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ABSTRACT Defect detection is a crucial technology in the industry that enhances production efficiency
within the manufacturing sector. However, obtaining a balanced dataset with sufficient samples of both
normal and defect is often challenging and time-consuming. Constructing an unbalanced dataset skewed
toward normal samples results in decreased performance and reduced generalization of trained models.
Therefore, building an appropriate dataset is essential for effectively training deep models. In this
study, we propose a defect image augmentation technique based on generative adversarial networks
(GANs), dubbed SyNDGAN, to address the challenges of unbalanced datasets encountered in real-world
manufacturing scenarios. Specifically, our SyNDGAN synthesizes defect samples from normal images with
given segmentation maps which contain the defect types and location of the defect. We validate our method
by utilizing manufacturer data which considers the industrial scenario, with limited data. In our experiments,
the proposedmethod shows superior quality compared to other methods both quantitatively and qualitatively.
Furthermore, we demonstrate that synthesized data helps to improve the defect recognition performance,
which can be utilized in real-world scenarios.

INDEX TERMS Defect synthesis, generative adversarial networks, augmentation, classification.

I. INTRODUCTION
Deep learning is currently being actively pursued, with a
focus on its practical applications in various industries.
Defect inspection is especially crucial in manufacturing, as it
directly affects the productivity and profits. Convolutional
neural networks (CNNs) [1] have shown potential in automa-
tion technologies. They can identify defects that may be
difficult for humans to detect, thereby helping improve the
production efficiency and accuracy.

However, deep learning requires a large amount of data for
training, and imbalance in defect data is often a significant
issue. Defects in the manufacturing processes typically occur
rather intermittently; therefore, compared to normal data,
securing a sufficient quantity and variety of labeled defect
datasets is challenging and costly. To address this issue,
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previous works [2], [3] have proposed using Generative
Adversarial Networks (GANs) to synthesize defect images
in industrial manufacturing. SDGAN [2] is designed to
make comprehensive use of defect-free industrial images
for defect sample generation from commutator cylinder
surface image data sets. Defect-GAN [3] also provides an
automated defect synthesis network that generates realistic
and diverse concrete bridge defect samples to train an
accurate and robust defect inspection network. However,
generating high-resolution defect images and guaranteeing
training stability in limited or unbalanced data situations still
remains challenging.

In this paper, we propose a novel method for synthesizing
defect images from normal images by using user-provided
masks. Our method considers real-world scenarios, which
are applicable to limited data situations. First, we fine-tune
a pre-trained GAN using normal and defect data. Second,
by utilizing the pre-trained representations, we train the
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FIGURE 1. Proposed model to address the issue of class imbalance between normal and defect data. The model synthesizes defect samples by
utilizing normal samples and defect masks. Augmenting the dataset with the synthesized data enhances the performance of the classification
model.

normal-to-defect synthesizing model using a mask that
contains the location and type of defect. We empirically
demonstrate that the proposed method is scalable for
synthesizing defects, and produces better results with both
high quality and diversity than the previous methods. Next,
we combine the synthesized defect images to train the dataset
for classifying the defects.

Figure 1 provides an overview of the proposed method-
ology. Our method leverages synthetic data to enhance the
defect classification performance. Furthermore, our approach
considers limited data situations that occur in many real-
world applications.

Our contributions can be summarized as follows.

• We propose an effective data augmentation method that
can overcome the imbalance in the training data in
manufacturing sector by using a GAN-based model.

• We augment the training dataset with the generated
synthetic data for learning with a deep learning model
as well as to establish the improved performance of the
classification model.

• We demonstrate the superiority of the proposed technique
via quantitative and qualitative comparisons with existing
data synthesis techniques.

This paper is organized as follows. Section II introduces
the related work. The proposed deep model is described in
Section III. In Section IV and Section V, experimental details
and results are provided extensively. We give a conclusive
remark in Section VI.

II. RELATED WORK
A. DEFECT INSPECTION
In manufacturing industries, defect inspection is crucial for
improving the production process through detecting and
classifying defects. There are two main approaches to defect
inspection: machine vision-based and deep learning-based

methods. The machine vision-based methods involve several
steps, such as image pre-processing, feature extraction and
selection, and image recognition. These methods require
expert knowledge and are not very robust. In recent
years, deep learning-based methods have received significant
attention owing to their strong learning capability and
ability to learn higher-order features from data. However,
these methods demand large amounts of training data;
this requirement poses practical hindrance to introducing
deep learning inspection systems in actual production lines;
moreover, the occurrence rate of defective products is lower
than that of normal products, which results in a data
imbalance problem.

Class imbalance [4], [5] is a common issue in machine
learning-based research. Cost-sensitive learning [6], [7] was
proposed to address this problem. It balanced the learning by
weighting a small number of classes during the training rather
than generating new data. One way to achieve this was by
applying focal loss in a one-stage detector that handled both
localization and classification simultaneously. Focal loss [8]
can give more weight to difficult or misclassified cases and
reduce the loss. However, a limitation of this methodology
is that its performance may not be consistent across different
datasets and imbalance situations.

Anomaly detection [9] technology has been proposed
to address the class imbalance problem in deep learning-
based defect inspection. Anomaly detection estimates the
distribution of normal data during the learning phase and
classifies distributions that deviate from this as abnormal
data. However, as abnormal data generated in actual industrial
sites have diverse characteristics, and it is difficult to
improve the process by identifying the accuracy and defect
types. To address these limitations, studies have proposed
augmenting defect data required for training deep learning
models. For example, Niu et al. [2] proposed an approach that
simultaneously generated defect images from actual normal
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images and generated normal images from actual defect
images through SDGAN. Zhang et al. [3] further controlled
the location and type of defects by injecting a spatial and
categorical control map into the decoder part for the normal
image input. These approaches generated various realistic
defects; however, they had limitations in creating complex
defects at high resolutions.

B. IMAGE SYNTHESIS
GAN is an unsupervised learning-based model that involves
two different networks, a generator and a discriminator,
engaging in adversarial learning to create data similar to the
reality. GAN was first proposed by Goodfellow et al. [10]
and has performed excellently in various fields, including
text and video generation [11], [12]. However, the training
process for GAN is unstable and suffers from phenomena
such asmode collapse [13]. Variousmethodologies have been
proposed to increase the training stability and performance of
GANs, including deep convolutional GAN [14], conditional
GAN [15], least square GAN [16], Wasserstein GAN [17],
progressive GAN [18], StyleGAN [19], and StyleGAN2 [20].
More recently, GANs have been developed further to

manipulate the semantic properties of real images to obtain
more realistic synthesized images. Zhu et al. [21] proposed
a method which inverted a given real image into the latent
space, reconstructed the input image from it and generated
semantic manipulation. Kim et al. [22] created a style
map with spatial information from latent vectors through a
mapping network composed of fully-connected layers, and
adjusted the style of the resulting image in the synthesis
network through affine transforms.

However, when the data size is limited, the performance of
GAN tends to significantly decrease. To address this problem,
StyleGAN2-ADA [23], a model designed to enable stable
training with less data, was proposed. In conclusion, GANs
have shown significant potential in generating high-quality
data while securing diversity; however, further development
is needed for training with limited data.

C. GANS WITH LIMITED DATA
GAN models have shown excellent performance in image
generation tasks. However, they require a large amount of
training data, ranging from tens of thousands to hundreds of
thousands of elements, to avoid overfitting and ensure stable
learning. Traditional data augmentation techniques are not
suitable for GANs as they can cause information leakage to
the generator.

To address this, the consistency regularization GAN
(CRGAN) [24] was proposed, which applied a consistency
regularization term to the discriminator during learning,
thereby ensuring that it applied the same discrimination for
the images. This method was effective, stable, and required
less computation. The balanced consistency regularization
GAN (bCRGAN) [25] applied consistency regularization to

both real and generated images; however, the model still
suffered from reinforcement leakage.

StyleGAN2-ADA overcomes the limitations of existing
methods by training the discriminator and generator using
only augmented images, enabling the model to learn from
a small number of images while significantly improving the
image quality. FUNIT [26] and FastGAN [27] are two other
methods that can generate high-quality images with very
little data. Attention-based modules and a self-supervised
discriminator can mitigate mode collapse and improve the
robustness and generalization performance of the model.

ProjectedGAN [28] combines the FastGAN generator
structure with random projection and a multi-resolution
discriminator to more effectively utilize the deep layer
features in pre-trained models. By mixing feature maps with
channel and resolution, the model demonstrated superior
performance in terms of image quality and convergence speed
compared to other models.

The previously mentioned studies demonstrate notable
improvement in training GANs within data limitations.
However, their effectiveness has primarily been observed
in constrained domains like facial and landscape imagery,
making their direct application to complex, high-resolution
industrial datasets less straightforward. To overcome this
constraint, our study employs domain-specialized GANs,
expanding their utility into real-world industries. Our method
enables the generation of diverse defect data for training deep
learning-based inspection models, effectively addressing the
challenge of data scarcity.

III. PROPOSED METHOD
A. OVERVIEW
In this paper, we introduce a GAN-based defect image
augmentation method called the Synthesizing Normal-to-
Defect GAN (SyNDGAN) framework, designed to tackle
the challenge of imbalanced datasets. Our approach involves
synthesizing a wide range of realistic defect images from
normal data.

Overall architecture of the proposed synthesis network
is presented in Figure 2. Auto-encoder model is employed
to learn extracting and expressing defect features. During
training, a real defect image masked by a corresponding
segmentation map is fed to the model. The segmentation map
has RGB channels, and each defect class is assigned with a
specific color as shown in Figure 2 (a). By overlaying the
defect segmentation map onto a defect image, it would be
easier to synthesize defects for normal images during the
inference. When the overlaid image is fed as input, encoder
projects it into latent space. Then, defect image is synthesized
by decoder. Real samples are encoded into latent vectors
by the encoder E , which are then mapped onto the latent
space. By leveraging a pre-trained decoder D, the model
generates highly realistic images by decoding these latent
representations. This encoder-based approach enables the
synthesis of images that closely align with the distribution
of real samples, resulting in visually compelling outputs.
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FIGURE 2. Architecture of proposed defect synthesis network, i.e. SyNDGAN. During the training (blue solid arrows), our proposed method
synthesizes a defect image by inputting a defect sample and a corresponding segmentation map based on auto-encoder learning. In the
inference (red solid arrows), a defect image is synthesized by inputting a normal sample and a segmentation map that specifies the type and
location of the defect. Each defect class is assigned a specific color mask.

B. FRAMEWORK DETAILS
1) NETWORK ARCHITECTURE
Our framework consists of a generator and a discriminator.
The generator has an encoder-decoder architecture with
skip-connections [29], synthesizing defect data from normal
samples. Specifically, the SyNDGAN’s encoder network is
structured with one convolution layer and seven residual
blocks. On the other hand, the decoder is a pretrained
generator, strategically leveraging its high-quality generation
capabilities to effectively overcome data limitation chal-
lenges.

2) PRE-TRAINED GENERATOR
The backbone model is chosen to efficiently learn from
limited defect data. We utilize ProjectedGAN [28], a data-
efficient model capable of robust performance even with
a small dataset. After comparing two generators, Style-
GAN2 [20] and FastGAN [27] pre-trained on FFHQ [19]
dataset, we select the former for its superior performance. Our
model is trained using a pre-trained generator on the entire
dataset, including normal and defect data.

3) DEFECT SYNTHESIS
In the synthesis process shown in Figure 2 (b), the
input image is convolved once and passed through several
residual blocks. Each block includes a layer that performs
spatial-feature transform (SFT) [30] using the segmentation
probability map to modulate the spatial unit feature with
affine transformation. Within each layer, the segmentation
map is fed to two separate convolutional layers. The first
convolution layer includes a Sigmoid at the end and outputted
‘scaling’ (γ ). The other layer has a simple structure producing
‘shifting’ (β). The transformation is carried out by γ and β

in each feature map.

The upsampling is performed by a pre-trained decoder (G).
After the input image is encoded to latent space (W ),
the decoder generates an output image with an identical
resolution as the input image. Consequently, by utilizing a
segmentation map to assign weights to the defect area of
the input defect image, the model could focus on the defect
portion during the synthesis.

For the generated image, the discriminator utilizes Effi-
cientNet [31], a pre-trained feature network, to obtain features
for the synthesized image from the corresponding layer
at each resolution. It associates each discriminant with
the features of that layer and used a simple convolutional
architecture. All discriminators output predictions at the
same resolution and are summed together. Using these
pre-trained multi-resolution discriminators can improve per-
formance when extracting features from synthetic images,
and improves quality when only limited data are available.
We also apply differentiable random projection to perform
channel-specific and resolution-specific feature mixing. This
allows us to weaken the dominant features by applying
a discriminator that considers these multi-level resolution
features when the defect size is small, as in our dataset.
Consequently, the discriminator focuses equally on possible
subspaces, including local features, in terms of the semantics
of the deeper layers.

C. OBJECTIVE FUNCTION
1) PRE-TRAINED GENERATOR
The adversarial loss Ladv of the pretrained generator in this
paper is given as

Ladv =

∑
l=L

(
Ex∼pdata [logDl(Pl(x))]

+ Ez∼p(z)[log(1 − Dl(Pl(x̂)))]
)

(1)
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FIGURE 3. Actual product from the manufacturing industry which is used in this study. Four types of images under four
different illuminations are shown by enlarging the part that is in contact with the machining surface. They are supplied as
input to the defect detection model. ‘‘Carbide inserts’’ image is retrieved from R.D.BARRETT [32].

where Dl represents the discriminator and G, the generator.
x̂ = G(z) is an image generated from a latent vector
through G, and Pl is an EfficientNet model pre-trained on
ImageNet [33], which serves as a feature extractor. Dl and Pl
operate at multiple resolutions, and features are obtained for
each resolution from the four layers of the feature network.
Through this, various feature projections can be obtained
from each independent Dl .

2) SYNTHESIS NETWORK
The loss function Lu of the defect synthesis model proposed
here is as follows.

Lu = Lpix + Ladv + Llpips + Linv (2)

where Lpix represents the mean absolute error (MAE) [34],
and a pixel-based distance function is expressed as

Lpix = ||U (IID,M ) − ID||1 (3)

where U is the proposed model that simultaneously receives
a defect image ID, a mask M containing defect location, and
class information as input; it outputs a defect image synthesis
result and is trained to reduce the L1 distance to ID.
Ladv is an adversarial loss that allows a discriminator to

determine a defect image generated to perform realistic defect
image synthesis as an actual defect image. ÎD = U (IID,M ),
where Dl represents the discriminator and G, the generator.
In this synthesis network, D and G are pre-trained models.

Ladv =

∑
l=L

(
EID∼p(ID)[logDl(Pl(ID))]

+ EÎD∼p(ÎD)
[log(1 − Dl(Pl(ÎD)))]

)
(4)

where Llpips is a perceptual loss based on the LPIPS [35]
model used to prevent blurry image synthesis and perform

high-quality image synthesis. The backbone model uses the
VGG-16 [36] network and is expressed as

Llpips =

∑
i

||fi(ÎD) − fi(ID)||2 (5)

where, fi represents the feature map passing through each i-
th layer of the VGG-16 network and applies the L2 distance
function between the generated and ground truth images.

Linv = ||Enc(IÎD,M ) − Enc(IID,M )||2 (6)

Linv is a loss function proposed by In-Domain GAN
Inversion [21], used as a type of constraint function for an
encoder (Enc), and is expressed as follows.

By comparing the latent vectors of the real input image and
the generated image passed through the encoder, the latter
remains aligned within the latent space of the input image.
Domain knowledge guides the encoder’s training, resulting
in improved embedding of the encoder.

IV. IMPLEMENTATION DETAILS
A. EXPERIMENTAL SETUP
We train our framework using PyTorch [37] on a sin-
gle NVIDIA RTX A6000 GPU. Adam [38] optimizer is
employed with the following parameter settings: β1 = 0.9,
β2 = 0.999. The learning rates of the generator and
discriminator are set to 2∗10−4 and 1∗10−4 respectively. Pre-
training on the entire dataset takes about 1.5 days. Notably,
the ProjectedGAN framework, distinguished for its data
efficiency, enables training within a reasonable timeframe
while utilizing a reduced computational workload.

The resolution of the original insert image is
2440 × 2040. To ensure computational efficiency and
enable direct comparisons with other state-of-the-art syn-
thesis models, we conduct experiments at a resolution of
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1024×1024. We train the generators of StyleGAN2 (referred
to as Projected StyleGAN2) and FastGAN (referred to as
Projected FastGAN) and use them as decoders for the image-
to-image translation model to synthesize defect images.
To conduct the model’s performance comparison, we select
three image generation models (ADA, Projected StyleGAN2,
and Projected FastGAN) and five image translation methods
(ADA, Projected FastGAN, CycleGAN, StyleMapGAN,
SyNDGAN without a pretraining process).

B. DATASET
1) TRAINING DATA
In this paper, we acquire real product data from an
actually existing industrial corporation which manufactures
insert inspection equipment. Cemented carbide inserts are
consumables used in machining processes to cut metal parts,
and are utilized in various sectors ofmanufacturing, including
precision machining and polishing, as well as in industries
such as semiconductors, automobiles, medical care, and
aviation.

We follow the insert data acquisition process depicted
in Figure 3. We obtain data by magnifying the area in
contact with the machining surface, which is a significant
inspection area that influences the machining outcome and
product life. Furthermore, we capture images of the same
location under four different illumination conditions such
as bright field, dark field, coaxial, and backlight. After
classifying the acquired insert data, the obvious imbalance
is observed between the number of normal (3,575 samples)
and defect images (761 samples). The volume of defect data
is approximately 18% of the total. Compared to previous
studies [2], [3], [39], our research tackles more challenging
scenarios in terms of both data quantity and resolution.
This shortage and imbalance of defect data degrade the
performance of defect detection models that aim to improve
production efficiency by identifying defects in advance.

2) DEFECT SEGMENTATION MAP
The insert dataset used in this study contains fine defects, with
a minimum defect size of four pixels at a high resolution.
Moreover, automatic defect detection and detected shapes
are inconsistent across the four different illuminations during
the data acquisition. Therefore, determining a single and
consistent defect area requires a comprehensive evaluation
of all the four field images. Consequently, it is nontrivial
to randomly generate defect images by extracting random
vectors from the latent space.

To overcome the limitation, we employ an annotation
strategy in a semi-supervised manner. We mark the defect
area using an annotation tool based on the defect information
specified in the ground truth for the defect image. The
corresponding polygon is set to assign a defect label to
each defect area and secure the corresponding segmentation
map data. A total of 587 segmentation map annotation is
conducted through a final approval by the the manufacturer’s
professional inspector. Using the constructed data, we employ

FIGURE 4. Qualitative results for each defect class. (a) Bump,
(b) Chipping, and (c) Dust.

an image-to-image translation technique to synthesize defect
images for each field using both the normal image and the
defect segmentation map information.

C. EVALUATION METRICS
To evaluate the model’s performance in both fidelity and
diversity of the synthesized images, we employ the FID [40],
KID [41], and LPIPS [35] metrics. The FID exhibits bias
with test datasets under 20K due to its sensitivity to limited
samples and covariance calculations. On the other hand, the
KID, utilizing independent samples, is valuable for assess-
ing dissimilarity in such scenarios. To ensure objectivity,
we employ both FID and KID metrics in our evaluation.
Lower scores in both metrics indicate improved realism
and diversity in the generated images. Moreover, LPIPS
evaluates image similarity by calculating the feature space
distance using the pre-trained VGG network. A lower score
indicates higher perceptual alignment between synthesized
and reference images.

V. EXPERIMENTAL RESULTS
A. COMPARISON WITH ESTABLISHED MODELS
1) DEFECT SYNTHESIS
Figure 4 shows the defect image results synthesized through
our proposed method. When an image is given as an input
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FIGURE 5. Comparison of qualitative results of different methods: (a) Real defect, (b) ADA (Generation), (c) Projected StyleGAN2,
(d) Projected FastGAN, (e) SyNDGAN*, (f) CycleGAN, (g) ADA (Translation), and (h) SyNDGAN (Ours).

to the model in which a normal image and a mask including
defect information (position and defect type) are combined,
the corresponding defect image is output. Each defect class
is displayed in a different color, and it can be confirmed
that defects are generated in the area corresponding to the
mask. The synthesized defect image is similar to the actual
normal image except for the defect area, and through this, it is
confirmed that a realistic defect image can be synthesized.

Figure 5 provides a qualitative comparison of defect syn-
thesis results between the proposed model and other models.
In this study, we compare the results of two approaches:
generating defect images (b, c, and d) from random vectors
within the training distribution through transfer learning, and
translating normal images into defect images (e, f, g, and h).
Generation-based methodologies usually produce images
that closely resemble real-world defects. However, they often
represent limitations in expressing the full diversity of defect
representations. In the case of Projected FastGAN, it tends not
to generate certain class of defects. This implies a limitation

in that various defects cannot be generated when randomly
generated from the distribution of training data. When defect
synthesis is performed using SyNDGAN* that had not been
pre-trained, it could be seen that the generated defects had
unnatural textures and uniform colors.

Translation-based methodologies exhibit a greater diver-
sity in defect types and representations compared to
generation-based methodologies. However, the quality of
synthesis itself is somewhat inferior in translation-based
approaches. The defect image synthesized through our model
is realistic and shows that various defects can be synthesized
for each class. Table 1 shows the results of quantitative com-
parison of synthesized defect images. The proposed model
yields the lowest FID [40] compared to the other models [22],
[23], [28], [42] based on translation method. Although
KID [41] yields a lower value in the ADA [23] model, it can
be confirmed that the proposed technique performs better
when both evaluation indicators are considered. Generation-
based methodologies demonstrate a lower figure compared
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TABLE 1. Quantitative comparison of defect synthesis. * indicates
non-pretrained method.

FIGURE 6. Comparison of reconstructed defect images from different
models: (a) Real defect, (b) StyleMapGAN, (c) ADA, and
(d) SyNDGAN (Ours).

to translation-based methodologies. However, as previously
mentioned in Figure 5, when considering qualitative results,
they exhibit limited diversity in defect generation relative to
quality.

Figure 6 presents a qualitative comparison of the recon-
structed images for a sample of defects for each model.
For ADA, the defect representation produces images that
are similar to the actual defect, but blurred. The proposed
technique recovers the most realistic defect images among
the compared models. Furthermore, Table 2 indicates the
reconstruction performance of defect synthesis models using
LPIPS. We evaluate whether realistic reconstruction is
possible when normal and defect images are inputted along

TABLE 2. LPIPS evaluation results - real and reconstructed images of
different models.

TABLE 3. Comparison of the amount of data before and after
augmentation for each defect.

with a segmentation map devoid of defect information. Our
method has the lowest value, which means that the difference
between the actual image and the reconstructed image is
small and the encoder and decoder performance is superior.

Overall, our proposed model demonstrates superiority in
both quantitative and qualitative results compared to other
methods. Notably, our model excels in synthesizing fine
details such as chipping and dust.

2) CLASSIFICATION PERFORMANCE
Table 3 displays the number of items for the normal and defect
data for each class, both prior to and after the augmentation.
The number of normal samples is computed by taking the
average of the number of defective samples before and after
the augmentation. Each defective sample is augmented with
about 50% of the normal sample quantity. The dataset is
divided into training and testing sets in the ratio 8:2.

Table 4 quantitatively presents the classification perfor-
mance according to the augmentation method. The numbers
for the augmented data are: 140 bumps, 175 chippings,
and 116 dusts. The overall and defect-specific classification
accuracies are shown together; EfficientNet, a ResNet-based
methodology, is used as the classification model. This
model shows excellent performance in image classification
with fewer parameters than conventional models [29], [43],
and in this experiment, we apply the pre-trained model
to ImageNet [33]. Cutmix [44] is a technique that takes
Mixup [45] and Cutout [46] a step further by cutting and
gluing regions to fill-in parts of an image with patches
from other images. It is generally a high-performance
methodology; however, it does not generalize well when the
size of the defect is small relative to the resolution, as is
the case with our dataset. The application of Cutmix to the
training data resulted in a slight increase in total accuracy.

It is observed that Projected FastGAN and ADA,
which utilize augmented data through generation, result in
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TABLE 4. EfficientNet classification performance with different
augmentation techniques.

TABLE 5. Ablation study on the proposed method - LPIPS results for
normal and defect reconstruction.

significantly improved accuracy compared to Cutmix. It is
worth noting that while the generation-based models exhibit
lower values in the evaluation metrics presented in Table 1,
the proposed translation-based methodology demonstrates
superior classification performance. The analysis suggests
that the increased diversity of samples achieved through
the proposed methodology enhances the generalization
performance of the model.

B. ABLATION STUDY
We perform an ablation study to verify the effectiveness
of our proposed method by measuring the difference
between the real and reconstructed images. First, we conduct
qualitative analysis using LPIPS metric as presented in
Table 5. As shown in Table 5, without the pretraining stage,
the performance significantly drops for both normal and
defect images. Similarly, removing in-domain loss results
in performance degradation to generate defect images since

FIGURE 7. Comparison of reconstructed images of defects: (a) Real
defect, (b) w/o Pretrained, (c) w/o In-domain loss, (d) SyNDGAN (Ours).
For each restored defect image, a bounding box and an enlarged image of
the defective part are shown.

FIGURE 8. Composition of the MVTec AD dataset.

this loss function helps the encoder to map images to
latent vectors effectively. Additionally, auxiliary classifier
and single-scale training strategy for the discriminator
make a small contribution to the enhancement of defect
image generation. The proposed technique yields the best
quantitative results for defect reconstruction. Considering
that our model performs defect image synthesis, its efficacy
can be readily noticed. Lastly, we conduct qualitative analysis
as shown in Figure 7 based on reconstructed defect images.
In terms of the non-pretrained model, we can observe that
noticeable noise in the background and a lack of details of
defects in reconstructed images. Additionally, the removal of
the in-domain loss training strategy drops the performance
of generating realistic defect images.

C. ADDITIONAL ANALYSIS
To evaluate the generalization performance of the proposed
defect synthesis network, and to demonstrate its feasibility
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FIGURE 9. Qualitative results of defect synthesis using the proposed technique.

TABLE 6. LPIPS results of the proposed defect synthesis technique with
and without pre-training on MVTec AD dataset.

both qualitatively and quantitatively, we conduct additional
experiments on other dataset. We use the MVTec AD [47]
dataset as the training data, as it is widely adopted for defect
detection [48] in the field of anomaly detection.

1) MVTEC AD DATASET
The MVTec AD dataset comprises real-world data, wherein
the training set only includes normal images, while the testing
set contains both normal and defective images along with
segmentation map information as the ground truth for the
corresponding defects. As shown in Figure 8, the dataset
consists of 15 different classes, including 5 different textures
and 10 different objects, with a total of 73 different types
of defects. These defects encompass not only surface-level
defects, but also structural abnormalities, such as missing
or distorted parts. Anomaly detection [9] tasks differ from
general classification in that the model is not trained on
anomalous data. Therefore, we reconstruct the dataset by

integrating both normal and defective data. Our proposed
model is trained and then tested on 3,384 and 1,503 data
samples, respectively. The segmentation maps are used as the
ground truth for the defects.

2) QUANTITATIVE ANALYSIS
In quantitative analysis, we analyze the impact of pre-training
strategy by measuring the perceptual distance between
reconstructed images and their ground truth using LPIPS.
Table 6 demonstrates the LPIPS results of the reconstruction
images without pre-training for the proposed method. As pre-
sented in Table 6, the performance of pretrained model is
significantly improved in both normal and defect scenarios
compared to the from-scratch trained model. Interestingly,
the gap becomes larger in defect scenarios compared to
normal scenarios. These overall results highlight the critical
importance of utilizing pretrained models to capture fine
details and enhance performance.

3) QUALITATIVE ANALYSIS
We also conduct qualitative analysis as shown in Figure 9
and 10. In Figure 9, we present synthesized defect images
from our model. The defect results are synthesized from
the normal images and segmentation maps. It is noteworthy
that the segmentation map used in this experiment does
not include the defect class information and only provides
the location information. Our results demonstrate that the
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FIGURE 10. Defect synthesis results without pre-training.

synthesized defect images closely resemble the real defect
images. Specifically, the synthesized defect images exhibit
similar defects as those observed in the real defect images.

Furthermore, we present the defect synthesis results
obtained from the model without pre-training, as shown in
Figure 10. Overall, the unrealistic defect is shown with a
simple color change in one region of the segmentation map.
Also, critical noises are presented in the background of
the synthesized results. This reveals the performance drop
in the synthesis and reconstruction when no pre-training
is imparted. From our experiments, our results reveal that
conducting pre-training becomes more crucial in situations
where data availability is limited.

VI. CONCLUSION
The data imbalance problem is prevalent in themanufacturing
industry, leading to disparities between the normal and
defect samples. This study introduced a novel GAN-based
data augmentation framework to address this issue under
limited data situation. Utilizing pretrained strategy and defect
masks containing both defect types and spatial information,
SyNDGAN synthesizes diverse defect data from normal
samples. The applicability of our proposal is demonstrated
across various real-world industrial datasets. Furthermore,
our method’s effectiveness is confirmed by its demonstrable
improvement in the performance of defect classification
models. In future work, we plan to enhance controllability
and finer detail expression.
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