), (13), and (14), and the discrepancies between
the targeted and reference solutions caused the error.
The graphical depiction shows that the target outcome
overlays the reference ANN model outlines for models
with circumstances, demonstrating that the accuracy of
the solution is validated by the (ANN) design framework.

So we can say effect of changes in the worm propagation
model on patch removal by varying the effects of insider
threat. According to these numbers, an insider threat η has
the potential to infect a bigger number of hosts over the
course of time. The amount of hosts that have been patched
declines while the amount of exposed and infected hosts
rises as the system reaches equilibrium. This suggests that
significantly impacts the equation’s stability dynamics. (2).
Error histogram examination is essential to assessing how
well ANN models work. As demonstrated in Figures (15),
(16), and (17), there is an overlap between the approximate
solution’s fitting and the target data, with only slight absolute
errors. The error histogram graphs demonstrate that the errors
acquired at each ANNmodel stage are relatively low. Despite
this, it is still evident that mistakes tend to build up in the
direction of the zero-error line. Typically, absolute errors in
the solutions for S(t) are somewhere around 10−03 to 10−05,
10−03 to 10−04, 10−04 to 10−05 respectively. The solution
of E(t) are lying around 10−02 to 10−04, 10−02 to 10−03,
10−02 to 10−03 respectively. Similarly the solution of Q(t)
lies around 10−04 to 10−05, 10−03 to 10−04, 10−04 to 10−05.
Additionally P(t) solutions are all over the place 10−02 to
10−05, 10−04 to 10−05, 10−03 to 10−04 and likewise, the
solution of Q(t) is located in the vicinity of 10−04 to 10−06,
10−04 to 10−05, 10−03 to 10−04. In Figure (18), Figure (19),
Figure (20), the training states (gradient, mu, validation
checks) are visually shown. The plots use a progressively
increasing epoch number to deliver the fluctuation in the
gradient coefficient. It can be shown that the errors obtained
from ANN models gradually reach optimal and optimum
values after several test operations. These ANN model
training results show that the created ANNs have successfully
finished their training activities. Data from the training phases
of artificial neural network (ANN) prototypes are shown in
Figure (21), Figure (22) and Figure (23). The graph’s goal
values are shown on the horizontal axis, while the ANN
output forecasts are shown visually on the vertical axis. The
graphic representation of the data points collected during the
training phase places them on the compatibility (fit) line. The
solid line displays the outcomes result and the target values’
best-fitting linear regression line, and the importance of R
shows how they are related. The regression analysis R=1
throughout this calculation shows a precise linear relationship
between the output and desired values, moreover statistical
analysis is dictated in Tables (11).

VIII. CONCLUSION
Mathematical modeling of worm spread and insider risks
in an air-gapped network was investigated in this study
using a modified version of the SEIQV model. The model,
supplied by a differential equation system, was derived from
biological processes and modified for use in modeling the
spread of worms via a computer network. A technique for
soft computing that makes use of the supervised learning
capabilities of Levenberg-Marquardt backpropagation neural
networks is also used to compute the effects of insider
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threats on patch removal and their impact on the provided
differential equation model. The results that are presented in
the figures lead one to the conclusion that as eta increases,
the maximum amount of hosts that are both exposed and
infected increases at a more gradual rate. This illustrates that
an insider threat might evolve to infect a greater number of
hosts by increasing its eta. Moreover, as the system becomes
stable, fewer hosts are patched overall while an increase in
exposed and infected hosts is observed. This demonstrates
that eta has a substantial impact on the dynamics of stability
of equation (2). A comprehensive graphical examination
is carried out here making use of absolute errors, MSE,
error histograms, regressions, and computing complexity
to illustrate the robustness, efficiency, and accuracy of the
constructed system.
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