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ABSTRACT In recent years, radar-based human activity recognition has attracted the interest of a large
number of researchers. Many researchers have proposed various effective processing algorithms. However,
a good data processing algorithm not only has high recognition accuracy but also should be closer to the real
application environment, such as having better detection robustness and detection sensitivity. This paper
proposes a residual-bi-LSTM-attention hybrid multi-network, which has high recognition accuracy and the
advantages of strong robustness and detection sensitivity. First, we collected data on five different activities
of 13 volunteers in a laboratory setting. Then, after processing the collected data through the proposed
algorithm, the micro-Doppler characteristics of each action are obtained. Finally, these desired features are
fed into the proposed network for classification and recognition. Experimental results confirm the efficiency

and accuracy of the proposed algorithm.

INDEX TERMS FMCW radar, data processing, deep learning, micro-Doppler, neural networks.

I. INTRODUCTION

Worldwide, the population is gradually aging, and the
phenomenon of older people living alone is becoming
increasingly evident. Research shows that for people 65 and
older, the incidence of fall accidents increases with age [1].
Falls can cause serious health risks for seniors, ranging
from bleeding and fractures to death [2]. Moreover, it also
leads to increased time and economic costs [3]. Severe fall
consequences are usually caused by not being detected in
time [4]. How to effectively detect fall accidents and take
timely and effective measures becomes the key [5]. Human
activity recognition (HAR) using sensor technology can solve
this one problem. Therefore, it is crucial to develop an
accurate, easy-to-use, and reliable fall detection technology.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chengpeng Hao

In previous work, researchers have investigated the
identification and classification of human activity [6], [7].
Most of these technologies are based on computer vision
solutions [8]. Zerrouki et al. investigated the problem of
HAR based on body shape changes using a camera sensor
solution [9]. In [10], Khan et al. considered the better
effect of histogram of oriented gradient (HOG) features
for recognition in low-noise environments. In high-noise
environments, deep convolutional neural networks (DCNN)
have more advantages. They used a method combining HOG
and DCNN to identify human activities. Zhang et al. proposed
using semantics-guided neural network (SGN) for activity
recognition based on human skeleton [11]. They modeled
each joint of the human body and analyzed the correlation
between the joint points of the human body in the same frame
of data. This end-to-end SGN has improved the performance
of graph convolutional networks (GCN) and convolutional
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neural networks (CNN). The experimental results show that
it achieves better results in gesture recognition. However,
when using this solution for elderly fall detection, users
are concerned about their privacy being compromised. The
solution does not guarantee its operating performance in
poor lighting conditions. In order to solve this problem, non-
invasive sensor solutions were considered by Researchers.
Researchers used wearable sensors for HAR, such as
acceleration, gyroscopes, and pressure sensors [12], [13].
In [14], Xugang et al. investigated surface electromyography
(sEMG) features for pattern recognition and classification.
These sensors can detect the signals generated during human
activity accurately. The method has a very high recognition
accuracy by combining these features with support vector
machines. When a person is active, these sensors record
various parameters of human movement. Moreover, the
posture of the human body can be accurately detected and
recognized [15], [16]. In [17], Mim et al. considered the
characteristics of both temporal and spatial information of
the feature, and proposed a model of convolutional block
attention module (CBAM) based on gated recurrent unit
(GRU). Zhang et al. also use accelerometer sensors to
complete HAR [18]. Different from [17] and [18] uses
acceleration sensors with three channels of x, y, and z to
collect data, and then performs recognition based on the
attention mechanism and CNN recognition network. Finally,
the recognition accuracy rate of 96.4% is achieved, which
solves the problem that the case-based method is difficult
to recognize normally in the real environment. In [19],
Khatun et al. proposed to combine CNN and long short-term
memory network (LSTM) based on the self-attention mech-
anism. Multiple sets of data verified the feasibility of the
model in HAR. However, it does not detect whether an elderly
person has fallen when he or she is not wearing a sensor. This
solution is not suitable as a full-time fall monitoring solution
for the elderly. In addition, Chu et al. also conducted research
on HAR using wifi channel state information (CSI) [20]. This
is a contactless and non-intrusive solution for HAR. But this
method can only have a good detection effect on the signal
transmission channel, which makes the system less robust.
With the continuous development of radar technology,
it has been widely used in target locating [21], [22]. In [23],
Guo et al. proposed a method based on tensor decomposition
for localization of traffic targets. At the same time, radar
non-contact monitoring methods are being considered to be
used in smart healthcare by researchers [24]. In [25], Qi et al.
proposed a HAR algorithm based on ultra-wideband (UWB)
radar. The algorithm first classifies the targets roughly
based on their radial features. Then, power spectrum and
micro-Doppler characteristics are extracted to refine the HAR
further. Finally, these two features are fed into CNN for HAR.
The final recognition accuracy can reach 98%. However,
the UWB radar is susceptible to external interference.
In order to reduce the impact of the radar regime, frequency-
modulated continuous wave (FMCW) millimeter wave radar
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is of interest to researchers due to its high accuracy, low
power consumption, and non-invasiveness [26], [27]. In [27],
Ahmed et al. used FMCW radar to collect data on seven
different activities. The algorithm uses distance variation as a
feature, which is generated during human activity. Then, this
feature is fed into a CNN and performs softmax classification.
Since the algorithm only considers the distance feature,
the final recognition accuracy is 91%. However, during the
motion, the swing of the arms affects the distance feature.
In order to fully show the characteristics of the target during
its movement, micro-Doppler features are considered for use
in HAR [28]. In [29], Kim et al. propose the application
of combining micro-Doppler features with DCNN in human
detection and classification. The results show that the
algorithm’s accuracy for HAR is 90.9%. In [30], Helen et al.
started from the RGB three-channel data of Doppler spectrum
characteristics and sent them into the network in three
data channels for identification. However, this parallel input
architecture will make the network more complex and
will lead to longer network training time. Aman et al.
proposed a recognition algorithm based on a combination
of micro-Doppler features and a bi-directional long short-
term memory network (Bi-LSTM) [31]. Six movements of
15 participants were used as experimental radar data to
validate the proposed method. The average accuracy of the
experiments was above 90%. Most recognition work is done
using neural networks [32], [33]. In [34], Jiang et al. used
the DenseNet neural network to identify human activities
in order to extract as much effective feature information as
possible from the deep network. Different from the above
studies that use Doppler spectrum features, [34] and [35] use
the point cloud information of the target as input features.
In [35], Yu et al. proposed a dual-view neural network,
which comprehensively analyzes from different observation
perspectives, so as to judge the activity of the target. Although
this method can display the target’s activity changes in the
form of a point cloud, a more complex antenna is required
to obtain the three-dimensional information of the target.
The powerful performance of these neural networks has been
demonstrated in various fields. Hence, some researchers have
tried to optimize the network structure to improve recognition
accuracy. Huan et al. proposed an attention-based network for
feature recognition [36]. With optimization from a feature
perspective, the network part of the optimization can be
expanded. In [37], Wang et al. introduced an attention-based
vision transformer for HAR by millimeter wave radar. They
proposed a vision transformer network with slicing, allowing
the system to focus on classifying effective features.

Inspired by the research described above, a good feature
extraction algorithm can reduce the pressure of subsequent
feature recognition work. At the same time, it is also very
important to have a good feature recognition network.

This paper proposes a data processing algorithm, including
a data preprocessing module and a recognition network
module. In the preprocessing module of the proposed
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algorithm, the data adjustment module and distance window
interception are introduced. By preprocessing the data,
it makes the characteristics of the target movement more
obvious, and the detection sensitivity is better, which is closer
to the application scenario of the algorithm. In the recognition
network part, a residual-Bi-LSTM hybrid multi-network
structure based on the attention mechanism is proposed. The
network structure combines the advantages of a residual
network, long short-term memory network (LSTM), and
attention mechanism. For the recognition work, a data-
driven approach is used to conduct experiments. The data
for the datasets used in the experiments were collected in
a laboratory environment. The experimental results show
that for the same dataset, the proposed algorithm can
better describe the data characteristics, which have better
recognition accuracy and better performance than traditional
data processing methods.

The main work and contributions of this paper are

summarized as follows:

(1) A data processing algorithm based on micro-Doppler
features is proposed. The algorithm includes a data
preprocessing module and a recognition network
module.

(2) The data in the dataset used in this article was collected
in a laboratory environment. These data are used for
subsequent feature extraction and training for different
recognition networks.

(3) The algorithm proposed in this paper is verified
experimentally, and the experimental results show
that the system has certain stability and robustness.

The remaining parts are organized in the following manner.

The data model is formulated and analyzed in Section II.
Section III introduces a data processing algorithm for HAR.
The various parts of the identification system are described in
detail. Data acquisition and experimental setup are described
in section IV. The experimental results and discussion are
placed in Section V. In section VI, we conclude the paper.

Il. DATA MODEL

Our follow-up work is based on Texas Instruments’
AWR 1642 single-chip FMCW radar system. As shown in
Figure 1, the system has two transmitting antennas and four
receiving antennas. The compact system can measure the
distance, Doppler, and angle information.

Receving Elements

Transmitting Elements

FIGURE 1. Texas Instruments’ single-chip FMCW radar system AWR 1642.
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FIGURE 2. The structure diagram of the FMCW radar system.

The structure diagram of the FMCW radar system is shown
in Figure 2. The system consists of a waveform generator
(WG), power divider (PD), transmitting antenna (TX), low
noise amplifier (LNA), receiving antenna (RX), mixer, analog
to digital converter (ADC), and digital signal processor
(DSP). The WG generates the FMCW radar signal, which
varies linearly with time. The data model of the transmit
signal can be expressed as:

S(t) — ef27T (fcl+0.5/}¢;l2) (1)

where f, is the center frequency of the baseband signal, u is
the slope of the FMCW wave. For the cases where there are K
targets present, the received signal can be expressed as follow:

K
r(t) =Y ys(t — 1) )
j=1
where jGj = 1,2,3,...,K) is the target index, y; is the
reflection coefficient of the j-th target, and t; is the time delay
of the j-th target, which is closely related to the target range
information. The relationship between them is:
_ 2

G== 3)

where ¢ is the speed of light and d; is the range of the
Jj-th target. For HAR, the angle information is not important.
Thus, the delay caused by the internal array elements of the
transmitter and receiver units is ignored. Only the effect of
the target range on the delay is considered. After the received
data passes through the LNA, it is multiplied with the transmit
signal for mixing. The signal is then passed through low-pass
filtering and is sampled by ADC. After that, the signal can be
expressed as:

K 2f»
x[n] = x[nTs] = D yjexp [jZn IvjnTs + T‘dj” 4

j=1
2u 2f,
V= Csdj+70vj (5)

where V; is induced with the micro-movement of the target
at moment j, and v; represents the relative velocity of the j-th
target and T is the ADC sampling period. Finally, the single
baseband chirp signal is modeled n times.
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FIGURE 3. Micro-Doppler signal preprocessing framework.

1ll. PROPOSED DATA PROCESSING ALGORITHM
A. DATA ADJUSTMENT
In this section, the micro-Doppler features of the data are first
extracted using data and processing algorithms. Then, it is
fed into the proposed network for training. Figure 3 shows
the preprocessing framework of the complete algorithm. The
data features are extracted from such a data framework.
Users want the system to respond as quickly as possible
when a fall accident occurs. However, some current algorithm
research blindly pursues the recognition accuracy of the algo-
rithm without considering the application of the algorithm in
the natural environment. Therefore, the first step is to adjust
the radar data after acquiring the radar data.

samples

v array
elements

« >
3 chirps

chirp 1

FIGURE 4. 3D data block format.

Note that the data sampled by the ADC is transferred to
the computer via the serial data port. The initial data transfer
to the computer does not facilitate our data processing.
Firstly, the data is rearranged into a 3D data block. Figure 4
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shows its format, where each column corresponds to all
samples in a chirp signal. For each frame of data, different
columns represent different chirps, and the target data is
sampled multiple times. Data received by different receive
array elements are stored on different pages of the data block.
The data in each data cell of this data block is the intermediate
frequency (IF) signal after mixing and filtering. Then, the data
from different array elements are balanced. The advantage is
that interest signals are strengthened. Moreover, signals that
are not of interest are weakened. The specific step is to sum
the data with the same row vertical coordinates but different
pages in a 3D data block and then average.

In order to make the proposed algorithm closer to the actual
application scene, the algorithm takes ten frames of data each
time for processing, and the action duration is 1 second. When
processing the next data, if the data is fetched following the
end of the previous data, the data will be artificially cut off.
If the old man has a fall accident when the data is cut off,
the algorithm will fail. In order to ensure that the algorithm
can work normally at all times, the starting point of data
processing at the next moment is the middle moment of data
processing at the current moment. In this way, a piece of
data is detected and processed multiple times, which can
effectively avoid detection blind spots.

B. FEATURE EXTRACTION

To obtain target range information, in the frequency domain,
we can perform the Fourier transform of Equation 4 to obtain
the baseband signal, which can be expressed as:

N-1
X[kl = > x[nlexp (—j27r ]%k) 6)

n=0

where k(k = 0,1,2,...,K — 1) denotes the frequency of
the index. The spectrogram can be obtained by acquiring
the baseband signal in the frequency domain. Since the
transformed frequency information is proportional to the
distance of the target, the result in the frequency domain
can be considered as the result of the distance dimension.
The spectrogram of the collected baseband signal over the

static target interference

Range(m)
Range(m)

Time(sec)

(@ (b)

Time(sec)

FIGURE 5. Range changing with time. (a) Processed without MTI.
(b) Processed with MTI.
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FIGURE 6. Proposed RBLA network structure.

N, interval can be expressed as:

X =[x, x@, ..., x| )

where X = [x0(0), XO(1), ..., XK — 1)]" denotes the
frequency domain of the baseband signal as a vector and
i denotes the index of the interval.

However, in reality, much static target interference will
affect the results. Therefore, the moving target indication
(MTTI) algorithm is used to indicate dynamic target [38]. The
MTI algorithm subtracts the previous moment’s signal from
the original signal at different distance units respectively. The
enhanced micro-Doppler feature signals were subsequently
obtained. In this paper, it can be expressed as:

Xrr_mri(m, n) = Xgr(m, n) — Xgr(m,n —1)  (8)

where m is the index of the distance dimension, z is the index
of the slow time dimension. The variation in the target range
over time is shown in Figure 5. Figure 5(a) and Figure 5(b)
show the results without MTI and with MTI, respectively.

The horizontal lines in Figure 5(a) are static target
interference, which MTI can eliminate. Figure 5(b) shows the
display results. For the HAR and fall detection system, the
signal of interest occurs only in the range of human motion.
Therefore, the range window interception (RWI) cropped out
the signal that exceeds the range.

After that, the target’s frequency domain characteristics
can be analyzed using Fourier transform. However, this
method does not apply to non-stationary signals that change
over time. This paper uses short-time Fourier transform
(STFT) to extract the combined time and frequency domain
micro-Doppler signals after RWI. STFT can be specifically
described as:

STFT(t, w) = /

—00

e ¢]

s(1)g*(t — e 7T dt 9)

where g(7) is a window function that is used to select
signals within a particular window area. After STFT, the
characteristic pattern of the micro-Doppler spectrogram can
be obtained during collection.

Figure 7 shows the micro-Doppler spectrum feature maps
of five kinds of motion data, which are obtained after the
above data preprocessing algorithm. The duration of these
feature example images shown is very short, only 1 second.
When intercepting data, the features in the dataset are not
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FIGURE 7. Five examples of motion signatures after micro-Doppler signal
processing (a) Walking. (b) Standing still. (c) Standing up. (d) Sitting
down. (e) Falling down.

always so perfect and easy to distinguish. This is just an
example of processing some of the features.

C. RESIDUAL-BI-LSTM-ATTENTION HYBRID
MULTI-NETWORK

In the study of HAR, the micro-Doppler feature is the
preferred feature by most researchers. In some studies,
researchers extended the time window to 4 seconds or longer
in order to obtain micro-Doppler features that are more easily
distinguished. This will be reflected in the actual situation
that when the old man falls, the fall cannot be detected
immediately, and it may be detected after waiting for a period
of time. However, in reality, we hope that the system can
detect it immediately when a fall occurs.

This research fully considers the real-time performance
of the system and ensures a relatively good recognition
accuracy. The advantages of the three networks are combined
to form a new network. In this paper, we proposed a Residual-
Bi-LSTM-Attention Hybrid Multi-Network (RBLA) to class
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FIGURE 8. The architecture of ResNet-18.

different kinds of postures. The structure of the RBLA
network is shown in Figure 6. The residual network extracts
effective features from micro-Doppler spectral features
through its special feedback link. The obtained data features
are flattened through the flattened layer. Then, the flattened
features are fed into the Bi-LSTM network in batches to
obtain the correlation features between before and after the
time window. Finally, the weight assignment mechanism in
the attention mechanism is exploited to highlight features in
the hidden layers of Bi-LSTM.

In previous studies, the excellent performance of CNN in
HAR has been verified. In the network of this study, CNN
was not simply used, but a residual module was used instead.
The CNN network can extract some features of the data, but
it can’t do anything about some deep features. The residual
network is optimized on the basis of CNN, which retains
the advantages of the CNN network. For the insufficiency of
CNN in extracting deep data features, the residual module
adds a feedback link, which effectively solves this problem.

) N I,

v
weight layer

A 4 X

F(x)

weight layer

H(x)=F(x)+x

FIGURE 9. The structure of the residual block.

Residual network was proposed by He in 2016 [39].
Generally, deeper layers of networks will have powerful
performance and can extract deeper features. Nevertheless,
when the number of network layers rises to a certain level,
the performance of neural networks will not improve through
increasing layers of the network. On the contrary, it may
cause attenuation. In order to solve this problem, the residual
block structure is proposed to increase the layers. At the same
time, hidden information can be learned. According to the
residual block, gradient disappearance, gradient explosion,
and network generalization can be avoided. Figure 9 shows
the structure of the residual block. Residual block increases a
shortcut connection compared to the general neural network,
weakening the connection between each layer to learn more
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TABLE 1. Parameters of ResNet-18 network.

Residual convolution module
Conv 1

Filter configurations
7x 7,64, stride =2
1x 1, 64, stride = 1
3x 3, 64, stride = 1

3x 3,128, stride =1

3x 3,128, stride =1
3x 3,256, stride =1

3x 3,256, stride = 1

3x 3,512, stride =1

3x3,512, stride = 1

Residual Block 1

Residual Block 2

Residual Block 3

Residual Block 4

characteristics in deeper layers. Two paths can lead the data
to deeper layers. One needs to go through each layer of
the network. The other flows to the deep network via the
shortcut connection. In addition, the performance of Residual
network-18 (ResNet-18) surpassed the human level for the
first time in ImageNet’s image classification.

ResNet-18 consists of 17 convolutional layers (Conv) and
a fully connected layer (Fc) not used in all 17 convolutional
layers. In order to reduce network parameters, global average
pooling was introduced. The architecture of ResNet-18 is
shown in Figure 8, where Conv represents the residual
convolution module, and the specific information on the
parameters of each layer in the module structure is given
in TABLE 1. Conv 1 has only one convolutional layer,
while the remaining four convolutional modules contain
two convolutional operations. The 17 Conv consist of one
Conv 1 unit, two Conv 2 units, two Conv 3 units, two
Conv 4 units, and two Conv 5 units. The structure of
this residual network can extract deep data features, while
ensuring the real-time requirements of the system at the same
time.

Bi-LSTM is a special kind of LSTM. And understanding
LSTM needs to be traced back to the recurrent neural network
(RNN) because LSTM is extended from RNN. Because of the
particular structural unit of the RNN, it can analyze and model
the dynamic behavior of the data sequence. The LSTM’s
structural unit controls the flow and status of current data
through three different gates. A gate is used to determine
whether the current state of the data should be forgotten.
The next gate is used to control whether the data should
be read. The last gate is used to control whether the status
should be updated. LSTM only extracts data features from
a single direction, while Bi-LSTM processes data from both
directions in order to obtain more hidden features.

Figure 10 shows the structure of the LSTM operation unit.
When the input time is the data sequence x at ¢, x; is jointly
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FIGURE 10. The network structure of the LSTM operation unit.

affected by the parameters ¢, and h;_1, where ¢ represents
the moment of the data. ¢ and /& are two transmission state
parameters of LSTM, representing the memory unit and
hidden unit of LSTM, respectively. The parameters c¢; and
h; generated at the current ¢ time will affect the output at
t + 1 time.

Compared to the LSTM algorithm, Bi-LSTM operates
on sequences in the forward and backward directions.
According to the past state, the forward LSTM operation
determines whether the current data is saved or forgotten.
The backward LSTM operation judges the current data by
observing the data of the future state. Finally, the features
extracted from both directions are merged to obtain the final
feature output. Figure 11 shows the structural model of Bi-
LSTM. It is composed of multiple LSTM structural units and
extracts features from the data from two directions of the
data sequence. Then, the features extracted from these two
directions are combined and output as a first-level feature,
shown as hy, hy, and h3 in Figure 11.

A

hLl hLZ hLS
| | |
T

|x1|'~ |xH|x,| ...|xT|

v
h : h : h '
f—[LSJMR i<J2 LSTM, }4—[‘”‘ LSIM, i<7

FIGURE 11. The network structure of Bi-LSTM.
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The attention mechanism can adjust the weight of its
features according to the different characteristics of the
input data. In the proposed network, after processing the
data through the previous residual network and Bi-LSTM,
multiple segmentation features are obtained. The input of
the attention mechanism network is such features as iy, k2,
and so on obtained by Bi-LSTM. After weighing the input
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FIGURE 12. The network structure of the attention mechanism module.

parameters, the weight of each part is obtained to highlight
the characteristics of important parts. After weighing the
input parameters, the weight of each part is obtained to
highlight the characteristics of important parts. Then, weigh
and sum the data features of each part to obtain the final
data features. Figure 12 shows the network structure of the
attention mechanism module, where a7; represents the i — th
input feature value h; corresponding to the time 7'.

IV. DATA ACQUISITION AND EXPERIMENTAL SETUP

A. EXPERIMENTAL DATA ACQUISITION

This data was collected in a laboratory environment with
a Texas Instruments AWR 1642. Its specific configuration
parameters are shown in Table 2. Because the angle has little
impact on human activities, this article adopts the mode of
one transmitting antenna and four receiving antennas. This
greatly reduces the data size of human activities. The radar

Volunteer

FIGURE 13. Laboratory collection environment.

TABLE 2. The configuration parameters of the radar evaluation.

Parameter name Value
Carrier Frequency 77GHz
Frequency Slope 53GHz/s
Sample Rate 2.5M
Period of data per frame 100ms
ADC Sample 128
Chirp Loops per frame 255
Number of frames 100
Number of transmit channels 1
Number of receiving channels 4
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TABLE 3. Volunteer Details.

Volunteers Gender Age(years) Weight(kg) | Height(m) | BMI(kg/ m2)
1 M 25 55 1.63 20.70
2 M 24 75 1.77 23.94
3 M 27 70 1.70 24.22
4 F 26 45 1.70 15.57
5 F 25 67 1.60 26.17
6 M 25 75 1.72 25.35
7 M 25 70 1.70 24.22
8 F 25 56 1.67 20.08
9 M 26 59 1.73 19.71
10 M 31 71 1.73 23.72
11 M 25 62 1.66 22.50
12 M 25 66 1.72 22.31
13 M 23 70 1.77 22.34
Total M/F (10/3) | 25.54+1.82 | 64.69+8.51 | 1.7040.05 22.374+2.72

is placed on a tripod with a vertical distance of 1.2 meters
from the ground, and the side with the radar antenna is placed
facing the volunteers. Volunteers completed various actions
at a horizontal distance of 2 meters from the radar. Figure 13
shows the laboratory collection environment.

Five common postures in daily life are collected, including
walking, standing still, standing up, sitting down, and falling.
Thirteen volunteers were selected to generate experimental
data, including ten males and three females. Table 3 shows
the details of the volunteers. They are 23 to 31 years old,
weigh 45 to 75 kilograms, and are 1.60 to 1.77 meters
tall. For each type of motion data, volunteers were repeated
six times. Taking into account various human movement
patterns, walking and falling motions were captured in two
cases: motion toward the radar and motion away from the
radar, respectively. During repeated walks and falls six times,
the activities of the first three times moved towards the radar,
and the last three times were away from the radar. Altogether,
384 data on human activity can be obtained.

B. DATASET
In this paper, the acquisition time of each action is 10 seconds.
When the proposed algorithm processes the data, the data
length of each feature window is 1 second. It is necessary
to truncate the collected long data, which is more in line
with the processing of data in real application environments.
To this end, the collected 384 sets of data were processed
according to the proposed algorithm and then truncated.
Then, according to the difference of each micro-Doppler
characteristic segment picture, manually select its motion
segment as the data of the dataset. In the process of collecting
motion data from volunteers, they are not always in motion
during the whole process. For example, a fall accident occurs
only for a moment, and other moments may be static. In the
end, a data set corresponding to the five actions of walking,
standing, standing, sitting, and falling was obtained. In the
dataset, the number of each action is shown in Table 4.

This is also consistent with the actual situation. Because
each group of actions has idle time and the target is still,
it has the largest amount of data in the dataset. In the process
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TABLE 4. Detail quantitative information of six different postures.

Postures Number of samples
‘Walking 808
Standing still 5868
Standing up 366
Sitting down 349
Falling 289
Total 7680

of motion, the duration of walking is the longest, so more
data will be generated in the same time window. The action
sequence of standing up and sitting down is exactly the
opposite, so the amount of data is roughly the same. The fall
event always happens in an instant, which also leads to the
least amount of data among the five actions.

The five types of human activities of 13 volunteers
recorded by the self-built dataset: (1) walking, (2) standing
still, (3) standing up, (4) sitting down, (5) falling down
are shown in Figure 14. Compared to the dataset from the
University of Glasgow, UK [40]. Their dataset records
six kinds of older people’s daily activities: walking, sitting
down, standing up, picking up an object, drinking water,
and falling. They used the FMCW radar to acquire data at
an operating frequency of 5.8GHz with a chirp bandwidth
of 400MHz. A total of 1589 micro-Doppler signature samples
were generated. The duration of each of their features is
10 seconds, and we further divide the dataset on the basis of
10 seconds. The data set used in this article has a larger data
set, and the time window of the data is divided into 1 second,
which is more in line with the real situation.

f L &KX

(1) walking (2) standing still (3) standing up (4) sitting down (5) falling

FIGURE 14. The five types of human activities.
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V. RESULT AND DISCUSSION

In this section, the control variable method will be used to
conduct comparative experiments on the optimized modules
to compare the recognition effects of each module in different
networks. The first subsection V-A introduces the evaluation
indicators of the detection results. The following subsections
are control experiments for adjusting the optimization mod-
ules. Among them, subsection V-C and subsection V-D are
adjusted on the basis of subsection V-B, and subsection V-E
is the overall control experiment of the proposed algorithm.
It is worth noting that the results presented in this section are
obtained after repeated verification of the data in the dataset.
Before identifying the network, we divided the data set into
ten equal parts according to the activity labels. Then, these ten
pieces of data are combined into training sets and data sets in
turn to train and verify the network. The results shown are the
final results after averaging these multiple experiments.

A. EVALUATION METRICS

To evaluate the performance of different methods for HAR,
four metrics are used in this paper to evaluate system
performance: accuracy, precision, recall, and F1-score. These
metrics are respectively defined as:

TP + TN
Accuracy = (10)
TP+ TN + FP + FN
.. P
Precision = ———— (11
TP + FP
TP
Recall = ————— (12)
TP + FN
2(Precison x Recall)
F1-Score = (13)

Precison + Recall

where TP is truly positive, which means correct classification.
TN is truly negative, which means correct rejection. And FP
is the abbreviation of false positive, which means false alarm.
FN is the abbreviation of false negative, which means missing
detection.

B. GENERAL DATA PROCESSING

In this subsection, the data are used for various machine learn-
ing methods to recognize human activities after general data
processing as a benchmark for comparison. The recognition
accuracy of the general algorithm is shown in Figure 15. In the
basic comparison experiment, the algorithm RBLA proposed
in this article has the best recognition accuracy rate of 95.79%
in all machine learning. LSTM has the lowest recognition
accuracy. Although the recognition accuracy of LSTM is
the worst among the five machine learning algorithms, its
accuracy can still reach 90.18%, which means that it can
correctly recognize most poses. The network combined with
CNN and LSTM ranked second with 92.98% recognition
performance, followed by ResNet-18 and CNN.

Table 5 shows the scores of the four evaluation indicators,
including accuracy, precision, recall, and F1-score. These
four evaluation indicators are used to comprehensively
evaluate the performance of the network. Generally, higher
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FIGURE 15. Recognition accuracy of different machine learning methods
after general data processing.

TABLE 5. Results of different metrics of different machine learning
methods after general data processing.

Algorithm Accuracy | Precision | Recall | F1-Score
LSTM 90.18% 0.74 0.76 0.74
CNN 91.43% 0.88 0.79 0.77

ResNet-18 92.63% 0.83 0.81 0.82

CNN+LSTM 92.98% 0.84 0.82 0.83
RBLA 95.79% 0.90 0.89 0.89

100.00%

99.00% 08.02% 07.92% 98.13%

98.00% 97.35%

2 97.00%
5 96.00%
d:; P00% gy 85%
% 94.00%
> 93.00%

92.00%

91.00%

90.00%

LSTM ResNet-18 CNN+LSTM  RBLA

Machine Learning Algorithms

FIGURE 16. Recognition accuracy of different machine learning methods
after data adjustment.

accuracy algorithms have higher precision, recall, and
F1-score.

C. DATA ADJUSTMENT

After data adjustment, the performance of the five selected
machine learning networks has been significantly improved.
Among them, RBLA has the best accuracy rate of 98.13%,
the combined network of CNN and LSTM is 97.92%,
and the LSTM with the worst recognition accuracy rate
is 93.85%. Figure 16 shows the recognition accuracy of
different machine learning algorithms after data adjustment.
Table 6 shows specific scores for each machine learning
algorithm.

It can be seen from Table 6 that after data manipulation,
the values of the four evaluation indicators have all increased.
Compared with the recognition accuracy in Table 5. The
improvement effect of CNN is the most significant, with
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TABLE 6. Results of different metrics of different machine learning
methods after data adjustment.

Algorithm Accuracy | Precision | Recall | F1-Score
LSTM 93.85% 0.58 0.43 0.41
CNN 97.35% 0.84 0.84 0.84
ResNet-18 98.02% 0.87 0.90 0.88
CNN+LSTM 97.92% 0.88 0.85 0.86
RBLA 98.13% 0.90 0.93 0.91

an improvement of 5.92%. Secondly, ResNet-18 has an
improvement of 5.39%, followed by the network combined
with CNN and LSTM and LSTM, which have an improve-
ment of 4.93% and 3.68%, respectively. After adjusting the
data, the characteristics of each action data set are more clear.
Experimental results show that data adjustment has a positive
impact on HAR.

D. RANGE WINDOW INTERCEPTION

Figure17 shows the accuracy of different methods after range
window interception. It can be seen that RBLA has the
best recognition accuracy, reaching 99.06%. The recognition
effect of LSTM is the lowest, which is 94.15%. CNN,
ResNet-18, and CNN combined with LSTM have similar
performance. After replacing the data adjustment step with
a distance window interception, there is only a small fraction
of the improvement. However, it can still be seen from Table 7
that the distance window operation improves the network
performance.

100.00%
99.00%

99.06%

0 98.06%

98.00% 97.62% 9793% .
&
£ 97.00%
8
5 96.00%
(=¥
Z 95.00%
8 Y 94.15%
g 94.00%
<

93.00%

92.00%

91.00%

LSTM ResNet-18 CNN+LSTM ~ RBLA

Machmc Learning Algorithms

FIGURE 17. Recognition accuracy of different machine learning methods
after range window interception.

As can be seen from Table 7, CNN, ResNet-18, CNN, and
LSTM combined network performance recognition accuracy
have similar values. However, the other three evaluation
indicators are different. The remaining three parameters of
CNN are relatively stable, but overall, its performance is
worse than that of ResNet-18 and CNN combined with
LSTM. Compared with precision and fl-score, the Recall
of ResNet-18 has a larger value, indicating that the network
is more sensitive and more suitable for detection tasks that
require high security. The precision, recall, and fl-score
parameters of the network combined with CNN and LSTM
are close, indicating that it has relatively stable performance.
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TABLE 7. Results of different metrics of different machine learning
methods after range window interception.

Algorithm Accuracy | Precision | Recall | F1-Score
LSTM 94.15% 0.72 0.43 0.41
CNN 97.62% 0.86 0.86 0.86

ResNet-18 97.93% 0.86 0.90 0.88

CNN+LSTM 98.06% 0.89 0.88 0.89
RBLA 99.06% 0.94 0.98 0.96

100.00% 99:86%

98.75%

99.00% o

98.04% 98.37%
98.00%
ED 0,
£ 97.00%
5 96.00%
(=9
§‘95.00% 94.29%
8 94.00%
<

93.00%

92.00%

91.00%

LSTM ResNet-18 CNN+LSTM ~ RBLA

Machine Learning Algorithms

FIGURE 18. Recognition accuracy of different machine learning methods
after using proposed data processing algorithm.

TABLE 8. Results of different metrics of different machine learning
methods after using proposed data processing algorithm.

Algorithm Accuracy | Precision | Recall | F1-Score
LSTM 94.29% 0.75 0.44 0.43
CNN 98.04% 0.88 0.89 0.88

ResNet-18 98.37% 0.91 0.92 0.92

CNN+LSTM 98.75% 0.93 0.89 0.91
RBLA 99.86% 0.99 0.99 0.99

E. PROPOSED DATA PROCESSING ALGORITHM

After putting the data adjustment module and the range
window interception module back into the overall algorithm
framework, the data is processed to obtain the final human
activities features. Five machine-learning algorithms were
used to identify these extracted features. Figure 18 shows
the recognition accuracy of different machine learning
algorithms. RBLA has the highest recognition accuracy,
reaching 99.86%, which is 4.07% higher than the accuracy
after conventional data adjustment in Table 5. Because the
initial recognition accuracy of the network is relatively high,
the improvement in network performance is not obvious.
The second best method is to use a network that combines
CNN and LSTM, which improves by 5.77%. Among the
five recognition algorithms, LSTM has the worst recognition
accuracy. However, after the optimization of the two modules,
some performance is still improved, with a high recognition
accuracy of 94.29%. The recognition performance of CNN
and ResNet-18 also increased by 6.61% and 5.74% from
the initial 91.43% and 92.63, respectively, reaching the final
98.04% and 98.37%. Table 8 shows the specific situation of
its four evaluation indicators. It can be seen from Table 8
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FIGURE 19. The recognition accuracy rate of five neural network algorithms at four different stages changes with epoch. (a) General data processing.
(b) Data adjustment. (c) Range window interception. (d) Proposed data processing algorithm.
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TABLE 9. Comparison of proposed algorithm with existing architectures.

Deep neural network type Type of activity Input type Accuracy(%)
DCNN [27] 7-Indoor Range-time map 91.00
Tower CNN [30] 6-(Indoor and outdoor) | RGB three-channel spectrogram 97.58
Dual-view CNN(DVCNN) [35] 7-Indoor Radar point clouds 98.00
Vision transformer-slice [37] 5-(Indoor and outdoor) Micro-Doppler map 99.12
Proposed RBLA 5-Indoor Doppler spectrogram 99.86

that the proposed algorithm is superior to the other four
comparison algorithms in four evaluation indicators.

F. ANALYSIS AND COMPARISON OF THE PROPOSED
MODEL AT DIFFERENT STAGES

In the section V-B to V-E, the experimental results show the
four performance indicators of the proposed algorithm in dif-
ferent stages. In order to make the results more sufficient and
specific, this section will compare and analyze the accuracy
and loss results in each stage. As shown in Figure 19, the
four sub-figures respectively show the curves of the accuracy
of the five neural network algorithms at different stages with
the number of iterations. The accuracy of the five algorithms
in the four stages as a whole continues to improve with the
increase in the number of iterations. In the first stage, the
accuracy of the proposed algorithm is mostly higher than
the four comparison algorithms. As the data processing stage
continues, the gap in the accuracy of these five algorithms
continues to narrow. In the second and third stages of data
processing, the four algorithms, except LSTM, ended up
with similar accuracy. As can be seen from Figure 19(a),
most of the accuracy rates of the proposed algorithm are
better than those of the four comparison algorithms. As the
processing of the proposed data preprocessing algorithm
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continues to deepen, the accuracy of the five algorithms has
been improved to a certain extent. At the same time, the
change curves of the loss of the five neural networks with the
number of iterations are shown in Figure 20. Corresponding
to the accuracy results in Figure 19, higher accuracy has a
lower loss.

G. COMPARISON OF PROPOSED ALGORITHM WITH
EXISTING ARCHITECTURES

Table 9 summarizes the results of existing algorithms for
HAR. The data used in the five methods in the table are
collected based on FMCW radar. Although the data sets
and input types used by these algorithms are different,
they are still representative to a certain extent. Among
these four existing algorithms, Wang et al. obtained the
highest recognition accuracy by using the visual converter
slice algorithm based on the attention mechanism, reaching
99.12% [37]. The method proposed in this article is also a
deep learning algorithm based on the attention mechanism.
The difference is that the proposed algorithm further
considers the correlation between the data before and after
the time dimension and also attempts to use a residual neural
network to replace the traditional CNN. The finally proposed
algorithm achieved an accuracy of 99.86%, which was 0.74%

111885



IEEE Access

C. Li et al.: Residual Neural Network Driven Human Activity Recognition by Exploiting FMCW Radar

higher than the algorithm in [37]. It is worth noting that the
dataset used in this paper has a total of 7680 sets of data,
while the dataset used in [37] has only about 1500 sets of data.
To a certain extent, it reflects the superiority of the algorithm
proposed in this paper.

VI. CONCLUSION

This paper proposes a residual-Bi-LSTM hybrid multi-
network data processing algorithm based on the attention
mechanism, optimizes two sub-modules in data preprocess-
ing, and combines the advantages of multi-network. The
algorithm can effectively extract the deep features in the data
and enhance the signal strength of the features of interest
in the data. After the data is processed by the proposed
algorithm, the feature data is transmitted to the network
as an input signal. RBLA achieves the best performance
of 99.86%. Although the algorithm has achieved good
results, this experiment still has its limitations. Even for the
same human activity, there may be some subtle changes
in the movements of different people. This is related to
various factors such as the volunteer’s age, gender, and
whether the body is slim or obese. In subsequent research,
we will also strengthen communication and cooperation with
hospitals and other nursing institutions to build coverage for
people of all ages. Second, matching different features with
different recognition networks will also have performance
differences. Therefore, we plan to optimize the recognition
network in follow-up work to improve the matching degree
of features and network. Multi-level feature extraction and
improved deep learning algorithms are used to further
improve recognition performance. For this system, although
the implementability in real environments has been improved,
there is still a certain distance to achieve complete real-time
performance. The lightweight network structure will make it
possible to realize the algorithm in real-time.
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