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ABSTRACT The importance of monitoring and evaluating the quality of water resources has significantly
grown over time. To achieve this effectively, an option is to employ an intelligent monitoring system capable
of measuring the physical and chemical parameters of water. Surface vehicles equipped with sensors for
measuring water quality parameters offer a viable solution for these missions. This work presents a novel
approach called AquaHet-PSO, which addresses the challenge of simultaneously monitoring multiple water
quality parameters with several peaks of contamination using a heterogeneous fleet of autonomous surface
vehicles. Each vehicle in the fleet possesses a different set of sensors, such as number of sensors and sensor
types, which is the definition provided by the authors for a heterogeneous fleet. The AquaHet-PSO consists
of three main phases. In the initial phase, the vehicles traverse the water resource to obtain preliminary
models of water quality parameters. These models are then utilized in the second phase to identify potential
contamination areas and assign vehicles to specific action zones. In the final phase, the vehicles focus on
a comprehensive characterization of the parameters. The proposed system combines several techniques,
including Particle Swarm Optimization and Gaussian Processes, with the integration of genetic algorithm
to maximize the distances between the initial positions of vehicles equipped with identical sensors, and
a distributed communication system in the final phase of the AquaHet-PSO. Simulation results in the
Ypacarai lake demonstrate the effectiveness and efficiency of AquaHet-PSO in generating accurate water
quality models and detecting contamination peaks. The proposed method demonstrated improvements
compared to the lawnmower approach. It achieved a remarkable 17% improvement, on r-squared data,
in generating complete models of water quality parameters throughout the lake. In addition, it achieved
a 230% improvement in accurate characterization of high pollution areas and a 24% increase in pollution
peak detection specifically for heterogeneous fleets equipped with four or more identical sensors.

INDEX TERMS Autonomous surface vehicle, Gaussian process, genetic algorithm, heterogeneous
fleet, informative path planning, multi-objective problem, particle swarm optimization, water resource
monitoring.
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NOMENCLATURE
P Set of vehicles in the fleet.
p ∈ P A vehicle.
S Set of measurable water quality parameters by

the fleet.
s ∈ S A water quality parameter sensor.
S(p) ⊆ S Subset of sensors of vehicle p.
N ⊂ R2 Set of coordinates within a 2D space.
x ∈ N = (x, y) A location, coordinate.
Q ⊂ N Set of coordinates where the fleet measured

water quality values.
Q(p) ⊆ Q Subset of the coordinates where water quality

was measured by the ASV p.
Q(s) ⊆ Q Subset of the coordinates where the water

quality parameter swasmeasured by any of the
ASVs in the fleet.

U ⊂ N Set of all coordinates where any of the ASVs
in the fleet where located.

U(p) ⊆ U Subset of the coordinates through which the
ASV p passed.

A ⊂ N Set of all action zones.
A(s) ⊆ A Subset of all action zones of the water quality

parameter s.
Z ⊂ N Set of all combined action zones.
z ∈ Z A combined action zone.
P(z) ⊆ P Subset of the vehicles assigned to the com-

bined action zone z.
S(z) ⊆ S Subset of sensors of combined action zone z.
ys(x) Ground truth value of the water quality param-

eter s at location x.
ŷs(x) Estimated model value of the water quality

parameter s at location x.
K Covariance (kernel) matrix of the Gaussian

Process.
µs(x) Mean value estimated by a Gaussian Process

of the water quality parameter s at location x.
σs(x) Uncertainty value obtained by a Gaussian

Process of the water quality parameter s at
location x.

t Time

I. INTRODUCTION
The importance of maintaining healthy water environments
is evident. Animals and plants depend on water to live.
Therefore, the more healthy a water body is, the more it will
help to balance its ecosystem. However, humanwaste and bad
practices pollute water bodies such as lakes and lagoons, due
to industrial and agricultural activities [1]. Then, the water
ecosystem fails to be balanced, generally creating excess of
nutrients such as nitrates and phosphorus, which leads to the
proliferation of a green-blue algae, which is a toxic algae
that drains oxygen and kills life inside the water [2]. This
eutrophization problem can be found all around the world
including China, Sri Lanka, Paraguay and the United States
[3], [4], [5].

To efficiently overcome this problem, government agen-
cies and research centers must develop plans to treat water
bodies or to maintain a certain water quality level. Both
of which can be highly inefficient if the lake or river is
not monitored periodically considering these water quality
levels [6]. Water quality can be described with a set of
physico-chemical parameters of water, including potential of
Hydrogen, dissolved oxygen, total of dissolved solids. The
knowledge of the values of these Water Quality Parameters
(WQPs) can help for either treating water or maintaining
water quality on a certain level. Therefore, monitoring such
parameters is a crucial task in this situation.

Current efforts for water quality monitoring include
fixed stations, manual measurement campaigns and moni-
toring through the usage of Autonomous Surface Vehicles
(ASVs) [7]. The first method consists of chemical laborato-
ries installed on the shore of lakes, that continuously measure
on a specific location within the water body. The second
improves the general knowledge by manually obtaining
samples from different locations and then returning these
samples to a laboratory for a post-process evaluation. The
latter presents a mixture of both of the former methods
because a vehicle can travel to any location within a
particular enclosed water body and additionally can be tele-
operated, which decreases the exposure of probable toxic
waters to humans. Additionally, if the vehicles are equipped
with electronic water quality sensors, measurements can be
performed in real time and water quality can be obtained
during the monitoring mission. Moreover, these values can
help for decision making strategies regarding the location of
measurement, providing a more efficient usage of resources.
The relative cost of monitoring through Autonomous Surface
Vehicles (ASVs) is considering to be cheaper than the other
methods and can provide better results. Monitoring with
ASVs can be efficient because water WQPs patterns can vary
on a weekly basis [8], and this type of monitoring is relatively
quick, minimizing the likelihood of significant changes in
the WQPs.

ASVs are composed of modules that have different
functions in order to fulfill the task of monitoring water
resources. These modules can be seen in Fig. 1. The
perception module allows the ASV to know its environment
and where it is positioned. The ASV sensors are located
in this module. Some of the papers related to this module
are those presented in [9] and [10]. The learning module is
composed of a surrogate model that uses the data from the
perception module to generate a models of the environment,
the number of models depends on the number of WQPs to
be measured. These models are used in the planning module
to calculate an optimized informative path to solve a specific
problem, as demonstrated in the work by [11]. Finally, the
control module and the ASV dynamics are in charge of the
ASV movement, i.e. their function is to make the ASV go
to the points assigned by the informative path planner. Some
advances in this area can be found in [12]. The informative
path planner approach incorporates real-time measurements
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FIGURE 1. Block diagram of the proposed monitoring system: AquaHet-PSO.

of water quality parameters into the calculation of the next
vehicle position, taking advantage of available environmental
information [13].

This work focuses on the learning and planning modules.
It is considered that multiple WQPs need to be monitored
simultaneously, and also that there are multiple ASVs
available. The monitoring mission focuses on obtaining the
models of the WQPs and on finding peaks of contamination
or pollution (that can be described as an optimization
problem) within a large-scale lake scenario. In that sense,
an intelligent online informative path planning framework
is proposed to solve the problem at hand. Furthermore, the
considered fleet of ASVs have different sensors available,
so that an heterogeneous optimization system must be
designed to fully accomplish the monitoring mission. The
problem can be described as a multi-objective optimization,
in which the agents in charge of obtaining values within
a search or decision space can only evaluate some of the
objectives. We propose a Multi-objective Particle Swarm
Optimization (PSO) technique designed for an heterogeneous
fleet of ASVs. The PSO algorithm was chosen based on a
comparative study conducted in [14],where various Swarm
Intelligence (SI) algorithms were evaluated. The results of
this comparison indicated that PSO offers several advantages
for monitoring application. Specifically, it is known for
its ease of implementation and minimal requirement for
initial parameters. Consequently, the PSO was selected as
the foundational algorithm for the proposed informative path
planning approach. The system is in charge of obtaining
informative paths that considers the properties of ASVs
as well as the lake scenario (water quality map models).
The proposed system is called AquaHet-PSO, due to the
heterogeneous design of a PSO for aquatic vehicles, and
is composed of three main operational phases: exploration,
resource allocation, and exploitation. The exploration phase
focuses on the generation of initial WQPs models. In the
resource allocation phase, ASVs are allocated to areas with
high levels of contamination identified in the initial models,
the combined action zones. Finally, in the exploitation phase,
the system exploits the contamination zones in order to char-
acterize in depth the areas with high levels of contamination.

During the exploitation phase, the AquaHet-PSO system
incorporates the distributed learning technique to ensure the
autonomy of the ASV sub-fleet deploying in the combined
action zones. The heterogeneous nature of ASVs, with
different number and types of sensors, poses a challenge in
determining their initial positioning. ASVs equipped with
identical sensors starting from relatively close positions can
hinder effective surface exploration of water resources due
to inadequate separation between vehicles. For this reason,
the Genetic Algorithm (GA) is employed to maximize the
distance between the initial positions of ASVs with the same
measurement capabilities, namely sensors of the same type.
In summary, our proposal introduces a novel concept by
addressing a scenario where ASVs in a fleet have different
sensor capabilities, i.e. different number and type of WQP
sensors. This diversity gives rise to amulti-objective problem:
creating accurate models for all WQPs. To achieve this,
ASVs, taking into account the unique configurations of their
sensors, must have the ability to identify the optimal positions
for measurements. This is where AquaHet-PSO plays a key
role. It generates real-time trajectories for each ASV, guiding
them to collect measurements at optimal positions, taking
into account all sensors onboard each ASV. This innovative
approach enables efficient and comprehensive water quality
monitoring in a variety of environments. The AquaHet-
PSO contributes substantially on monitoring and informative
path planning, as well as in the framework that has been
designed and is proposed in this work. The contribution can
be summarized as follows:

1) The development of a monitoring system based on
multi-objective multi-modal particle swarm optimiza-
tion and Gaussian processes for a heterogeneous fleet
of autonomous surface vehicles capable of generating
accurate models of water quality parameters and detect-
ing areas with high levels of contamination in real
time.

2) The optimization of the initial positioning of ASVs
equipped with sensors that measure the same water
quality parameter by utilizing a genetic algorithm.

3) The application of the proposed monitoring system in
the case of the Ypacarai lake, showing the effectiveness
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of the proposed system over a multi-objective and
heterogeneous lawnmower.

The following sections describes the literature review in
Section II, followed by the statement of the problem in
Section III. Next, Section IV described the AquaHet-PSO,
thoroughly. An implementation of the proposed system can
be found in Section V, including results for a simulation
setup. The work is concluded in Section VI, with a
mentioning of future works.

II. RELATED WORK
Current efforts regarding the mentioned problem can
be grouped into three different groups: i) Monitoring
approaches, ii) Usage of ASVs and iii) PSO techniques.
Monitoring approaches consider ASVs as well as other
types of vehicles including Aerial and Ground vehicles. For
example, the authors in [15] describe a monitoring mission
for crops using aerial vehicles using a Gaussian Process-
based approach, in which different parameters are measured
from different heights using onboard sensors. In [16], the
authors introduce a novel path planner employing Evolu-
tionary Algorithms (EA) for an ASV. This planner seeks
to optimize the ASV trajectory and to obtain information
about the distribution of cyanobacteria in water currents and
the cyanobacteria behavior during the mission. In [17], the
authors propose an innovative approach, an adaptive visual
information gathering (AVIG) framework, for Autonomous
Underwater Vehicles (AUVs) exploring benthic environ-
ments. This framework incorporates Decision-time Adaptive
Replanning (DAR), Sparse Gaussian Process (SGP), and
Convolutional Neural Network (CNN) techniques to dynam-
ically adapt the exploration of the robot based on real-time
visual data obtained from the environment. On the other hand,
in [18], an heterogeneous system (aerial and ground vehicles)
mission is proposed to explore and monitor a defined
region using active exploration algorithms for detecting
radiation locations with the aerial drone and performing
extensive information acquisition with the ground vehicle.
Heterogeneous vehicle systems consists of using vehicles
with different capabilities that works towards achieving to
the same goal [19]. They are mainly used to exploit the
different advantages that each type of vehicle can contribute.
Heterogeneous systems have also been studied, in [20],
where a cell wall based paradigm was proposed to optimize
the throughput of heterogeneous aerial vehicles networking.
A multi-agent system was proposed in [21], where the
multiple heterogeneous aerial agents aimed to cover a large
area for network resource orchestration based on virtual
networks. Another approach [22] proposed the usage of aerial
vehicles with communication constraints that constructed
coverage paths in a multi-robot patrolling mission scenario.
The mentioned work used coordination techniques that
efficiently utilized information from multiple sources to
update their paths. More recently, Zhang et al. [23] proposed
the usage of underwater vehicles to obtain information
about a sea floor through the usage of cooperative coverage

path planning mechanisms based on dot-spreading definition
and visiting. Definitely, (homogeneous and heterogeneous)
autonomous vehicles where used for the monitoring mission.

Specifically to monitoring water quality, recent works
include [14], [24] and [25]. These works start from the
premise that a exploration is needed to obtain good, reliable
WQP model. Most of the related work use ASVs to perform
monitoring since they are reusable, safe and reliable for
the task at hand. Moreover, there exists a set of works
that propose monitoring systems for the Ypacarai Lake.
Such is the case of Arzamendia et al. [26] that used as
a basis the Genetic Algorithm (GA) to solve the lake
monitoring problem. The problem was modeled as the
Traveling Salesman Problem (TSP) and the objective is
to cover the largest possible area of the water resource.
To meet this objective, the authors determined beacons on
the shores of the lake where the ASV should pass. The same
authors propose a modification in [27], where the problem
is modeled with the Chinese Postman Problem (CPP). This
improvement allows the ASVs to visit the beacons more
than once, maximizing the coverage area of the monitoring
system. It is remarkable that none of the mentioned system
regarding monitoring using ASVs considers that the ASVs
can be heterogeneous in the sense of the available water
quality sensors, despite that this decision can only improve
economic resources, since not every vehicle will have the
same number of water quality sensors.

Finally, regarding PSO techniques, in [28], the authors
introduce a heterogeneous fleet comprising an underwater
vehicle, a surface vehicle, and an aerial vehicle for conducting
underwater target tracking missions. The system is divided
into two phases: the initial search for the target location
and the subsequent tracking phase. To address the problem
of path planning in the presence of obstacles, an improved
PSO is employed in the second phase. Wang et al. [29]
developed multiple path planning approaches utilizing the
distributed-PSO algorithm to address the path planning chal-
lenges faced by a swarm of UAVs. These planners designed
for conducting reconnaissance missions. The authors in [30]
introduce a novel approach that combines the PSO algorithm
with the Model Predictive Control (MPC) technique. By inte-
grating the PSO with the MPC, they propose a cooperative
control strategy for planning path and tracking trajectories
designed for intelligent vehicles. In [31], the authors integrate
PSO with Reinforcement Learning (RL) to solve multi-
objective problems, the MCMOPSO-RL (Multi-Objective
Particle SwarmOptimization withMulti-Mode Collaboration
based on Reinforcement Learning). MCMOPSO-RL is a path
planner that combines PSO and RL techniques to optimize
trajectories while simultaneously taking into account multi-
ple objectives and constraints.

A brief summary of the related work regarding monitoring
techniques is shown in Table 1, where the third column
describes the main approach of each proposed strategy.
The definition of heterogeneity varies among the authors
mentioned in this section. Some authors consider fleets
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TABLE 1. Brief summary of the related work.

as heterogeneous when the vehicles are of different types
(ASVs, UAVs, etc.), while others define heterogeneity based
on varying characteristics such as speed or energy levels.
Therefore, the Heterogeneous column provides clarification
on what the authors refer to as heterogeneous fleets.

The works discussed in this section serve as a basis
for comparison, but a direct comparison is not possible
because, according to the authors, AquaHet-PSO is the first
system to consider vehicles that do not have the same types
of sensors onboard simultaneously. The authors define a
heterogeneous fleet as a group of ASVs equipped with
different types of sensors, which may not necessarily match
the sensors on other ASVs. The combination of these
approaches and techniques offers several clear advantages:
online route generation for multi-objective monitoring, the
ability to generate models of water quality parameters and
detect contamination peaks using a heterogeneous fleet, and
broader coverage of the water resource by optimizing initial
positions through GA.

III. PROBLEM MODELLING AND SYSTEM ARCHITECTURE
A. PROBLEM MODELLING
The ASV fleet consists of P vehicles, that do not necessarily
share the same water quality sensing capabilities, hence a het-
erogeneous system. The ASVs have several sensors capable
ofmeasuring different water quality parameters s, each sensor
measuring one parameter. As ASVs are heterogeneous, the

vehicles do not have the same type of sensor on board. The
proposed informative path planner uses the measurements
taken for eachWQP to calculate the next position towhich the
ASVs should go. This translates to a multi-objective problem,
since, by having multiple WQPs, the planner must consider
multiple criteria to obtain the best position to which the ASVs
should travel.

The main objective is to minimize the error between the
actual states of the water quality parameters s represented
by ground truths ys(x) and the models estimated with the
proposed monitoring system ŷs(x), subject to a maximum
Euclidean distance max_dist that the ASVs can travel, Eq. 1.

min f (x) =
1
S

S∑
s=1

fs(x)

s.t.
1
P

P∑
p=1

dist_ASVp ≤ max_dist (1)

The function fs(x) is the Mean Square Error (MSE)
between the actual state of the water quality parameters ys(x)
and the model estimated ŷs(x) as shown in Eq. 2. The term x
refers to the coordinate (x, y) on the surface of the water
resource, this term is being discretized to N points within the
search space. The term S refers to the total number of WQP
sensors that are measured.

fs(x) =
1
N

N∑
i=1

(ys(xi)− ŷs(xi))2 (2)

The monitoring system is carried out in water resources.
Therefore, the search space is the entire surface of the water
resource. The search space is represented by a matrixM of
n×m, where each element of the matrixMij has a dimension
of d × d and has a value. The value of Mij represents the
state of the element: 1) if the value is equal to 0, ASVs
cannot to travel to that grid, since it represents an obstacle,
land or forbidden zone; 2) if the value is equal to 1, the grid
is available for ASVs to travel through. All available grid
coordinates are in the set N .

B. SYSTEM ARCHITECTURE
The system architecture of the proposed approach comprises
three main parts: i) the ASVs, ii) the water quality sensors,
and iii) the global coordinator. These parts are explained
below:
• ASV: The set of sensors owned by each ASV is not
necessarily the same as the set of sensors on board of
other ASVs. Therefore, regarding the available sensors,
the ASVs are heterogeneous. At the start of the mission,
all ASVs have the same energy level. The monitoring
task ends when the average distance traveled by the
ASVs is equal to max_dist . It is assumed that the
battery of the ASVs has enough autonomy to finish the
monitoring task. Since the movements of the ASVs are
synchronized, all vehicles end the monitoring tasks at
the same time.
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TheASVs are equippedwith a robust obstacle avoidance
system, often implemented using computer vision
techniques. Additionally, they are outfitted with a sonar
system capable of measuring the depth of the surround-
ing environment. This feature enables the ASVs to
identify shallow areas and effectively steer clear of them,
enhancing navigation safety. Furthermore, the ASVs
are equipped with a differential Global Positioning
System (GPS) that operates in tandem with a base
station. This comprehensive set of sensors and systems
empowers ASVs to navigate complex water bodies,
avoid obstacles, and maintain accurate positioning.

• Sensors: The sensors employed for measuring WQPs
are assumed to be in an ideal state. This signifies that the
sensors are regarded as well-calibrated and functioning
accurately as the monitoring tasks are initiated. These
sensors measure discretely, at a position xwhere anASV
is located. The locations where the measurements were
taken conform the Q ⊂ N set.
The locations where the pth vehicle has measured
corresponds to a subset

Q(p) = {x ∈ Q | x measured by vehicle p} (3)

Thorough this paper the subindex (p) will be used to
denote subsets that are relevant only to the pth vehicle.
During the monitoring process, the sensor data is
transformed into a normalized range between 0 and 1.
Additionally, to categorize the water quality status,
three levels are considered. The first level represents
an acceptable status and ranges from 0 to 33%. The
second level indicates a warning level and ranges
from 34 to 66%. The last level signifies a risk level
and ranges from 67 to 100%. These thresholds are
determined based on the maximum contamination value
measured. The specific value of 33% was chosen by the
authors to ensure that each level encompasses a similar
range of values.
Communication between the ASV system and the
WQPs sensors is established through a USB connection.

• Global coordinator: The global coordinator is located
in the cloud, and the ASVs are connected to it via 4G
technology. Communication between the ASVs is done
through the centralized system. Communication solely
occurs between the vehicles and the central server;
there is no inter-vehicle communication. Data from the
sensors are sent to the cloud and they are used to generate
the responses of the datamodel in the global coordinator.
An illustration of the communications between the parts
of the proposed monitoring system is shown in Fig. 2.

IV. PROPOSED INFORMATIVE PATH PLANNER:
AQUAHET-PSO
The proposed approach is a multi-modal, multi-objective
monitoring system that has the ability to process data
and generate models for several water quality parameters
s1, s2, . . . , sS , the AquaHet-PSO. The AquaHet-PSO is a

FIGURE 2. Communication between the global coordinator, the ASVs and
the sensors.

monitoring system that combines the components of the PSO,
the GP data, and the GA. In the proposed monitoring system,
the ASV fleet consists of vehicles with diverse measurement
capabilities. This means that the vehicles are equipped with
different types and quantities of sensors.

A. CLASSICAL PARTICLE SWARM OPTIMIZATION
The PSO, developed by [32], is an optimization algorithm
based on the social behavior of flocks of birds and school of
fish. This algorithm allows working with several individuals
simultaneously. The individuals are called particles and
represent possible solutions to an optimization problem, a set
of particles is called swarm. The movement of the particles is
based on a control component, an auto-cognitive component
or local best, and a social cognitive component or global best.
The local best is the best position of the particle up to the
moment where the term is calculated. In contrast to the local
best, the global best is the best position of the swarm up to
the moment where the term is calculated. The expressions
for calculating the velocity vt+1 and the position xt+1 of the
particle p are shown below:

vt+1p = ωvtp + c1r
t
1

[
pbesttp − xtp

]
+ c2r t2

[
gbestt − xtp

]
(4a)

xt+1p = xtp + vt+1p (4b)

the ω term is the control parameter or the inertia weight, the
local best of the particle p at time t is represented by the term
pbesttp, the gbestt term is the global best of the swarm at
time t . To determine the importance of the auto-cognitive and
social component of the PSO, the algorithm has two weights
c1 and c2, also called acceleration coefficients. r1 and r2 are
two random values between 0 and 1.

B. GAUSSIAN PROCESS
Gaussian Processes (GP) are probabilistic machine learning
models based on Bayesian inference [33]. The GP input data
are considered random variables and the output a multivariate
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Gaussian distribution. The behavior of the GP is defined by
two functions: i) the covariance function or kernel function,
and ii) the mean function. Usually, the mean function is zero
for convenience.

The GP input data are the measurements taken from
the water resource ys(x) : x ∈ Q and the Q set. For
the GP Regression update, these data are marginalized and
conditioned. The unknown responses (µ(x∗), σ (x∗)) of the
GPR (ŷ(x)∗) are obtained by applying the equations shown
below:

µs(x∗) = KT
∗ (K + σ 2

o )
−1ŷs(x) (5a)

σs(x∗) = K∗∗ − KT
∗ (K + σ 2

o )
−1K∗ (5b)

The term σo represents the expected measurement noise
in the context of GP modeling. This parameter plays a crucial
role in refining water quality measurements obtained through
GPs, as it allows for a more accurate adjustment of the
data [11]. The terms K , K∗∗ and K∗ are obtained from
the fitted kernel. These terms include covariances between
known data k(x, x) and unknown data k(x∗, x∗), as well
as covariances between both the known and unknown data
k(x, x∗).

K =
[
K K∗
KT
∗ K∗∗

]
=

[
k(x, x) k(x, x∗)
k(x∗, x) k(x∗, x∗)

]
x : x ∈ Q
x∗ : x∗ ∈ N (6)

The estimate of water quality parameters ŷ(x) at any
location x is obtained from the GP mean. Therefore, for the
following sections, mention is made of µs(x) as the model
estimated by the monitoring system. The standard deviation
or uncertainty of the model is σs(x).

C. INITIAL POSITIONS
In a multi-objective problem where ASVs share at least one
sensor, the initial positions of the ASVs play a crucial role.
The farther apart the ASVs with shared sensors are, the
larger the area they can collectively cover. However, in the
AquaHet-PSO, the ASVs are heterogeneous, which makes
determining the optimal starting positions a complex task.
Since a Gaussian Process model is fitted according to the
measurements, the farther apart these measurements are, the
better (so that to reduce the model uncertainty). However,
the initial distribution of sensors across the search space is
dependent on the vehicles themselves, so an initial allocation
of the vehicles need to be done. To address this, a Genetic
Algorithm (GA) is employed to assign the starting points of
the ASVs. The initial positioning problem of the ASVs is
considered an NP-hard problem due to the large number of
possible solutions resulting from the various permutations of
initial positions that each vehicle could occupy.

Using a set of specific points x such as ports or clearings
along the edge of the water resource as potential starting
locations, a Genetic Algorithm searches for the optimal

initial placement or location of the allotted vehicles. The
specific objective in this stage is to maximize the distance
between water quality sensors, ensuring that the vehicles are
positioned as far apart as possible. This approach aims to
optimize the initial coverage area and enhance the efficiency
of data collection and monitoring.

The GA, influenced by the theory of evolution of Darwin,
is a stochastic population-based algorithm [34]. Each solution
is represented as a chromosome consisting of genes that
encode specific parameters [35]. The GA employs various
techniques such as selection, crossover, and mutation to sim-
ulate the natural process of evolution. These techniques help
in improving the fitness of the population over successive
generations, ultimately leading to the identification of an
optimal solution [35]. For a more detailed explanation of
the functioning of the GA, readers are referred to [34], [35],
and [36]. Since the initial ports are predefined locations,
these locations are encoded into an ordered list and the GA
algorithm considers an individual as an specific subset of
locations (according to the number of available vehicles). The
list can be seen in Fig. 3. An example is shown in Fig. 4(b),
where 8 vehicles must be located along a list of 8 possible
locations. Each individual then contains the indices of the
candidate starting locations and are defined as lists of indices.
Using this approach, many classical operators can be used as
they are since the individual or chromosome definition are
identical to the classical individuals for a TSP problem found
in several works [34], [35], [36].

The important difference with the general TSP approach
is that the fitness function is not defined to minimize the
distance between selected locations but to maximize the
distance between sensors. Fortunately, the distance between
sensors can be obtained according to the set of sensors that
are shared between vehicles. Recalling that S(p) ⊆ S is
the subset of sensors available in the pth vehicle, we aim
to maximize the distance between two vehicles pi and pj
whenever they share a common type of sensor s. Moreover,
if the vehicles pi and pj share more than one sensor, the fitness
of the individual is better since there are more sensors that
are far apart. This information is encoded as the cardinality,
or number of elements, in the intersection of sensors between
vehicle pi and vehicle pj. With a direct proportion for both
cardinality and distance between vehicles, the fitness function
for the individual x, i.e., the list of indices related to the initial
positions, that needs to be maximized in this GA approach is:

f (x) =
|P |−1∑
i=1

|P |∑
j=i+1

|S(pi)
⋂
S(pj)| · dist(pi, pj) (7)

Implying that dist(·) is the Euclidean distance between
the vehicles pi and pj located at different harbors and
ports. The crossover operator to be used is the classical
Ordered, which creates offspring based on an initial subset
of one parent and completes the offspring with the remaining
genes of the second parent in the order that they are
found. Regarding mutation, a random shuffle is performed
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TABLE 2. On-board sensors of the vehicles in the example shown
in Fig. 4.

FIGURE 3. Example an individual for the initial location selection. In this
example, vehicle p3 must be initially located at position 7 (5200, 1000).

between pairs of genes, this is called the Shuffle Indices
mutation operator. Tournament selection is used as well via a
µ + λ GA approach [26]. Specific values for individual and
population size and number of generations are set depending
on the number of vehicles present in the current experiment.
Additional values are defined in the experiments section.

Table 2 lists the sensors s owned by each vehicle p
in an example of the monitoring task. Fig. 3 shows the
chromosomes of the example in the process of maximizing
the initial positions of the ASVs. The Port ID column refers
to eight coordinate points of harbors and ports located around
the Ypacarai lake. The selection of these coordinates was
based on easily accessible locations or existing ports in
the region. The objective of the new initial positioning of
the ASVs is to generate the largest possible initial distance
between vehicles equipped with the same type of sensor.
In order to show an example in an illustrative way, Fig. 4
is presented. In the example shown in Fig. 4, the fitness
of the initial positions without GA, Fig. 4(a), is 1386.79.
However, the fitness of the maximized initial positions,
Fig. 4(b), is 1581.79. This suggests an improvement in the
initial disposition of theASVs at the beginning of themission.

D. INFORMATIVE PATH PLANNER
This subsection provides an explanation of the operational
phases involved in the informative path planner, along with
the process of measuring multiple WQPs. Initially, the
procedures for calculating the components of the equations
are presented. The equations governing the movements
of ASVs in the exploration and exploitation phases are
adaptations of the Enhanced GP-based PSO [14], Eq. 20a.
Readers are encouraged to refer to Appendix A for further
details and comprehensive information.

1) ENHANCED GP-BASED PSO COMPONENTS
The AquaHet-PSO is based on the Enhanced GP-based PSO
algorithm [14] (Section A), dividing the monitoring mission
into phases, where it first tries to cover the largest possible
area of the water resource, then segments the area of the

water resource and assigns ASVs to the zones to finally
detect contamination peaks of differentWQPs. The equations
governing the speed and motion of the vehicles are equations
based on the Enhanced GP-based PSO [14] and the studies
conducted in [37] and [38]. Having different sensors, theASV
informative path planner must take into account multiple
objectives to define the next position to travel. It should
also be noted that there is no longer only one GP; on the
contrary, a GP must be assigned for each WQP. These GPs
are updated with the measured data of the water quality
parameters ys(x) : x ∈ N and the coordinates where the
measurements were taken Q(s) ⊂ Q. The subset Q(s) is
composed of the coordinates x where the measurements of
the water quality parameters s were taken. To obtain the
movement components, the proposed approach uses the data
from the sensors owned by the ASV.

The movement components can be obtained by two
different methods, i) the decoupled method, and ii) the
coupled method. The methods are defined below:

a: DECOUPLED METHOD
This method is developed in order to give importance
to one objective (water quality parameter) at a time and
not simultaneously. However, during the monitoring task,
different objectives are prioritized at different time periods.
The multi-objective informative path planner selects, at a
given time, the WQP that has the highest data value,
obtains the coordinates where that data is located and the
corresponding term is equal to that coordinate. Eq. 8 shows
the equations to calculate the movement components.

pbesttp(x) = argmax{µs(x)}, s = [1, 2, .., S]

: s ∈ S(p); x ∈ U(p) (8a)

gbesttp(x) = argmax{µs(x)}, s = [1, 2, .., S]

: s ∈ S(p); x ∈ U (8b)

max_untp(x) = argmax{σs(x)}, s = [1, 2, .., S]

: s ∈ S(p); x ∈ N (8c)

max_contp(x) = argmax{µs(x)}, s = [1, 2, .., S]

: s ∈ S(p); x ∈ N (8d)

b: COUPLED METHOD
For this method, the linear scalarization is used. By applying
linear scalarization, the multi-criteria problem becomes
simple, since it transform a multi-objective problem into
a single objective problem. Unlike the decoupled method,
in this method all objectives (water quality parameters) are
considered simultaneously. The equations for calculating the
PSO components and the surrogate model data are shown in
Eq. 9. These values are obtained from the argument of the
maximum value of the sum of the mean of the models or
the model uncertainty. In Eq. 9, the term ws_p represents the
importance given to each WQP. This weight is referred to as
the sensor weight. The sensor weight will depend on the types
of sensors s that the vehicle p has, S(p), and the number of
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FIGURE 4. Example of maximization of the initial position of the ASVs.

sensors of each parameter that the ASV fleets have. The more
sensors of the same parameter, the lower the weight. This is
defined with the objective of giving greater importance to the
sensors that are in smaller quantity.

pbesttp(x) = argmax{
S∑
s=1

ws_pµs(x)}

: s ∈ S(p); x ∈ U(p) (9a)

gbesttp(x) = argmax{
S∑
s=1

ws_pµs(x)}

: s ∈ S(p); x ∈ U (9b)

max_untp(x) = argmax{
S∑
s=1

ws_pσs(x)}

: s ∈ S(p); x ∈ N (9c)

max_contp(x) = argmax{
S∑
s=1

ws_pµs(x)}

: s ∈ S(p); x ∈ N (9d)

As mention before, the weights depend on the types of
sensors that each vehicle has. Since each vehicle can have
different sensors, the sensor weights may vary from vehicle
to vehicle. However, in all vehicles, the sum of the sensor
weights complies with the condition shown below:

S∑
s=1

ws_p = 1 (10a)

1
S1
u+

1
S2
u+ . . .+

1
SS
u = 1

: s ∈ S(p) (10b)

Each sensor weight is equal to one variable u divided by the
total number of sensors Ss of the same type s in the entire fleet,
Eq. 11. The sensors taken into account in this calculation are
the ones owned by the ASV (S(p)). The value of u is obtained
by clearing the variable from Eq. 10b. This value can vary
between different ASVs. To obtain the weight of each sensor,
Eq. 11 is applied after determining the value of u using Eq. 10.

ws_p =
1
Ss
u

: s ∈ S(p) (11a)

An example is shown below: considering a fleet with three
ASVs (|P| = 3), with the following sensor capabilities
for each ASV: S(p1) = {s1, s2, s3}, S(p2) = {s1, s3, s4},
S(p3) = {s4}. Therefore, the total amount of each type of
sensor is: S1 = 2, S2 = 1, S3 = 2, and S4 = 1. To find the
values of the sensor weights for each ASV, it is first necessary
to find the value of u by applying the formulas in Eq. 10.
After finding the value of u, the formula in Eq. 11 needs to
be applied.

TABLE 3. Example of calculation of sensor weights.

The values of the weights for the example are presented
in Table 3. In the case of p1, as the number of s2 sensors in
the fleet is smaller, its weight is higher than the other sensors.
On the other hand, p2 has sensors with an equal number in
the fleet, resulting in equal weight values. Lastly, p3, having
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only one sensor, has a weight value of 1 assigned to that
sensor.

2) OPERATIONAL PHASES
The operational phases of the AquaHet-PSO is derived from
the PSO and the GP, resulting in a monitoring mission
that consists of three distinct phases: exploration, resource
allocation, and exploitation. The exploration and exploitation
phases play a crucial role in generating accurate models of
theWQPs and detecting contamination zones in the proposed
monitoring system. However, due to the heterogeneity of the
fleet, where ASVs may have different types or quantities
of sensors for measuring WQPs, efficient assignment of
vehicles to specific areas becomes essential. Therefore, the
resource allocation phase is a critical aspect of the proposed
monitoring system.

a: EXPLORATION PHASE
The purpose of this phase is to obtain an initial model for
different WQPs. To meet the objective, the ASVs must cover
the largest possible surface area of the water body, i.e.,
explore the surface. In this first phase, the velocity of the
ASVs are calculated using Eq. 12. The position is determined
using the same equation as the Classic PSO, Eq. 4b.

vt+1p = wvtp + c1r
t
1[pbest

t
p − xtp]+ c3r

t
3[max_unt − xtp]

(12)

The studies performed in [37] show that in order to have
an optimal exploration, the global best gbest and maximum
contamination max_con terms must be inactive. However,
before calculating the velocity, a preliminary computation
of the motion components is carried out, as described in
Section IV-D1. The exploration phase ends when the vehicles
have traveled a certain distance, this distance is called
exploration_distance and represents a percentage of the
maximum distance, max_dist , that the monitoring mission
can last.

Algorithm 1 shows the pseudo-code of the exploration
phase. Before starting the exploration task, the PSO must
be initialized and the ground truth of the water quality
parameters ys must be created. In addition, the sensor weights
must be calculated, and the ASVs must be assigned to the
starting points by applying the GA. Then, the exploration
phase begins. The local best pbesttp and global best gbesttp
values are constantly calculated using Eq. 8a, 8b or Eq. 9a,
9b, depending on the selected method. When the ASVs reach
a traveled distance l between the current position xt and the
last position where a measurement has been taken xmeasure,
the sensors take a measurement. These measurements are
used to update the GP of each WQP. The coordinates
of the maximum contamination max_contp and maximum
uncertaintymax_untp are then calculated by applying Eq. 8d,
8c or Eq. 9d, 9c, depending on the selected method. Finally,
the velocity vt+1p and next position pt+1p of the ASVs are
calculated.

Algorithm 1 AquaHet-PSO Exploration Phase
pseudo-Code

while dist ≤ exploration_distance do
for pinP do

pbesttp, gbesttp ← Obtain the values from
Eq. 8 or Eq. 9*;

dist ← xt − xmeasure ← Calculate distance
if dist ≥ l then

for pinP do
for sinS(p) do

ys(x) ← Take water resource
measurements from the s parameter
sensor

for sinS do
σ ts , µt

s ← Adjust the GP of the s
parameter

for pinP do
max_untp, max_contp ← Obtain the
values from Eq. 8 or Eq. 9*

for pinP do
vt+1p , xt+1p ← Update speed and position of
the ASVs using Eq. 12 and Eq. 20b

*The terms pbestp, gbestp, max_unp and max_conp are
calculated according to the selected method, coupled or
decoupled.

b: RESOURCES ALLOCATION PHASE
The great challenge lies in the variety of parameters
that must be measured, in addition to the fact that the
ASVs do not have the same sensors. Consequently, the
procedures must be adapted to solve multi-objective and
heterogeneous monitoring problems. Therefore, the second
phase of the system deals with the delimitation of potential
pollution zones and the assignment of vehicles to these
zones. In the following, the procedure is explained in
detail.
• Combined Action Zones (CAZ): for the generation of
the CAZ, the action zones must first be generated. To do
this, using the model obtained in the exploration phase,
the areas where contamination is high are located and
action zones are generated. Action zones are circular
areas of radius rad where water contamination values
exceed a set threshold. The boundaries for the action
zones are determined based on the levels of acceptable,
warning, and risk, as described in Section III-B. For the
generation of action zones, the warning and risk levels
are taken into consideration. Therefore, any coordinate
where the estimated water quality parameters (WQPs)
fall within these levels is considered as part of an action
zone. All action zones are located in set A. However,
action zones are determined for each specific WQP,
which means that there can be several action zones in
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total. The subset As ⊂ A refers to the action zones
pertaining to water quality parameters s.
Fig. 5(a) to Fig. 5(d) show examples of the generation
of action zones of an s-sensor. Each circle represents an
action zone created. The higher the Priority value of the
zone, the higher the contamination levels of the zone.
These zones have the function of limiting the surface
area to be exploited by the ASVs with the objective of
deepening the monitoring in these zones. Action zones
do not overlap. If a coordinate has already been assigned
to an action zone, it will no longer be considered for the
other zones.
Due to the significant number of action zones, the
AquaHet-PSO proceeds to create CAZ. The set Z
is composed of all action zones combined. These
CAZs are formed by merging overlapping action zones.
We proposed a sequential procedure to generate the
CAZ. It is important to highlight that the following steps
or phases are not excluding. Therefore, the step 2 will
be applied if with execution of the step 1 at least a
vehicle is not assigned to each CAZ. The procedure is at
follows:
– Step 1 - Prioritize heterogeneity: when CAZs are
formed by merging overlapping action zones of
different parameters, without considering overlaps of
action zones for the same parameter. The overlapping
of action zones belonging to the same WQP is not
realized due to the heterogeneity of the fleet. This is
because the presence of different sensors on board
allows an ASV to exploit action zones of different
sensors at the same time, allowing a more focused
exploitation of two or more parameters in smaller
areas. This approach differs from overlapping action
zones of the same sensor, which would result in larger
zones targeting a single WQP.
This situation arises when the distance between the
centers of action zones for different sensors is smaller
than the combined sum of their respective action
zone radii (distance between center1s1 and center1s2 >

rads1 + rads2). However, an exception is made if
an action zone of parameter sn overlaps with two
action zones of parameter sn+1. An example of this is
seen in the overlapping of the action zones between
s2 (Fig. 5(b)) and s3 (Fig. 5(c)). The result is the
convergence of these action zones into a single CAZ,
as depicted in Fig. 5(e), CAZ 0. In addition, the
operation of the step 1 can be seen in Fig. 5(e), which
shows different areas where the action zones of the
same sensor are not merged (orange-tinted areas in
the lower margin of the figure and green-tinted areas
in the upper left margin).

– Step 2 - Prioritize homogeneity: If after the appli-
cation of step 1 there are still zones without ASVs
assigned, new CAZs need to be generated. In step 2,
the overlap between zones of the same sensor is also
taken into account. This is because of the limited

availability of ASVs and the potential for an ASV to
exploit multiple zones of the same sensor. Fig. 5(f)
shows the merging of the different action zones
into 3 CAZs, where the zones corresponding to the
same sensor are also overlapped.

– Step 3 - Enlarge coverage: based on the CAZs
generated in step 2), if there is a zone to which no
ASV is assigned, the radius of that zone is increased
until it overlaps with another CAZ, thus ensuring an
overlap of CAZs. This can be seen in Fig. 5(g), where
no ASV was assigned in one of the CAZs.

These phases are determined based on the allocation
of vehicles. Initially, CAZs are created following the
conditions specified in phase 1. If there are any CAZs
that are not assigned to a vehicle, the zones described
in step 2 are generated. Vehicle assignment is then
conducted, and if there are still CAZs remaining without
assigned vehicles, the overlapping of CAZs (step 3) is
generated. The subset Sz consists of the water quality
parameters s to which the CAZs z belong. It is worth
noting that although a different order can be followed
for the previous steps of the CAZ generation, simulation
results have conducted and the proposed order is the one
that the best results achieved.

• Assignment of ASVs: the assignment of vehicles is
carried out based on the sensors that eachASVpossesses
and the WQPs of the CAZs. After the generation of
the CAZ, a scan is performed between the sensors
of each ASV and the parameters of each CAZ. This
enables determining the number of common sensors
between them (Priority). As the values increase, so does
the priority level. These data are utilized for resource
allocation, where the ASV with the highest priority
is the one that shares the most sensors in common
with any CAZ. In cases where multiple CAZ have
the same Priority, the decision criterion shifts to the
number of potential vehicles that can be assigned to each
zone, Number of possibilities. This number reflects
the count of vehicles that share an equal number of
sensors in common with the CAZ. The vehicle selected
for assignment to the CAZ is the one with the lowest
probability of being assigned to another CAZ, ensuring
optimal distribution. This process continues until all the
CAZ have an ASV assigned to them. Vehicles that are
assigned to the CAZ z are located in subset P(z) There
are a couple of excluding scenarios that can arise:
– Scenario 1: when there are more CAZs than available

ASVs, the problem is resolved by regenerating the
CAZs.

– Scenario 2: when there are more vehicles than action
zones, in such cases, the sensors possessed by each
vehicle are considered, and the vehicle is assigned to
the zone with the highest number of sensor matches.
In cases where multiple CAZs have an equal number
of sensors in common with the vehicle, the ASV is
assigned to the zone with the largest surface area.
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FIGURE 5. Example of the process of generating combined action zones.

TABLE 4. Example of resource allocation: 1st scan.

An example is shown below: considering a fleet with
three ASVs (|P| = 3) and three CAZs (|Z| = 3), with
the following sensor capabilities for each ASV: S(p1) =
{s1, s2, s3}, S(p2) = {s1, s3, s4}, S(p3) = {s4}; and each
CAZ corresponds to the following sensors: S(z1) = {s1},
S(z2) = {s1, s2, s3}, S(z3) = {s4}. After the initial scan,
the following data is obtained:
Based on this information, it is observed that p1 has
the highest priority since it has the most matches
with z2. Then, P(z2) = {p1}. Following this assignment,
a subsequent scan is performed to determine the next
optimal assignment based on the remaining vehicles and
CAZ:
After the scan, it is observed that both z have the same
Priority. Therefore, the Number of possibilities is taken

TABLE 5. Example of resource allocation: 2nd scan.

into consideration. Since z1 has the lowest value, it is
given the highest priority. Then, P(z1) = {p2}. Finally,
P(z3) = {p3}.

Algorithm 2 shows the process of the resource allocation
phase. In the this phase, action zones are first created for each
water quality parameter s. Once all the zones are obtainedA,
the next step is to generate CAZs Z and assign vehicles
to them P(z). These two processes are intertwined. If there
are any CAZs without assigned vehicles, new CAZs are
generated according to the three cases mentioned earlier until
all zones have vehicles assigned (vehicles_assigned).

c: EXPLOITATION PHASE
After assigning the vehicles to the CAZs, the algorithm
proceeds with the exploitation of the areas. Due to the change
of target between phases, the speed equation varies. In the

110954 VOLUME 11, 2023



M. J. T. Kathen et al.: AquaHet-PSO: An Informative Path Planner for a Fleet of Autonomous Surface Vehicles

Algorithm 2 AquaHet-PSO Resource Allocation
phase Pseudo-Code

for sinS do
A(s)← Obtain action zones for each of the WQP

while not vehicles_assigned do
Z ← Generate combined action zones
P(z)← Assign vehicles to the combined action
zones

exploitation phase, the speed is calculated according to the
results obtained in [38], where the analysis shows that the
maximum uncertainty term max_un must be eliminated,
Eq. 13. To calculate the position, the Classic PSO equation
is used, Eq. 4b. Before applying the velocity equation, the
Enhanced GP-based PSO components must be calculated
using the equations of Section IV-D1.

vt+1p = wvtp + c1r
t
1[pbest

t
p − xtp]+ c2r

t
2[gbest

t
− xtp]

+ c4r t4[max_cont − xtp] (13)

During the exploitation task, measurements are made
through sensors available on the ASVs of the fleet. However,
not all water quality sensors on the ASVs are used to
update their movement. Sensors that do not correspond to
the parameters of the CAZs are deactivated, which means
that their weight wsp is set to zero. This is done to prevent
parameters not related to the parameters of the CAZs from
influencing the exploitation of those regions.

The AquaHet-PSO incorporates the distributed learning
technique during the exploitation phase. This system is
employed to update the WQPs models within each CAZ.
Nevertheless, centralized communication with the central
server is maintained and updates are performed at the central
server. In the AquaHet-PSO, the CAZs are treated as nodes,
which form sub-fleets. Once the vehicles are assigned and
the sub-fleets and nodes are established, the corresponding
parameter models for each CAZ generated during the
exploitation phase are provided. The new measurements
obtained during the exploitation phase are combined with
the measurements collected during the exploration phase to
generate the parameter models. It is important to note that
the measurements of the different zones are not mixed. This
is applied in order not to influence the calculation of the new
positions. The exploitation phase, as well as the monitoring
mission, ends when the vehicles have traveled a distance
equal to exploitation_distance.

From this point on wards, the operation of the algorithm
follows a similar pattern to the exploration phase, this can
be observed in Algorithm 3. After assigning vehicles to their
respective zones, the algorithm continues until the vehicles
have traveled a distance equal to exploitation_distance. This
distance represents the remaining percentage of distance
the vehicles can travel during the monitoring mission. The
following steps are performed: calculation of the local best
pbesttp and global best gbesttp values of each vehicle using

Eq. 8a, 8b or Eq. 9a, 9b, depending on the selected method;
when the vehicles reach a distance l between measurements,
a new measurement is taken for each vehicle, and the GPs of
theWQPs are updated, this update is done separately for each
CAZ, as each zone is considered independent; calculation
of maximum contaminationmax_contp and maximum uncer-
tainty max_untp; and update of the speed and position of the
ASVs. These steps are repeated until the vehicles reach the
maximum mission distance max_dist , ensuring continuous
monitoring and updating of the WQP models (max_dist =
exploration_distance+ exploitation_distance).

Algorithm 3 AquaHet-PSO Exploitation Phase
pseudo-Code

while dist ≤ exploitation_distance do
for pinP do

pbesttp, gbesttp ← Obtain the values from
Eq. 8 or Eq. 9*;

dist ← xt − xmeasure ← Calculate distance
if dist ≥ l then

for zinZ do
for pinP(z) do

for sinS(p) do
ys(x) ← Take water resource
measurements from the s
parameter sensor

for sinS(z) do
σ ts_z, µt

s_z ← Adjust the GP of the s
parameter

for pinP do
max_untp, max_contp ← Obtain the
values from Eq. 8 or Eq. 9*

for pinP do
vt+1p , xt+1p ← Update speed and position
of the ASVs using Eq. 13 and Eq. 20b

*The terms pbestp, gbestp, max_unp and max_conp are
calculated according to the selected method, coupled or
decoupled.

d: FINAL MODEL
To obtain the final model of theWQPs, themonitoring system
combines the measurements collected during the exploration
and exploitation phases. All measurements obtained through-
out the monitoring process are merged in a central server,
which allows updating the corresponding GP associated with
each WQP.

3) MEASUREMENTS OF WQPS
Water resource measurements are taken every l distance
traveled. The formula used for the calculation of the distance l
is shown in Eq. 14. This value is calculated by taking the
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length scale radius λ, which is a constant, and the posterior
length scale value ℓt of the GP [24]. This is due to the
processing time of the GP, the more measurements are taken,
the longer it takes to adjust the GP.

l = λ× ℓt (14)

V. PERFORMANCE EVALUATION
A. SIMULATION SETTINGS
The code was implemented in Python 3.8 using the
Scikit-learn, DEAP, and Bayesian Optimization libraries. The
Scikit-learn library1 provides machine learning tools, while
DEAP2 is used for evolutionary algorithm implementation,
and Bayesian Optimization library3 is used for optimizing
hyperparameters. The code can be found on GitHub.4 The
simulations were conducted on a laptop computer with an
Intel i5 1.60 GHz processor and 8GB RAM.

B. GROUND TRUTH: YPACARAI LAKE
The case of study for testing the monitoring system is the
Ypacarai lake. The search space is scaled, each pixel on
the map represents an area of 100 × 100 meters, resulting
in a search map with dimensions of 100 × 150 meters.
The distribution map of the WQPs, also known as ground
truth, is generated using the Shekel function, Eq. 15. The
Shekel function is a commonly used benchmark function
in optimization and modeling tasks, which is multimodal,
multidimensional, continuous, and deterministic [24].

fShekel(x) =
M∑
i=1

1

ci +
∑L

j=1(xj − aij)2
(15)

The Shekel function has the advantage of being a
multimodal function, which means that it allows for multiple
maximum points to exist in the entire search space. These
maximum points represents areas in the Ypacarai lake
with high levels of contamination of WQPs. Nevertheless,
it should be pointed out that in the tests conducted, the
correlation between WQPs is not considered. In Eq. 15,
the parameters aij and ci represent the positions at which the
maximum point and the inverse of the significance value of
the maximum of the function are located, respectively. The
matrix A, to which the element aij belongs, has dimensions
of M × L, where M represents the number of maximum
points and L represents the dimension of the space. On the
other hand, the matrix C , to which element ci belongs, has
dimensions of M × 1. In the case of the informative path
planner tests, the distribution of the maps is generated using
the Shekel function. This function generates 50 different sets
of S maps, where S represents the number of type of sensors.
Each map in the set will have 2 peaks in the (x, y) dimensions,

1https://scikit-learn.org/stable/index.html (accessed on 22 June 2023).
2https://deap.readthedocs.io/en/master/ (accessed on 22 June 2023).
3https://github.com/fmfn/BayesianOptimization (accessed on 22 June

2023).
4https://github.com/MicaelaTenKathen/AquaHet-PSO.git (accessed on

22 June 2023).

FIGURE 6. Examples of ground truth of water quality parameters
obtained with the Shekel function.

as indicated by the value of 2 for the M and L terms.
The positions of the peaks and the values of the matrix C
are randomly obtained. An example of a ground truth set
generated for a simile is shown in Fig. 6. A different ground
truth is generated per WQP sensor.

Considering that the values of ci are randomly generated,
the data of the generated models are normalized to a range of
[0, 1] using Eq. 16:

fNormalized(x) =
fShekel(x)− fmin_Shekel(x)

fmax_Shekel(x)− fmin_Shekel(x)
(16)

The normalization process involves utilizing the data
obtained from the Shekel function, where fShekel(x) represents
the data, fmin_Shekel(x) represents the minimum value within
that data, and fmax_Shekel(x) represents the maximum value
obtained.

C. PARAMETER SETTINGS
The simulation experiments involve fleets of 5 to 10 vehicles,
with the number of vehicles being chosen randomly. Each
test consists of 50 simulations. The number of sensors of
the same type varies from one method or informative path
planner to another, ranging from 2 to 6 sensors. This enables
the observation of the behavior of the methods or informative
path planners with different numbers of ASVs that can
measure the same WQP. Additionally, a test is conducted
where the number of sensors of the same type is variable,
ranging from 4 to 6 sensors. Each ASV can have up to three
sensors measuring different WQPs on board. To determine
the value of λ in Eq. 14, the studies performed in [14] and [24]
are considered. In order to reduce the computational time and
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to obtain enough measurements to generate good models of
the WQPs, the value of λ is set at 0.3. According to [39],
in order for the GP to generate smooth models, the length
scale value must be 10% of the search space length value.
Based on this information, the length scale of the GPs are
uniformly set to 10, since the map is scaled.

To determine the weights of each WQP function (ws_p),
in the coupled method, the number of sensors in the fleet of
ASVs is taken into account, the more sensors of the same
parameter, the lower the weight value of that parameter. This
is applied in order to give more priority to the sensors that are
less available. To obtain the values, Eq. 11 is applied at the
beginning of each simulation. It is important to mention that
the weights of the sensors s differ from one ASV p to another,
as they depend on the sensors installed on each ASV.

For the weights of the terms of Eq. 12 and Eq. 13,
c1, c2, c3, c4, in the exploration phase, the values obtained
in [37] are used, and for the exploitation phase, the weights
are set to the values obtained in [38]. The studies mentioned
earlier were specifically conducted for a fleet of 4 vehicles,
which in the case of the AquaHet-PSO, refers to 4 sensors
of the same type. Therefore, for a different number of
vehicles, the weight values used in the algorithm vary.
The weight values for these scenarios can be found in
Table 9 of the Appendix B. The values of the weights
of c shown in Table 6 are for a number of 4 sensors or
more. In the AquaHet-PSO, first, the ASVs travel 10km
to obtain data from the entire surface of the lake, focusing
on the exploration of the water resource. After collecting
the necessary data, the ASVs focus on characterizing the
areas where the highest levels of contamination are found.
During the exploitation phase, each ASV covers a distance of
10km. These values were determined according to the study
performed in [25]. This study demonstrated that a balanced
ratio of 50% exploration distance (exploration_distance)
and 50% exploitation distance (exploitation_distance) is
optimal. As a result, the maximum distance max_dist for the
monitoring mission is set at 20km. To determine the radius of
the action zones rad , the value set in the length scale is taken
into account. The goal is to ensure that there are no significant
changes between the positions of the measurements within
the zones. All parameters and hyper-parameters that are set
are shown in Table 6.

D. PERFORMANCE METRICS
The main objective of the proposed monitoring system is to
minimize the discrepancy between the actual models of the
water quality parameters ys(xi) and their estimated models
ŷs(xi), as discussed in Section III-A. In addition to using
Mean Squared Error (MSE) across the entire search space,
Eq. 2, as a comparison metric, the following metrics are also
utilized:
1) R-squared (R2): It measures the goodness of fit between

the ground truths ys(xi) and the estimated models ŷs(xi)
across the entire search spaceN . The term N represents
the number of elements of the set N , S represents the

TABLE 6. Parameter values for informative path planner tests.

number of elements of the set S, and the term ȳs(x)
is the average of the values. To obtain the R2 value
of the monitoring system, Eq. 17 is applied. It is first
necessary to calculate the R2 between each ground truth
and estimated model of the sensors that compose the
set S. Then, the average of the results is obtained.

R2map(ys, ŷs) =
1
S

S∑
s=1

(
1−

∑N
i=1(ys(xi)− ŷs(xi))

2∑N
i=1(ys(xi)− ȳs(x))2

)
(17)

2) Peak Error: It calculates the difference between the
peaks of the CAZs in the ground truth ys(xi) and
estimated models ŷs(xi) by applying Eq. 18. This
metric provides insight into the error associated with
the detection of contamination peaks. The term Zpeaks
represents the number of contamination peaks detected
using the CAZ. The error is calculated by taking the
average of the errors of the peaks in the CAZ associated
with the CAZ sensors (Sz). Subsequently, the average of
these CAZ errors is computed. The term Sz refers to the
number of WQPs belonging to CAZ.

Errorpeak (ys, ŷs) =
1

Zpeaks

Z∑
z=1

×

 1
Sz

Sz∑
s=1

(|ys(xi)− ŷs(xi)|)

 (18)
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3) MSE of CAZs: It calculates the average squared
difference between the ground truth ys(xi) and estimated
models ŷs(xi) specifically for the CAZs. This value is
obtained using Eq. 19. To calculate the MSE in the
CAZs, first, the MSE between the ground truth and the
estimated models of the sensors that form the CAZ (S‡),
is computed. Then, the average of these MSE results
is calculated, considering the CAZs. It is important
to note that the MSE is calculate specifically for the
areas (coordinates) that compose the CAZs. The Zcoord
corresponds to the number of coordinates that constitute
the CAZs.

MSECAZ (ys, ŷs) =
1

Zcoord

Z∑
z=1

×

 1
Sz

Sz∑
s=1

(ys(xi)− ŷs(xi))2

 (19)

E. DECOUPLED METHOD VS COUPLED METHOD
This subsection presents a comparison between the AquaHet-
PSO variants, the decoupled and the coupled methods. In the
decoupled method, the monitoring system prioritizes only
one vehicle sensor during each time period, whereas in the
coupled method, all ASV sensors influence the movement
of the vehicles, giving priority to the WQP with the fewest
sensors in the fleet.

Apart from comparing themethods, the impact of the initial
positions of the ASVs is also assessed. The study analyzes the
behaviors of themethods when the GA is applied to assign the
starting points of the vehicles, as well as when the distribution
of the vehicles is not maximized (without GA). An example
of this application is shown in Fig. 4, where the initial
positions of the vehicles are shown without using the GA
(Fig. 4(a)), and Fig. 4(b) shows the new initial positions by
applying the maximization of the initial distance between the
ASVs (GA). These tests are conducted considering different
numbers of sensors of the same type. The results are shown
in Table 7.
Fig. 7 shows the results obtained for the case of 4 or more

sensors in boxplot format, where AquaHet-PSO-C-GA is the
abbreviation for the coupled method of the AquaHet-PSO
using the GA for the initial positioning of the ASVs, the
AquaHet-PSO-C for the coupled method of AquaHet-PSO
without the use of the GA, AquaHet-PSO-D-GA refers
to the decoupled method of AquaHet-PSO using the GA
for the initial GA positions and AquaHet-PSO-D refers
to the decoupled method of AquaHet-PSO without using
the GA.

The test results show that the coupled method, which uses
the GA to assign the initial positions of the ASVs, performs
better than the othermethods. This can be attributed to the fact
that all sensors influence the motion of the vehicles, i.e., the
optimal positions of each sensor are considered to determine
the next position.

In contrast, the decoupled method, where only one sensor
is prioritized per time period, has limitations. Vehicles are
unable to effectively scan optimal zones for other sensors,
resulting in deficient model generation where the pollution
zones for those sensors do not approach the actual pollution
zones. Consequently, the exploitation of high pollution zones
and the detection of pollution peaks related to non-priority
sensors is adversely affected.

In summary, the decoupled method may present some
poor results in both exploration and exploration. Constantly
changing priority with respect to sensors can result in over-
lapping paths in the exploration phase limiting exploration
of unexplored areas. Additionally, in the exploitation phase,
focusing on a single sensor results in poor exploitation of
the other WQPs. Based on these results, the AquaHet-PSO
coupled method is selected to compare with the other
informative path planners.

The performance of the coupled AquaHet-PSO method,
with GA for initial ASV positioning, is evaluated for several
numbers of sensors of the same type of WQP. Fig. 8
shows the results obtained as a function of the average
distance traveled by the fleet vehicles. In each test, the
fleets consist of the same number of identical-sensors, except
for the scenario with 4 or more sensors, where the fleets
can have between 4 or 6 sensors of the same type. The
results indicate that the proposedmonitoring system performs
well when there are 4 or more sensors of the same type.
This is because with a small number of sensors of the
same type, the system struggles to generate an accurate
initial model during the exploration phase, leading to limited
creation of CAZs in areas with higher contamination levels.
Consequently, the detection of contamination peaks becomes
challenging. Therefore, having a limited number of sensors
of the same type and that vehicles may possess multiple
sensors, the swarm is unable to effectively detect local
optima or contamination zones throughout the search space.
Nevertheless, when an ASV is equipped with multiple
sensors, its focus is distributed among different parameters,
potentially impacting the exploration and exploitation of each
parameter.

F. COMPARISON OF MULTI-OBJECTIVE AND
HETEROGENEOUS INFORMATIVE PATH PLANNERS
In this subsection, the performance of multi-objective and
heterogeneous path planners is compared. The parameters
of all path planners are set with the same values shown in
Table 6, including the number of vehicles (N), number of
sensors (S), length scale of GPs, among others.

One of the informative path planners that is compared is the
lawnmower algorithm. The implementation of this algorithm
is based on the code provided by [40]. The interspace
parameter is set to match the Gaussian Process (GP) length
scale, which is 10. This ensures that there are minimal
variations between sensor measurements taken at different
positions. The initial positions of the ASVs in the lawnmower
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TABLE 7. Comparison of AquaHet-PSO variants.

FIGURE 7. Distribution of the obtained results for the AquaHet-PSO methods using the GA and without using the GA for the initial positioning of the ASVs.

algorithm are the same as those used in the AquaHet-PSO
method without GA.

Table 8 presents the results obtained from the tests
performed for different numbers of sensors of the same
type. It can be seen that for a low number of sensors of
the same type, the lawnmower outperforms the coupled
AquaHet-PSO method. As mentioned above, having a low
number of sensors of the same type and the possibility of
each ASV having more than one sensor on board makes it
difficult to explore the surface of the water resource. This
is because the vehicle needs to cover a larger area of the
water resource and to explore the surface it must consider
the best local and uncertainty of all the sensors on board.
Consequently, it also affects the segmentation of the lake
and the detection of contamination peaks. As the number of
sensors of the same WQP increases, the monitoring system
can cover a larger area of the water resource, allowing
more measurements and improving the initial model. This
facilitates the creation of CAZs in regions with higher

pollution potential, resulting in better detection of pollution
peaks. Starting with a minimum of four sensors of the same
type, the AquaHet-PSO shows a significant performance
improvement compared to lawnmower. These results can be
seen in the form of a boxplot in Fig. 9. Additionally, the
results during the mission, in terms of the average distance
traveled by the ASVs, are shown visually in Fig. 10. Fig. 10
shows the results obtained with respect to the lawnmower
and AquaHet-PSO methods for the case of 4 or more sensors
during the monitoring mission. Initially, the lawnmower
method outperforms the AquaHet-PSO in the tests. However,
as the mission progresses, the AquaHet-PSO demonstrates
better performance. This difference in performance can be
attributed to several factors. With the lawnmower method,
the ASVs thoroughly explore the surface at the beginning
of the mission. However, this method does not account for
model uncertainty and does not effectively exploit areas
of increased contamination. As a result, the lawnmower
method may not generate the most accurate models of WQPs
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FIGURE 8. Results obtained using the coupled AquaHet-PSO method, which incorporates the use of GA for assigning the starting points
of ASVs, for various numbers of sensors of the same type.

TABLE 8. Performance comparison of informative path planners for different numbers of sensors of the same type.

over time. In contrast, the AquaHet-PSO considers the model
uncertainty and actively scans unexplored areas to minimize
uncertainty. In addition, during the exploitation phase, ASVs

focus on areas with a high risk of contamination and collect
more measurements to generate the best possible models.
This combination of exploration and exploitation strategies
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FIGURE 9. Distribution of the obtained results from the informative path planners compared in Table 8.

FIGURE 10. Results obtained from the informative path planners during the monitoring task for fleets with 4 or more sensors of the
same type.

allows the AquaHet-PSO to outperform the lawnmower
method as the mission progresses.

Fig. 11 and Fig. 12 depict monitoring missions conducted
using the lawnmower and the AquaHet-PSO monitoring
systems, respectively. The missions involve a fleet of
8 vehicles equipped with 4 sensors for each of the 4 WQPs.

The ground truth of the WQPs can be seen in Fig. 6, which
is located in Section V-B. In Fig. 11, the initial positions
of the ASVs are not optimized but randomly selected from
either port or clearing points in the Ypacarai lake. Fig. 11(a)
illustrates the movement of the ASVs during the mission,
while Fig. 11(b) showcases the WQP models obtained at
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FIGURE 11. Example of the performance of the Lawnmower. The fleet has the same
characteristics as the AquaHet-PSO example (Fig. 8). In the ASV movement graphs, the
trajectory of the vehicles is represented in different color.

the conclusion of the mission. Due to the random initial
positioning of the ASVs, the lawnmower may not capture
all contamination peaks effectively. This discrepancy is
evident when comparing the ground truth of parameter s4
(Fig. 6) with the model generated by the monitoring system
(Fig. 11(b)).

On the other hand, the AquaHet-PSO takes advantage
of the GA algorithm to optimize the initial positioning
of ASVs. This approach ensures a larger coverage of the
surface of the Ypacarai lake by maintaining a significant
separation between ASVs equipped with the same sensor.
The movement and initial positions of ASVs during the
exploration phase are depicted in Fig. 12(a). In this figure, the
dispersion of vehicle movement is evident as the active terms
are the best local and maximum uncertainty, enabling the
exploration of uncharted areas. Fig. 12(b) presents the initial
models ofWQPs obtained at the end of the exploration phase.
Comparing these initial models with the final model of the
lawnmower method highlights the importance of maximizing
the initial positions of ASVs. After covering a distance of
10 km, the proposed system successfully detects potential
contamination zones. These zones are delineated through
the second phase of AquaHet-PSO. Fig. 12(c) illustrates
the operation of the second phase, where 5 CAZs are
determined based on the initial models obtained. ASVs are
then assigned to their respective zones. When a sufficient
number of ASVs is available, the zones are generated
according to Step 1 in Section IV-D2b. CAZ 0, being the
largest, accommodates three ASVs and focuses on exploiting
three WQPs. CAZ 1 has two ASVs assigned to exploit
two parameters. Finally, CAZs 2, 3, and 4 correspond to
individual parameters, with one ASV assigned to each zone.
Fig. 12(d) illustrates the movement of the ASV from the
end of the exploration phase to the corresponding CAZs
and the movement during the exploitation phase. It is worth

noting that while the ASV moves towards its assigned zone,
it continues to take measurements. By prioritizing best local,
best global, and maximum contamination terms, the ASV
movements are concentrated in areas with high contamination
levels. In Fig. 12(e), the models generated for each WQP in
the respective CAZs are shown. Adding up the parameters
measured in each zone results in 8 GPs, leading to the
generation of 8 models in the exploitation phase: 3 in CAZ 0,
2 in CAZ 1, and 1 each in CAZs 2, 3, and 4. To obtain the
final model for each WQP, the measurements collected by
the ASVs are fused in the central server, resulting in a single
model for each parameter. Fig. 12(f) demonstrates that the
generated models closely resemble the ground truth values of
the corresponding parameters.

The computational time needed for an AquaHet-PSO
monitoring mission is contingent on the number of samples
taken and the quantity of WQPs under monitoring. In other
words, as the number of sensors and monitored WQPs
increases, the complexity of themission escalates, resulting in
longer computational durations. The duration of a monitoring
mission can range from approximately 7 seconds in scenarios
involving a fleet of 5 vehicles, each measuring 2 WQPs with
2 sensors for each WQP, to the most intricate case studied,
which lasts 53 seconds. This complex scenario involves a
fleet of 10 vehicles monitoring 10 WQPs, with each WQP
equipped with 2 sensors. These investigations were carried
out within the specified constraints, allowing each vehicle to
carry up to 3 sensors and considering amaximumof 10WQPs
to monitor (as detailed in Table 6).

G. DISCUSSION OF THE RESULTS
The main results obtained in this work are presented below:
• The coupled and decoupled methods of AquaHet-PSO
differ in the information they consider to guide the
ASVs. While in the coupled method, information from
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FIGURE 12. Example of the performance of the proposed monitoring system. The example shows the 3 phases of the AquaHet-PSO. In the ASV movement
graphs, the trajectory of the vehicles is represented in different color.

all sensors in the ASV are considered, in the decoupled
method, the algorithm gives priority to information from
a single sensor per time period. However, prioritizing
only one sensor per time period affects the generation of
the models and the detection of the contamination peaks
of the other water quality parameters. In the course of the
mission, the ASV focuses on exploiting the parameter
that has the maximum values of the terms, and it may
be the case that such information is always from the
same parameter, detracting from the priority of the other
parameters.

• The use of the genetic algorithm to select the initial
position of the ASVs plays an important role in improv-
ing the performance of the AquaHet-PSO. Maximizing
the distance between ASVs having the same type of
sensor allows to cover a larger area of the water resource
in the exploration of the resource. Therefore, potential
contamination zones can be detected more effectively.

• When there are few sensors of identical type in the
ASV fleet, the lawnmower algorithm proves to be
more effective in dealing with heterogeneous and multi-
objective problems. However, to navigate the water
resource, the AquaHet-PSO uses information from all
sensors on board the ASV. As a consequence, the
proposed monitoring system may be less advantageous
in scenarios where with small number of sensors of
the same type because the maximum uncertainty or
contamination of the sensors on board the ASV can be at
opposite extremes. As a result, the ASVmight not detect
all possible contamination sources in the exploration
phase, which may affect the effectiveness of the other
phases of the AquaHet-PSO.

• On the contrary, when the number of identical sensors
is higher, the AquaHet-PSO performs better than the
lawnmower. Guided by data from more than one
water quality parameter is not as advantageous with a
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small number of identical sensors. However, when the
number is larger, this weakness becomes the strength of
the algorithm. It allows measurements to be obtained
from different types of sensors in optimal positions.
As a consequence, it is possible to detect regions
with possible contamination hotspots. With these first
approximations, possible action zones are delimited and
exploited, resulting in the detection of pollution peaks
and the generation of good models of water quality
parameters. The results for R2 of the lawnmower with
respect to the coupled method of the AquaHet-PSOwith
GA decrease by 17% in the case of 4 or more sensors.
In addition, there is an improvement of approximately
370% in the generation of water quality parameter
models over the entire search space, a 24% improvement
in the detection of contamination peaks and a 230%
improvement in the characterization of water quality
parameters in areas of potential contamination.

VI. CONCLUSION AND FUTURE WORK
A multi-objective monitoring system for a fleet of heteroge-
neous ASVs has been developed and simulated in this work,
the AquaHet-PSO. The proposed monitoring system is based
on the PSO, the GP, and the GA. It makes use of the GP as a
surrogate model. The GP allows the generation of complete
models for water quality parameters, which facilitates the
estimation of data on the entire water resource. The objectives
of the AquaHet-PSO are to generate good models of
multiple quality parameters itself, and to detect pollution
peaks of these parameters. The ASV fleet is composed of
vehicles that do not have the same water quality parameter
measurement capabilities, which we call heterogeneous ASV
fleet. By applying the GA, the initial positions of ASVs
with identical sensors can be optimized, allowing increased
coverage of a wider area from the beginning of themonitoring
mission. Then, the operation of the AquaHet-PSO consists
of three phases. The first phase is the exploration phase.
In this first phase, the aim is to cover the largest possible
area of water resource in order to generate good first models
of water quality parameters. The first models generated are
used in the second phase of the algorithm. In the second
phase, called resource allocation, the regions where potential
areas with high contamination levels are detected (combined
action zones) are delimited and ASVs are assigned to these
regions. The ASVs are assigned according to the sensors
they possess and the water quality parameters measured
in each zone. This phase aims to optimize measurements
and focus on areas with high pollution levels by taking
advantage of the capability of ASVs to have on board several
different sensors. This approach allows the collection of data
for different water quality parameters within the combined
action zones, which improves measurement efficiency and
zone characterization. Finally, the exploitation phase. In this
phase, the ASVs focus on characterizing the water quality

parameters in depth, taking measurements in the combined
action zones. The distributed learning technique is used
in the exploitation phase so that each sub-fleet assigned
to the action zones operates independently of the other
fleets. This allows the ASVs to focus only on the zone
to which they are assigned. The generation of the final
models is performed on the central server at the end
of the three phases mentioned above. The measurements
of the combined action zones are merged to obtain the
final models of the water quality parameters. The results
of the study showed the effectiveness of the monitoring
system in meeting the challenges related to multi-objective
monitoring missions and heterogeneous fleets. In addition,
the importance of strategic initial vehicle positioning for
simultaneous monitoring of multiple water quality parame-
ters was validated. The AquaHet-PSO successfully generated
accurate models for water quality parameters, performed
comprehensive characterization of potentially contaminated
areas, and detected pollution peaks for each parameter.
As future work, the monitoring system will be improved
by integrating the Pareto dominance method instead of
the scalarization of the objectives to calculate the PSO
components and the coordinates of maximum contamination
and uncertainty. Furthermore, it is proposed to implement
the monitoring system in a real-world heterogeneous fleet
of ASVs for further validation and evaluation. Additionally,
research will be conducted to develop informative path plan-
ning solutions for heterogeneous fleets based on alternative
heuristic algorithms.

APPENDIX A
ENHANCED GP-BASED PSO
The Enhanced GP-based PSO is a monitoring system that is
based on the PSO and has the GP as surrogate model [14].
In the Enhanced GP-based PSO, the number of sensors S
is considered equal to 1, i.e., only the modeling of a WQP
is considered. Since it is an algorithm capable of solving
problems with a single criterion.

The Enhanced GP-based PSO combines the cognitive
components of the PSO, pbest and gbest, with the responses
obtained from the GP, µ and σ . In the informative path
planner, the ASVs are the particles, and the ASV fleet is
represented by the swarm. The mean µ obtained from the GP
represents the estimated model of the WQPs. The standard
deviation σ is the uncertainty in the estimated model. The
higher the value of the mean, the higher the level of water
contamination.

During the monitoring task, water resource measurements
are taken through the water quality sensors. It should be noted
that all the ASVs have the same sensors. As a result, the fleet
has a homogeneous capacity for measuring a WQP. These
measurements ys(x), along with the coordinates that conform
theQ set, are used to update the GP. After updating, the data
from the maximum µ and σ values, along with the local best
and global best values, are used to calculate the velocity vt+1
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and the position xt+1 of each ASV p, Eq. 20.

vt+1p = ωvtp + c1r
t
1[pbest

t
p − xtp]+ c2r

t
2[gbest

t
− xtp]

+ c3r t3[max_unt − xtp]+ c4r
t
4[max_cont − xtp]

(20a)

xt+1p = xtp + vt+1p (20b)

The coordinates that are considered to obtain the best
local pbest and global best gbest are the points where the
ASVs have already passed. All these points form the set
U ⊂ N . Within the set U , there are the subsets U(p), which
are composed of the points through which each ASV p has
traveled. Eq. 21a and Eq. 21b show how the values of local
best and global best are obtained, respectively. Themax_unt

term is the coordinate where the maximum value of the model
uncertainty (σ ) is found at time t , Eq. 21c, and themax_cont

term represents the coordinate where the maximum value
of the model mean (µ) or maximum contamination value is
obtained, Eq. 21d. The terms c3 and c4 are the acceleration
coefficients that determine the significance of the uncertainty
and contamination terms. r3 and r4 are random values that are
within the range [0, 1].

pbesttp = argmax{µs(x)} : x ∈ U(p) (21a)

gbestt = argmax{µs(x)} : x ∈ U (21b)

max_unt = argmax{σs(x)} : x ∈ N (21c)

max_cont = argmax{µs(x)} : x ∈ N (21d)

APPENDIX B
ACCELERATION COEFFICIENTS VALUES
The studies in [37] and [38] were conducted for fleets
of 4 vehicles, which means that these values are not the
optimal weights for other numbers of vehicles. Because of
this, further studies are conducted to obtain the optimal
values of the weights of the Enhanced GP-based PSO
algorithm for exploration and exploitation approaches. The
studies are performed with the same conditions mentioned
in [37] and [38], using Bayesian optimization for the
hyper-parameterization of the weights. The results obtained
are shown in Table 9. When the number of vehicles is
greater than 4, the weights do not have significant variations.
Therefore, the weights of the Enhanced GP-based PSO terms
for more than 4 vehicles are fixed to the values of the weights
for 4 vehicles.

TABLE 9. Acceleration coefficients.
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