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ABSTRACT Bioelectric signals are significant indicators of the state of health of the human body, especially
in sports monitoring, where athletes’ fatigue state and performance need to be monitored in real-time to
develop a proper training plan. Due to the characteristics of sports, it is difficult to obtain the dynamic
bioelectrical signals of the human body during exercise. This paper provides a comprehensive overview
of the current knowledge on Intelligent Garment Systems (IGS) for long-lasting bioelectric monitoring in
sports. This review includes a detailed examination of human bioelectric signals, focusing on ECG, EMG,
and GSR signals and their applications in intelligent wearable technologies. The definition and development
history of IGS is also discussed, along with a review of the primary research components of IGS, including
dry textile electrodes, methods for connecting sensors to IGS, and processing methods for bioelectric signals.
The paper concludes by highlighting the current challenges faced by IGS in terms of real-time dynamic
monitoring and connection problems and outlining the future directions for this field, including the need for
further advancements in bioelectric signal processing and analysis, the development of new materials and
connection technologies, and the integration of artificial intelligence and machine learning into IGS.

INDEX TERMS Bioelectric signal, intelligent garment systems, signal processing, long-lasting sports
monitoring.

I. INTRODUCTION
Increasingly sophisticated textiles, materials, and micro-
electronics have enabled wearable technology to be
widely accessible and used in diverse ways in recent
years [1], [2]. Recent advancements in the field have
introduced novel materials and structures that significantly
enhance the capabilities of wearable technologies. These

The associate editor coordinating the review of this manuscript and
approving it for publication was Chan Hwang See.

include metamaterials for advanced sensing [3], near-
zero-index materials for enhanced sensor performance [4],
nanoparticles for medical diagnostic applications [5], multi-
functional structures offering a metamaterial perspective [6],
metasurfaces for surface wave manipulation [7], plasmonics
for optical and chiroptical response [8], and graphene-based
field-effect transistors for DNA detection [9]. Meanwhile, the
miniaturization and integration of signal-monitoring devices
into wearable systems are some future development trends
[10]. Wearable technologies refer to intelligent electronic
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devices worn on the body to analyze and transmit various
forms of data, such as signals connected to human bodies
and physical activities [11].

Intelligent garment systems are specialized wearables that
integrate information technology and microelectronics into
clothing, referring to clothing or accessories with built-
in sensors, electronics, and software to monitor, track,
or enhance various aspects of human physiology, such
as health, performance, or comfort. However, IGS faces
challenges in extended athletic activities, such as material
rigidity, poor portability, and low stability of fit. These issues
complicate real-time acquisition of human bioelectric signals
during long-time sports, and problems like signal noise and
motion artifacts further reduce the reliability of physiological
exercise monitoring.

This technology has transformed our lifestyle and interper-
sonal relationships in the social aspects, offering us real-time
information, communication, and health monitoring like
never before. Quite a range of everyday products utilizes
wearable technology, including watches, fitness trackers,
spectacles, and, in the foreseeable future, clothing. The
advanced sensors in these devices endow them with wireless
connectivity and processing capabilities, which promise a
revolutionary change in how we monitor and manage our
health, fitness, and daily activities.

As advanced electronic technologies with a real-time
signal sensing function, wearable technology can monitor
various human bioelectric signals using multiple sensors
integrated into the device. In addition to these sensors,
wearable technology utilizes advanced algorithms and tools,
such as machine learning to process and analyze the collected
bioelectric signals. By providing real-time feedback, these
algorithms enable the device to influence the wearer’s
physical and mental state [12], such as heart rate variability,
stress levels, and sleep quality. As human bioelectric
signals are consistently detected and monitored, and valuable
information is abundantly generated, wearable technology
allows individuals to track their progress, make informed
decisions, and maintain a healthy lifestyle.

However, in the field of scientific sports training and
sports medicine, traditional sports physiological monitoring
equipment had problems such as significant material rigidity,
poor portability, and low stability of fit. These issues made
it more challenging to achieve the function of real-time
acquisition of human bioelectric signals during long-time
sports and had been a problem that needed to be solved.
In addition, problems such as signal noise and motion
artifacts also vastly reduce the reliability of physiological
exercise monitoring.

Intelligent garment systems (IGS) are a subcategory of
wearable technology. It refers to clothing or accessories with
built-in sensors, electronics, and software to monitor, track
or enhance various aspects of human physiology, such as
health, performance, or comfort, as shown in FIGURE 1.
The architecture of an IGS primarily consists of embedded
sensors designed tomonitor bioelectric signals. These sensors

FIGURE 1. Intelligent garment system (IGS).

interface with a controller unit responsible for initial data
acquisition and processing. Following initial processing, the
acquired data are transmitted to user-specific devices like
mobile phones or desktop computers. This transmission
can occur through a variety of communication channels,
both wired and wireless, with Bluetooth being a commonly
employed protocol. Once received, the data can be further
uploaded to cloud storage systems for advanced analytical
procedures. Examples of IGS products range from smart
watches and smart compression garments to smart shoes and
smart wristbands. Over the past few years, intelligent garment
systems have been one of the hottest research topics as an
emerging wearable technology. The evolution of IGS has
beenmarked by significantmilestones, such as the integration
of IoT (Internet of Things) for seamless data transfer and
the use of advanced materials like conductive textiles for
improved comfort and functionality [13].

This review provides an overview of the current knowledge
on IGS for long-term bioelectric monitoring. The paper is
structured as follows: we begin by exploring the fundamental
bioelectric signals, including electrocardiography (ECG),
electromyograms (EMG), and galvanic skin response (GSR),
and their monitoring through state-of-the-art wearable tech-
nologies. We then delve into the concept and evolution
of the IGS. The subsequent sections address four core
research aspects related to IGS: the use of textile dry
electrodes for bioelectric signal monitoring, the strategies
for sensor integration into IGS, the implementation of
AI techniques for bioelectric signal processing, alongside
traditional methods, all of which are underpinned by a
comprehensive literature review. This is followed by an
overview of currently available commercial IGS de-signed
for motion monitoring. Thereafter, we identify and discuss
the prevailing challenges in the field and propose potential
future research directions for intelligent garment systems
in sports monitoring. The culminating section of the paper
engages in a critical discussion outlining the discrepancies
between laboratory-based IGS and their market-oriented
counterparts.

II. BIOELECTRIC SIGNALS
Bioelectric signals refer to electrical signals produced by
biological systems during biological events [14]. As shown

VOLUME 11, 2023 111359



D. Shen et al.: Review of Intelligent Garment System for Bioelectric Monitoring

FIGURE 2. Intelligent garment system (IGS).

in FIGURE 2, typical human bioelectric signals include
electrocardiography (ECG), electromyography (EMG), elec-
troencephalography (EEG), and electrooculography (EOG).
Among these signals, electrocardiograms (ECGs), elec-
tromyograms (EMGs) and galvanic skin response (GSR) are
the most commonly used bioelectric signals in human sport
monitoring. These signals are pivotal in sports monitoring,
giving precious information about an athlete’s physiological
state. By measuring these signals, experimenters and coaches
can gain insight into an athlete’s physical performance,
fatigue, and overall health. Recent advancements in Internet
of Things (IoT) technologies have facilitated the real-time
collection and analysis of these bioelectric signals, partic-
ularly in sports environments. Wearable sensor devices can
now monitor ECG patterns along with body acceleration,
providing a comprehensive view of an athlete’s physiological
and physical state [15].

These bioelectric signals give precious perceptivity into an
athlete’s performance, health, and well-being and can help
trainers, coaches, and athletes optimize training programs,
help injury, and ameliorate athletic performance. For illus-
tration, by measuring EMG, ECG, and GSR during a training
session, coaches can acclimate the drill’s intensity. This can
help to prevent overtraining and reduce the threat of injury.
Also, by covering bioelectric signals during competition,
trainers can make real-time adaptations to an athlete’s
strategy grounded on changes in their physiological state.
In addition, advances in wearable technology have enabled
the nonstopmonitoring of bioelectric signals, allowing for the
real-time analysis and interpretation of the data.

A. ELECTROCARDIOGRAM (ECG)
Electrocardiogram (ECG) is a bioelectric signal used for vital
sign sensing and health monitoring methods and can provide
information regarding the electrical activity of the heart [16],
[17]. As an efficient non-invasive tool, it can measure the
heart rate, examine the rhythm of heartbeats, diagnose heart

abnormalities, recognize emotions, and identify biometric
information [18]. ECG can be used to collect information
about an athlete’s heart health in long-last sports monitoring.

FIGURE 3. (a) Diagram of heart structure; (b) Schematic diagram of ECG
signal wave combination.

As shown in FIGURE 3(a), the left and right atria,
the left and right ventricles, veins and arteries, and the
ECG pathway constitute a simplified diagram of the heart.
An electrocardiogram (ECG) records the heart’s electrical
signals as it contracts and relaxes. FIGURE 3(b) shows that
each beat is represented on an ECG as a series of moves
called P, Q, R, S, and T. A period of ECG generally lasts
10-20 seconds and consists of several beats. The P wave
represents the electrical activity of the atria as they contract to
pump blood into the ventricles. The QRS complex represents
the ventricles’ rapid and synchronized electrical activity
employed as they contract to pump blood out of the heart. The
T wave represents the ventricles as they relax and refill with
blood. These heights, ranges, and shapes can give important
information about the heart’s electrical exertion. It can help
diagnose heart-meter diseases, heart attacks, and other heart
problems.

The electrocardiogram (ECG) is pivotal in sports monitor-
ing, furnishing precious information about an athlete’s car-
diovascular health and performance. The integration of ECG
into wearable technology has enabled nonstop monitoring
and real-time data analysis, allowing for optimized training
programs and injury forestallment. The ECG monitors heart
rate and detects implicit heart problems during physical
exertion, similar to abnormal heart measures or arrhythmias,
which may indicate heart conditions. This information is
essential for athletes engaged in high-intensity conditioning,
as it helps identify implicit health pitfalls and helps prevent
severe injury or illness. Also, ECG can track changes in
heart rate and meter during physical exertion, furnishing
perceptivity into the athlete’s heart response to different
situations of exertion and the impact of training programs on
performance.

Multitudinous experimenters have tried to develop wear-
able systems that capture and dissect real-time ECG signals.
These systems include the Tele-ECG monitoring system
with textile electrodes [19], the wireless sensorized belt
for simultaneous respiratory and cardiac signal acquisition
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[20], and the wearable exercise fatigue detection technology
utilizing ECG and inertial sensor signals [21]. The signif-
icance of ECG signals in sports and physical activity lies
in their potential to provide healthcare professionals with
crucial information for health management. However, current
wearable systems need a better quality of bioelectric signal
acquisition electrodes, which can limit their usefulness in
practice. Several studies have been conducted to address these
limitations to improve the quality of ECG signals, such as
modifying textile electrodes [22]. In this context, a novel
ECG classification algorithm has been developed specifically
for wearable devices with limited computational resources
[23]. The algorithm could greatly improve the feasibility of
ECG monitoring in sports.

A multimodal biosensing System-on-a-Chip (SoC) has
also been developed to reliably acquire ECG, photoplethys-
mography, and bio-impedance signals [24]. This innovation
could significantly enhance the reliability of wearable
systems for ECG monitoring. Furthermore, the feasibility of
using sportswear-type wearables for evaluating physical and
physiological exercise intensity has been demonstrated [25],
indicating the potential for ECG applications in sports to
provide valuable insights into athletic performance.

In the field of sports bioelectric monitoring, Electrocardio-
gram (ECG) sensors play a pivotal role in capturing cardiac
electrical activities. These sensors predominantly operate
through a mechanism that involves the use of electrodes to
detect the electrical potential generated by the heart. The elec-
trodes are often made of conductive materials like silver or
gold to ensure high signal fidelity. The signal acquisition ICs
in these sensors are designed to amplify the captured signals,
providing a gain of around 32 dB and a bandwidth of 370 Hz
[26]. Moreover, advancements in electrode structures have
been made to suppress motion artifacts, thereby maintaining
the stability of the signal quality during non-contact ECG
acquisition [27]. It’s worth noting that the energy efficiency
and transmission delay are also critical factors in the opera-
tion of these sensors [28]. The integration ofmachine learning
algorithms has further enhanced the capability to reconstruct
ECG signals even under conditions of moderate to heavy
movements [29].

The recent advancements in ECG applications in sports
have shown the potential to enhance ECG signals and
enable multi-dimensional monitoring. Building on recent
advancements in wearable technology, ECG monitoring in
sports has undergone significant transformations. Notably,
sports environments are now benefiting from IoT-based sys-
tems specifically designed for real-time heartbeat tracking,
employing advanced data classification techniques such as
Radial-basis Function Network and Levenberg-Marquardt
with Probabilistic Neural Network [15]. Complementing
this, a recent study has underscored the diagnostic utility
of ECG in sports cardiology, offering a comprehensive
review of tailored electrocardiographic monitoring solutions
[30]. However, limitations such as processing capacity and
movement artifacts remain to be addressed. Future research

should focus on improving the stability and reliability of ECG
signals, increasing subject comfort, and developing advanced
signal processing techniques to maximize the potential of
wearable ECG systems. By doing so, it will enhance the
ability to detect arrhythmias and accurately estimate exercise
fatigue and improve the overall accuracy and practicality of
wearable ECG devices.

FIGURE 4. Schematic diagram of EMG signal generation and processing
flow.

B. ELECTROMYOGRAM (EMG)
Electromyography (EMG) is a technique for recording
biomedical electrical signals obtained from neuromuscular
activities [31]. In long-last sports monitoring, EMG can
be used to gather information about an athlete’s muscle
health and performance. In addition, EMG signals are
further divided into nEMG and sEMG grounded on the
system of accession. Needle EMG involves the insertion
of a fine line electrode into the muscle to measure the
electrical exertion of individual muscle fibers, while the
other involves the use of electrodes placed on the skin to
measure the electrical exertion of muscles. In comparison
with nEMG, sEMG is better suited to the monitoring of
sports and recreational activities. As illustrated in FIGURE 4,
the contraction or activation of human muscles induces
the generation of electrical impulses through muscle fibers
and neurons, a phenomenon meticulously recorded through
electrodes strategically positioned on the muscle surface.
These impulses, innately composed of electrical signals
emanated from muscle fibers, are reflective of the intricate
dynamics encompassing both the muscles and the governing
nervous system, with the intensity and pattern of these
impulses providing insightful information into their underly-
ing operational mechanics. Following the acquisition of the
Electromyography (EMG) signals, a subsequent step entails
the execution of a series of analytical processes including
smoothing, rectification, filtering, and root mean square of
the raw signals, which are pivotal in delineating the precise
status of the muscle condition. These procedural steps aid
in the refinement of the data, enhancing the accuracy in
understanding the complex interplay of muscular and neural
activities, thereby facilitating a more nuanced interpretation
ofmuscle states. In the field of sports science, sEMGhas been
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increasingly adopted for real-time evaluation of muscle state
and forecasting of future fatigue trends. Advanced sEMG
systems have been developed that are cost-effective, portable,
and wearable, specifically designed for sports and healthcare
applications [32].

Surface electromyography (sEMG) is increasingly used
in sports science to monitor and assess muscular fatigue.
By recording and analyzing the electrical activity produced
by muscles during contraction via surface electrodes, sEMG
enables real-time evaluation of muscle state and forecasting
of future fatigue trends. This information is useful for opti-
mizing training and injury prevention strategies. The position
of muscle activation measured by sEMG can be used to track
changes and give precious feedback to athletes and trainers
on areas that bear enhancement. The measurement of muscle
activation over time also provides information on muscle
fatigue, allowing for timely adjustments in training to prevent
further fatigue. In addition to monitoring muscle activation
and fatigue, sEMG is also used to assess muscle symmetry
and balance, which is essential for optimizing performance
by addressing any imbalances or asymmetries in muscle
activation. Also, sEMG is used to cover muscle activation
during specific exercises andmovements, furnishing precious
information to optimize training and ameliorate performance.

In parallel to ECG sensors, Electromyography (EMG)
sensors are instrumental in the realm of sports bioelectric
monitoring, particularly for assessing muscle activities.
These sensors primarily function through the detection of
electrical potentials generated by muscle contractions. The
electrodes in EMG sensors are often fabricated from conduc-
tive materials like silver chloride to ensure high signal fidelity
[33]. Advanced signal processing techniques, such as PID
control algorithms, have been employed to enhance real-time
EMG signal interpretation, thereby improving the function-
ality of upper-limb prostheses [34]. Recent innovations have
focused on the robustness of human-machine interactive
control for myoelectric prosthetic hands, especially during
arm position changes [35]. Moreover, pattern recognition
algorithms have been increasingly integrated into EMG
sensors to discern user intentions more accurately, thereby
enhancing the human-machine interaction [36].

In recent times, there have been significant advancements
in the field of sEMG signal accession for sports monitoring
operations. Several studies have concentrated on developing
cost-effective, movable, andwearable sEMG systems that can
be used to cover human exertion during sports and in health-
care assiduity [37], [38], [39]. Another study investigated the
extent to which sEMG is adopted by professionals in the
field of exercise and human movement [40]. Additionally,
Spanu et al. made a significant contribution by developing
and validating cost-effective and robust electrodes that
provide adequate signal quality in dynamic conditions [41].
Campanini et al. presented educational tools for teaching
sEMG detection using electrode pairs and grids [42].
Despite these advancements, there are still limitations and

challenges associated with the use of sEMG in wearable

applications. One of the key challenges is improving the accu-
racy and reliability of sEMG signal acquisition in dynamic
conditions. Furthermore, current sEMG systems can improve
user-friendliness and comfort for long-term wear. Incorpo-
rating advanced signal processing techniques and electrode
design could improve performance and increase the adoption
of sEMG technology in the healthcare and sports industries.
To achieve this, further research is needed to address the
current limitations of sEMG in wearable applications.

FIGURE 5. Schematic diagram of GSR and GSR signals during resting and
sports states.

C. GALVANIC SKIN RESPONSE (GSR)
The Galvanic Skin Response (GSR) serves as a crucial
bioelectric signal delineating an individual’s physiological
state during physical activity, demonstrating salient features
such as stability, ease of collection, and heightened sen-
sitivity [43]. This physiological metric is regarded as the
primary and most responsive indicator of fluctuations in
human sympathetic excitability [44]. FIGURE 5 delineates
the schematic representation of the GSR (Galvanic Skin
Response) measurement process, illustrating a wearable
system equipped with GSR electrodes and a microcontroller
unit (MCU) that harbors integrated functionalities including
a voltage divider, filter, and amplifier. These components are
orchestrated to work in unison, transmitting the data to a
personal computer for further analysis. Initially, the system
acquires raw GSR signals from the fingertips, which are then
meticulously processed through the voltage divider, filter,
and amplifier to obtain refined information pertaining to skin
electrical activity. Complementing this technical overview,
FIGURE 5 also exhibits GSR signal graphs corresponding
to the resting and running states, vividly illustrating the
substantial increase in signal intensity from a stable baseline
in the resting state to a pronounced elevation during the
running state. GSR effectively captures continuous changes
in skin conductance, and a plethora of previous studies have
successfully employed this index as an objective measure of
stress in their research endeavors [45], [46], [47].

In the context of bioelectric monitoring for sports appli-
cations, Galvanic Skin Response (GSR) sensors are indis-
pensable for assessing emotional or physiological arousal.
These sensors typically function through a mechanism that
measures the electrical conductance of the skin. Unlike some
other bioelectric sensors, GSR electrodes are often made of
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materials that prioritize biocompatibility and conductivity,
such as silver/silver-chloride (Ag/AgCl). These electrodes
are designed to be in direct contact with the skin to ensure
accurate measurements. The sensor’s circuitry often includes
a constant voltage source to apply a small voltage across
the electrodes, thereby allowing the measurement of skin
conductance. It’s worth noting that the data acquisition
system in GSR sensors is calibrated to capture variations in
skin conductance levels, which can be indicative of emotional
or physiological states.

Regarding the study of GSR in sports, some scholars have
done representative studies in recent years. Yang executed
a study assessing the impact of daily transportation modes
on stress levels, GSR as a reliable, objective surrogate
measure.

The research revealed lower stress levels correlated with
cycling and walking in comparison to alternate travel meth-
ods, while motorized transit exacerbated stress [48]. Serdar
Gündoğdu scrutinized the manifestations of stress and mental
fatigue in e-sport activities by utilizing a data fusion approach
from EEG, GSR, HRV, and eye-tracking information. The
investigation discovered e-sport activities exhibited both
advantageous effects on attention and focus, as well as partial
inducement of stress and mental exhaustion, in addition
to distinct emotional processes among participants [49].
Francesco Sessa examined alterations in the human motor
cortex and autonomic nervous system dynamics concerning
sports training and professional expertise, employing TMS
while measuring heart rate (HR) and GSR in both karate
athletes and non-athletes. The research identified significant
disparities in cortical excitability, HR, and GSR between the
two groups, suggesting exercise training impacts autonomic
equilibrium, diminishes stress levels, and may contribute to
anxiety reduction in athletes [50].

Considering the substantial advancements achieved within
the domain, it remains imperative to recognize that the
employment of GSR in wearable applications continues
to present specific constraints and obstacles. A paramount
challenge entails the enhancement of precision and reliability
in GSR signal acquisition under dynamic circumstances.
Moreover, contemporary GSR systems may gain from
the amelioration of user experience and comfort during
protracted utilization. The incorporation of sophisticated
signal processing methodologies and electrode configuration
holds promise in amplifying performance and fostering
broader adoption of GSR technology across healthcare and
sports sectors. To actualize these prospects, additional inves-
tigation is necessitated to surmount the prevailing restrictions
associated with GSR in wearable implementations.

III. INTELLIGENT GARMENT SYSTEM (IGS)
Intelligent garment system refers to clothing or accessories
embedded with wearable technology components, such as
flexible electrodes, sensors, and software, to provide various
functionalities such as monitoring vital signs, tracking
fitness, providing haptic feedback, and more. Intelligent

Garment Systems (IGS) constitute intricate ecosystems
that incorporate a diverse array of components, including,
but not limited to, flexible electrodes, multi-modal sen-
sors, embedded microcontrollers, and advanced software
algorithms. These components synergistically contribute to
functionalities such as real-time monitoring of physiological
parameters, fitness tracking, haptic feedback provision, and
augmented reality experiences.

The IGS is a living system mimic that incorporates percep-
tion, feedback, and response functions to sense changes in the
external or internal environment and respond to these changes
in real-time through a feedback mechanism. In addition
to the above-mentioned components, recent advancements
have incorporated machine learning algorithms to enhance
the real-time data analysis capabilities of IGS. These
algorithms are particularly useful in sports applications
where immediate feedback can be crucial for performance
improvement. For instance, deep learning techniques have
been employed to provide more accurate and personalized
fitness recommendations [51]. In the field of sport, intelligent
garment system provides continuous monitoring of a person’s
bioelectric signals, such as heart rate, respiration, and muscle
activity, during long-term sports programs to provide people
with a better understanding of their bodies and how they are
performing. Specifically, in sports like marathon running and
cycling, IGS has been invaluable in monitoring physiological
parameters in real-time, thereby aiding in the prevention
of injuries and enhancing athletic performance [52] By
collecting and analyzing the accurate real time data provided
by the intelligent garment system, it’s convenient to access
feedback and guidance for improving physical and mental
health [53]. As substrates for wearable detectors, e-textile
materials are being used more and more constantly in
sports, medical, defensive, and military operations, among
others, and are of interest to experimenters in various
disciplines. Likewise, e-textiles promise to revise how data
can be collected, transmitted, and reused, with implicit
operations ranging from biomedical diagnostics to environ-
mental monitoring. These garments can be connected to
smartphones, tablets, or computers to give real-time data and
feedback.

A. TEXTILE DRY ELECTRODE FOR BIOELECTRIC SIGNAL
MONITORING
Textile electrodes, a flexible and intelligent skin-friendly
textile, can be closely integrated with intelligent clothing
systems. Compared to traditional electrodes, textile elec-
trodes offer many benefits when incorporated into intelligent
garment systems, including comfort, flexibility, durability,
concealment, skin-friendly contact, and washability.

Textile dry electrodes are a better alternative to traditional
wet electrodes for bioelectric signal monitoring. Unlike
traditional wet electrodes, which rely on a conductive gel
to provide electrical connectivity to the skin, dry textile
electrodes utilize conductive fibers integrated into the textile
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FIGURE 6. Schematic diagram of skin equivalent circuit with the
conventional wet electrode and dry textile electrode.

material. The skin equivalent circuit and skin-electrode
contact structure of the conventional wet electrode and textile
dry electrode is shown in FIGURE 6. Compared with the
gel medium of the conventional wet electrode, the dry textile
electrode achieves signal transmission with the help of sweat
[54], which has advantages in long-term sports. This results
in a more comfortable, flexible, and interactive electrode that
can be worn for a long time without causing skin vexation
or discomfort. Also, the lack of gel reduces the setup time
and minimizes the threat of impurity, making the monitoring
process more effective and aseptic. These advantages make
dry textile electrodes attractive for various bioelectric signal
monitoring. In the field of wearable health monitoring,
E-textile electrodes have surfaced as a pivotal innovation,
harmonizing with the fabric of clothing for unintrusive
and continuous bioelectric signal capture. These electrodes
are engineered through sophisticated textile technologies,
employing conductive fibers and polymers to ensure a high
signal-to-noise ratio, rivaling that of conventional gel-based
electrodes. The design philosophy behind E-textile electrodes
is anchored in biocompatibility, flexibility, and resilience,
offering a marked advantage over traditional electrodes that
often necessitate skin preparation and are susceptible to
motion artifacts. This adaptability renders them particularly
invaluable in sports and healthcare scenarios where sustained,
long-term monitoring is imperative. As we look to the
future, the trajectory of wearable health monitoring is set
to be influenced by advancements in sensor miniaturization,
energy-efficient technologies, and real-time data analytics.
These forthcoming innovations hold the potential to revo-
lutionize both sports training and healthcare by facilitating
more precise performance evaluations and enabling timely
medical interventions.

Textile dry electrodes can be prepared using various
techniques, including stitching, knitting, embroidering, elec-
troplating, and chemical plating. The preparation method is
chosen based on the desired properties and applications of
the electrode, each offering advantages and challenges. The
most common approach is stitching, where conductive yarns
are sewn directly onto the textile substrate. For example,
Arquilla et al. used silver nanoparticle-coated nylon yarns
in an overlapping serrated pattern to create 3 cm x 3 cm
textile electrodes with a resistance of 0.3 � (FIGURE 7.
(a)), which were capable of recording ECG signals with
distinguishable R and S peaks [55]. Milad et al. applied

FIGURE 7. (a) Silver nanoparticle-coated nylon electrodes [55].
(b) Schematic diagram of the (i)front and (ii) back of a sample dry
electrode [56].

STOLL flat machine to knit plane textile dry electrodes
and 3D textile dry electrodes with silver and carbon yarns
(FIGURE 7. (b)) and evaluated the performance of these
electrodes in long-term electrocardiographicmonitoring [56].
Rajanna et al. created knitwear and silver textile electrodes by
knitting silver and copper-nickel yarns onto a foam sponge
substrate [57]. Both electrodes had a skin contact impedance
of less than 1 M�/cm2, with the knitwear electrode having a
square resistance of 46 �/sq and the silver textile electrode
having a much lower square resistance of less than 1 �/sq.

FIGURE 8. Schematic illustration of the 3D textile electrode fabrication
process [58].

Further preparation involves embroidering the conductive
yarn on the fabric surface to reduce the skin-electrode inter-
face impedance. The research team of Zhao et al. presented
a knitted electrode with a mixture of reduced graphene oxide
(RGO), sericin, and a water-retention polymer (FIGURE 8)
that is capable of monitoring the bioelectric signals of the
human body during long-lasting sport [58]. This electrode
effectively reduces the electrode-skin interface impedance
due to its unique 3D structure and water-retention material
properties. Lee et al. used two conductive yarns, stainless
steel, and silver, to embroider fabric dry electrodes on
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the compression garment. At the same time, silicone was
applied to the designed embroidery pattern to increase
the adhesion between the electrodes and the skin, thereby
increasing the effective contact area. His study showed that
the application of this method, combined with the appropriate
garment pressure, could improve the accuracy of sEMG
signal acquisition while increasing the comfort level [59].

FIGURE 9. (a) Square and line patterns on the circular knitted silver yarn
sample, flatbed knitted silver yarn sample, and flatbed knitted carbon
yarn sample [62] (b) Schematic of the ENIG process on textiles [64].

Another method of generating electrodes directly on the
fabric is electroplating. This particular surface coverage
method enables the deposition of conductive metals directly
on the textile surface to generate electrodes. Plating technol-
ogy mainly covers electroplating and chemical plating, the
principles of electrolysis and redox respectively [60]. Elec-
troplating allows for control over the thickness of the metallic
coating, while chemical plating provides conductivity in all
directions of the textile surface and uniformly deposited
metallic coatings on complex geometries [61]. Ladan et al.
applied silver-plated and carbon-containing nylon yarn to
knit electrocardiographic electrodes by electroplating and
carbon suffusion methods (FIGURE 9(a)), respectively, and
compared them with gold standard hydrogel electrodes
for skin impedance before and after washing. The results
showed that the performance of these two electrodes is
comparable to that of gold-standard hydrogel electrodes and

can be effectively used for continuous monitoring of human
bioelectric signals [62]. Das et al. fabricated conductive
textiles through a chemical plating process, depositing
nickel/copper/nickel/gold layers on polyester textiles, result-
ing in textiles with high electrical conductivity and stability
[63]. Wu et al. metalized the ‘‘dye bath’’ by using a method
based on chemical nickel-impregnated gold (ENIG), which
allows complete penetration of metal ions into the textile
structure and deposition of metal coatings on the surface
of individual textile fibers (FIGURE 9(b)). This method
helps maintain the textile’s inherent structure and abrasion
resistance and gives e-textiles high electrical conductivity,
flexibility, and stretchability [64].

FIGURE 10. (a) Schematic diagram of the structure of the silver-plated
fabric electrode [65] (b) Preparation process of screen-printed graphene
electrodes, the experimental setup for the screen printing, and photo of
the fabricated graphene-coated electrode [66].

Screen printing, which involves applying carbon-based
inks to textile substrates to create conductive patterns,
is another common approach. Zhang et al. applied the
chemical silver-plating method to assemble ECG fabric elec-
trodes from conductive cloth, space wool, and double-sided
adhesive conductive foam (FIGURE 10(a)). They discussed
the effect of the fabric electrode surface on static and dynamic
ECG quality after the conductive media coating. The results
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showed that the fabric electrode coated with conductive paste
could effectively reduce the electrode-skin contact impedance
and acquire ECG signals more clearly [65]. Xu et al.
used screen printing to apply aqueous graphene ink on
cotton textiles(FIGURE 10(b)) and achieved a high Pearson
correlation coefficient of 99.47% between the graphene
electrode and the commercial Ag/AgCl wet electrode [66].

B. METHODS FOR CONNECTING SENSORS TO
INTELLIGENT GARMENT SYSTEM
The interconnection of sensors with intelligent garment
systems has garnered significant attention within e-textiles
research. To attain the desired level of integration and
functionality, a multitude of techniques have been employed
for connecting sensors to these systems. Amongst the most
widely employed methods, adhesive bonding, snap fasteners,
pogo pins, and magnets are the four most prominent.

FIGURE 11. Diagram of NCA, ECA, and ICA bonding.

Adhesive bonding, the most commonly used method in
e-textiles, encompasses several types of bonding, including
non-conductive adhesive bonding (NCA), isotropic electri-
cally conductive adhesives (ICA), and anisotropic conductive
adhesives (ACA), as shown in FIGURE 11. The NCA bond-
ing method has been adapted to create a connection between
rigid circuit modules, and conductive textile interconnects
using a thermoplastic film that is sandwiched between the two
[67], [68]. ICA bonding involves the addition of a conductive
filler to an adhesive material. In contrast, ACA bonding
is similar but employs a lower concentration of conductive
filler, making it more suitable for fine-pitch connectors [69],
[70], [71].

Snap fasteners, also called press studs or poppers, have
been extensively employed as connectors in e-textiles.
Despite their widespread usage, there is a need for further
research to determine their viability as electronic connectors
[72], [73]. Ozberk et al. demonstrated that snap fasteners
could be used as an electrical interface for graphene-coated
fabric electrodes to monitor the sEMG signal in the dynamic
state of the human body [74]. For long-lasting sport moni-
toring, however, we need to assess snap fasteners’ durability,

reliability, and performance under various conditions to
determine whether and how well they are suited for use as
electronic fabric connectors.

Pogo pins, typically with a diameter ranging from
1-2 millimeters, have emerged as a standard solution for
connecting rigid circuit modules with flexible circuitry
in a garment. These pins offer a reliable and efficient
way to connect within e-textile systems and have been
widely used in various applications. Another method for
connecting sensors to intelligent garment systems is to use
magnets. Magnets have been used either for alignment
or as electrical contacts themselves [75]. This approach
presents a unique solution for connecting sensors in e-textile
systems, offering a non-contact method for making electrical
connections. Further research is needed to explore this
approach’s feasibility and limitations, particularly its ability
to withstand various environmental conditions and its long-
term performance.

C. PROCESSING METHOD OF BIOELECTRIC SIGNALS FOR
INTELLIGENT GARMENT SYSTEM
1) PROCESSING METHOD OF ECG SIGNALS
ECG signal processing involves preprocessing and feature
engineering steps to reduce noise and interference in recorded
ECG signals and extract relevant features for analysis.
Preprocessing utilizes bandpass, low-pass, high-pass, notch,
and median filters to eliminate various types of noise. Feature
engineering involves extracting temporal, morphological, and
statistical features in the spatial, frequency, or time-frequency
domains. Traditional methods use denoising and fiducial
point extraction through direct or transform processes, while
recent techniques employ mathematical computations and
neural networks for faster processing. The accuracy of the
extracted features significantly impacts the analysis perfor-
mance, with the QRS complex being the most predominant
feature.

Preprocessing is essential in electrocardiogram (ECG)
signal analysis to reduce interference and determine signal
features [76]. Preprocessing aims to minimize noise and
artifacts in the recorded ECG signals to prepare them for
further analysis. Bandpass filters are commonly used for this
purpose and effectively reduce noise sources like muscular
noise, movement-related artifacts, power-line interference,
baseline wandering, and high/low-frequency noise signals
[77], [78], [79], [80], [81], [82], [83], [84], [85]. Low-
pass filters (LPF) eliminate high-frequency components of
the signals, while high-pass filters (HPF) eliminate low-
frequency components [86], [87]. Notch filters eliminate DC
offsets in signals [79], [86], [88], [89]. Median filters remove
special effects and arbitrary or baseline wander noise [85],
[90], [91], [92], [93]. Other techniques, such as adaptive noise
cancellation and leaky-based normalization, have also been
proposed for noise reduction [94], [95], [96].

Feature engineering (FE) is crucial for ECG signal analysis
and consists of extracting different temporal, morphological,
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and statistical features from the periodic ECG signal pattern
[97]. The accuracy of the extracted features impacts the
analysis performance; These features can be acquired in
the spatial, frequency, or time-frequency domains [98].
Conventional signal processing techniques and machine
learning models have been introduced to find ECG features
such as the R-R interval, QRS complex, and others [99].
Traditional FE methods involve denoising the ECG signal
and extracting fiducial points through direct or transformation
methods like wavelet transform (WT) and discrete wavelet
transform (DWT). However, current limitations in terms of
processing time and computational constraints have resulted
in the development of faster techniques using mathematical
computations and neural networks [100]. These techniques
rely heavily on accurately identifying features, with the QRS
complex being the most predominant.

2) PROCESSING METHOD OF sEMG SIGNAL
Effective signal processing of sEMG signals is crucial for
accurately assessing muscle fatigue in the sports domain. The
preprocessing and feature extraction of sEMG signals are
vital in obtaining accurate results. Recently, a multitude of
techniques and features have been utilized tomonitor changes
in muscle activation and state over time, providing crucial
information for sports training and rehabilitation.

Raw sEMG data often contain power line interference and
motion artifacts. Therefore, preprocessing techniques such as
detrending, filtering, normalization, and windowing mitigate
these issues [101], [102], [103]. For example, detrending
removes trends (both linear and nonlinear slow shifts of the
signal from zero level) on EMG. Detrending is typically
performed as an initial step to reduce artifacts and improve
the quality of the sEMG signal for further processing and
analysis. It is essential for obtaining accurate measurements
of muscle activation patterns and identifying changes in
muscle function during physical exertion. Other methods
used for preprocessing include Independent Component
Analysis (ICA) and empirical mode decomposition (EMD)
[104], Ensemble Empirical Mode Decomposition (EEMD)
with Hilbert Transform (HT) [105], and Discrete Wavelet
Transform (DWT) [106]. In estimating muscle activity
onsets, methods such as visual and automated methods [107],
sample entropy (SampEn) analysis [108], and sequential
Gaussian mixture model (GMM) have been proposed [109].
Regarding feature extraction, four main types of features
are extracted from sEMG signals time-domain, frequency-
domain, time-frequency domain, and nonlinear parameters
[110], [111], [112]. Time-domain features include root mean
square (RMS), integrated EMG (iEMG), zero-crossing rate
(ZCR), waveform length (WL), the variance of electromyog-
raphy (VAR), and mean absolute value (MAV) [113], [114],
[115], [116], [117]. The RMS and iEMG values increase
over time as muscle fatigue sets in, indicating changes in
muscle activation intensity and human motion state [105],
[118], [119], [120]. In the frequency domain, mean frequency

(MF) and median frequency (MDF) represent the frequency
of measured muscle CV and provide information about
muscle fatigue, with MDF being more sensitive to muscle
activity [121], [122], [123]. The time-frequency distribution
of sEMG signals is also analyzed to provide comprehensive
information about physiological muscle changes during
exercise.

3) PROCESSING METHOD OF GSR SIGNAL
Efficient signal processing of GSR signals is essential for
accurately assessing emotions and stress across various
applications. Preprocessing and feature extraction of GSR
signals are critical in achieving precise results. A multitude
of techniques and features have been employed in recent
times to monitor changes in emotional and stress states,
providing valuable information for emotion recognition,
stress detection, and human-robot interaction.

Over the past few years, numerous academic investigations
have been conducted, delving into the intricacies of GSR
signal processing. Gautam introduced the Empirical Iterative
Algorithm (EIA), an innovative data-driven method for
GSR signal preprocessing that improved performance and
computational efficiency. The EIA outperformed traditional
moving average filters, achieving a 51% enhancement
in signal quality and retaining relevant low-frequency
information while being 136 times faster than Empirical
Mode Decomposition (EMD) [124]. Liu presented a novel
human emotion recognition method combining automatically
selected GSR signal features and Support Vector Machines
(SVM). The proposed approach demonstrated improved
recognition accuracy, exceeding 66.67%, by employing a
covariance-based feature selection process and optimized
SVM input [125]. Atefeh Goshvarpour investigated the
effectiveness of the Matching Pursuit (MP) algorithm in
emotion recognition, utilizing ECG and GSR data. The study
successfully demonstrated an accurate emotion recognition
system by achieving a 100% recognition rate using Principal
Component Analysis (PCA) and wavelet dictionaries [126].
Dong-Hyun Kang proposed a real-time emotion classifi-
cation approach utilizing photoplethysmogram (PPG) and
GSR signals, a 1D convolutional neural network autoencoder
model, and a lightweight model developed via knowledge
distillation. The proposed models demonstrated improved
accuracy and computation time, enabling fast and real-time
emotion classification in limited hardware environments for
human-robot interaction [127]. Seyed Amir Hossein Aqajari
proposed an open-source GSR analysis tool that leveraged
deep learning and statistical algorithms to extract features for
stress detection. The tool demonstrated a 92% accuracy in
detecting stress using 10-fold cross-validation and features
extracted from the GSR signals [128].

D. AI METHOD FOR PROCESSING BIOELECTRIC SIGNALS
The rapid advancement and integration of artificial intelli-
gence (AI) into bioelectric signal processing, particularly in
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TABLE 1. AI approaches in bioelectric signal processing across diverse
applications.

sports-related contexts, have unveiled a host of transformative
developments. AI has significantly refined our ability to
evaluate muscle activation, fatigue, and overall athletic
performance by bolstering the efficiency and accuracy
of preprocessing and feature extraction from sport-related
bioelectric signals such as electrocardiograms (ECGs) and
sEMG. Consequently, this has placed AI at the crux of
applications spanning sports training, rehabilitation, and
injury prevention, providing a robust foundation for more
tailored and potent interventions.

A summary of key research contributions in the field
of AI-enhanced bioelectric signal processing in sports is
presented in Table 1:

In the field of motion artifact data processing, Emma
Farago et al. delved into the application of three distinct
AI-based methods: autoregressive models, Markov chain
models, and recurrent neural network (RNN) models [129],
Autoregressive models employ a linear combination of past
observations to predict future values, offering simplicity and

computational efficiency. Markov chain models, on the other
hand, rely on the principle of ‘memorylessness,’ where the
future state depends solely on the current state, making them
suitable for systems with short-term dependencies. However,
it was the RNN models that stood out for their ability to
capture long-term dependencies in the data, thereby proving
to be the most effective in generating diverse motion artifact
data that closely emulated experimental data properties.
While RNN models have shown superior performance, they
are not without limitations. For instance, they are computa-
tionally more intensive and may require larger datasets for
training. In scenarios where computational resources or data
availability are constrained, autoregressive or Markov chain
models may offer a more practical alternative. Emerging
innovations in the field of artificial intelligence, including the
advent of optimized recurrent neural network architectures
and the application of transfer learning techniques, offer
promising avenues for refining and augmenting the existing
methods used in motion artifact data generation.

In response to the limitations of existing simulation
techniques, Farago’s team introduced and compared three
AI-based methods for generating motion artifact data—
autoregressive, Markov chain, and recurrent neural network
models. Their work substantiated the recurrent neural net-
work model as the most effective in generating diverse
motion artifact data that closely emulated experimental
data properties, thus enhancing the reliability of bioelectric
signal quality analysis in sports applications. In a parallel
vein, Ali Raza et al. from ENSAIT’s GEMTEX Labo-
ratory presented AnoFed, a pioneering federated learning
framework that incorporated transformer-based Autoen-
coders and Support Vector Data Description [130]. This
framework was developed to address the challenges of
efficient and privacy-minded anomaly detection in bioelectric
signals during sports activities. Notably, AnoFed leverages
transformer-based Autoencoders for feature extraction and
Support Vector Data Description for anomaly detection,
offering a comprehensive solution for ECG analysis in sports
settings. The framework has shown promise for broader
applications, including other types of bioelectric signals
and healthcare scenarios outside of sports. This integration
facilitated efficient, privacy-minded anomaly detection in
bioelectric signals during sports activities. When applied to
ECG analysis, the approach exhibited exceptional perfor-
mance and computational efficiency, effectively tackling data
privacy issues inherent to healthcare applications. In addition,
Raza’s team proposed an innovative federated learning
framework that harmonized explainable artificial intelligence
(XAI) and deep convolutional neural networks (CNN) for
ECG-based arrhythmia classification during sports, offering
promising applicability across various healthcare and sports
scenarios [131]. Furthermore, Bruce Hopenfeld et al. intro-
duced a novel methodology that employs autocorrelation and
TEPS for the extraction of persistent rhythms in the motion
artifact record of the NSTDB. Their work has significant
implications for enhancing the accuracy and reliability of
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ECG analysis in sports performance evaluation, especially
in noisy environments [132], [138], [139]. Focusing on
the unique challenges of ECG data, they introduced the
highly constrained temporal pattern search for multi-channel
heartbeat detection during sports activities and proposed
an innovative methodology to mitigate motion artifacts in
waist-based ECGs. Their work has contributed to enhancing
the accuracy and reliability of ECG analysis in sports
performance evaluation.

In a similar endeavor, Duan et al. adopted convolutional
neural networks for efficient feature extraction and action
classification in sEMG signals during sports activities [133].
Their approach of treating sEMG signal spectrograms as
images demonstrated the efficacy of deep convolutional
networks in gesture motion recognition during sports,
underlining the promising potential of AI methods in
sEMG signal processing for athletic performance assessment.
On another front, Chengyu Liu et al. devised an innovative
IoT-based wearable 12-lead ECG SmartVest system for real-
time, continuous cardiovascular disease monitoring [134].
By confronting the real-time signal quality assessment and
lightweight QRS detection challenges, their novel methodol-
ogy combining multiple signal quality indices and machine
learning techniques improved the efficiency and reliability
of ECG recordings, opening up new possibilities for broad
population monitoring. Moreover, Alejandro Castillo-Atoche
et al. developed an integrated energy-aware technique and
a CNN for a cardiac arrhythmia detection system wearable
during sports training [135]. Their introduction of an ultra-
low-power microcontroller programmed with a dynamic
power management strategy, coupled with a photovoltaic
energy harvesting circuit, resulted in a significant extension
of battery life. With an arrhythmia detection precision of
98.6%, their proposed system exemplifies the potential of AI
in effectively monitoring athletes’ conditions.

Innovations in AI-driven bioelectric signal processing
have revolutionized sports-related applications, providing
enhanced efficiency, accuracy, and privacy in muscle acti-
vation, fatigue and performance assessment. The adoption
of advanced methods including autoregressive, Markov
chain, and recurrent neural networks, as well as federated
learning and convolutional neural networks, has enabled
breakthroughs in mitigating motion artifact contamination,
ECG analysis, sEMG signal processing, and real-time
monitoring. These advancements underscore the vital role of
AI in sports training, rehabilitation, injury prevention, and
healthcare scenarios, and pave the way for further research
and development in this domain.

IV. OVERVIEW OF CURRENT SPORTS MONITORING
COMMERCIAL INTELLIGENT GARMENT SYSTEM
With adding fitness and health monitoring demand, the
request for intelligent garment systems has recently seen sig-
nificant growth. These systems use advanced cloth detectors
andwearable technology to cover biometric data such as heart
rate, respiration rate, and physical exertion. The data collected

can be fluently transferred to a mobile operation, furnishing
real-time feedback to athletes on their health and fitness. This
section will present an overview of a selection of presently
available intelligent garment systems that have commercial
viability.

Xiaomi Mijia Cardiogram T-shirt is an industry-leading
intelligent garment system designed to enhance athletic
performance with monitoring systems [140]. One of its
primary functions is the capability to conduct electrocar-
diogram (ECG) monitoring, which involves the assessment
of the electrical exertion of the heart. This capability is
accomplished by the incorporation of technical sensors
within the fabric of the t-shirt. The ECG data attained
from these detectors offer discerning information about the
heart rate and other parameters, enabling the monitoring of
physical exertion and detecting any possible heart-related
issues. Likewise, this ECG data can be transferred to a mobile
operation, furnishing athletes with immediate feedback and
enabling them to make well-informed opinions regarding
their exercise routines. This system distinguishes itself by
focusing on cardiac health, making it particularly useful for
athletes concerned with cardiovascular performance.

Athos Shirt is an exemplar in intelligent garments designed
to enhance athletic performance [141]. This shirt is equipped
with muscle-tracking detectors that can cover the activation
of muscle groups during exercise. The data collected by
the detectors is transferred to a mobile operation, so the
athletes can receive real-time feedback on their performance
and identify areas for enhancement. The Athos Shirts are
designed for comfort and are made from feather-light, porous
materials, equipped with sweat-wicking technology to keep
the wearer cool and dry during intensive exercises. Unlike the
Xiaomi Mijia, the Athos Shirt specializes in muscle activity,
offering a unique set of data valuable for strength training and
muscle development.

Tymewear Smart Shirt is a novel intelligent garment
system that optimizes athletic performance with monitoring
systems [142]. It can measure breathing rate, which reflects
the respiratory exertion of the runner. This system is unique
in its ability to measure respiratory metrics, offering athletes
insights into their aerobic capacity and stamina. The shirt
has technical sensors embedded in the fabric that collect
breathing data. This data reveals the runner’s metabolic
thresholds, training load, and VO2 max. Runners can use
these parameters to adjust their training intensity, duration,
and frequency according to their fitness goals and needs.
The shirt also transfers the breathing data to a mobile
application, which gives runners immediate feedback and
helps them make informed decisions about their exercise
routines. A visual representation of the TymeWear Smart
Shirt is provided in Figure 12.
Moreover, the shirt measures running power, force pro-

duction, ground contact time, and cadence from sensors
embedded in the fabric. These parameters help runners
analyze their biomechanics and gait patterns and improve
their running efficiency, performance, and injury prevention.
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FIGURE 12. External layout of tyme wear smart shirt and pod [143].

Aaron et al. conducted two graded exercise test (GXT) trials
to verify the reliability of the TymeWear Smart Shirt [143].

FIGURE 13. OM signal bra [144].

OM Signal Bra (FIGURE 13) is an intelligent garment
technology designed explicitly for women. OM Signal Bra
incorporates advanced cloth detectors into a comfortable and
protective sports bra and can track biometric data, including
heart rate, respiration rate, and physical exertion situations.
The data collected by the OM Signal Bra can be fluently
transferred to a mobile operation, so users are informed about
their health and fitness progress in real-time. The OM Signal
Bra is designed with comfort and functionality and is made
from high-quality, sweat-wicking material.

FIGURE 14. Hexoskin smart shirt [146].

Another product utilizing intelligent garment technology
is the Hexoskin Smart [145]. As shown in FIGURE 14, this
shirt has advanced cloth detectors knitted into the fabric
that can cover various biometric data, including ECG, blood
pressure, activity level, skin temperature, etc [146]. The data
collected can be fluently transferred to a mobile operation,
allowing users to cover their health and fitness progress
in real-time. The Hexoskin Smart Shirt is designed to be

TABLE 2. Details of the representative commercial intelligent garment
system.

durable and accessible, with the capability to be washed and
worn like a regular garment. Hexoskin Smart Shirt takes a
more holistic approach by incorporating a range of biometric
data, including ECG, blood pressure, activity level, and skin
temperature. This makes it a versatile choice for athletes
looking for comprehensive health monitoring.

In addition to these commercial intelligent garment
systems, several other analogous products are also available.
While this overview highlights some of the key commercial
IGS available, it’s worth noting that the wearable technology
spectrum in sports is broad and continually expanding.
These include Whoop Strap [147] and Nadi X Yoga Pants
[148]. These products use advanced wearable technology
to cover biometric data and give real-time feedback via
a mobile app. They’re designed to be comfortable and
discreet, allowing individuals to cover their health and fitness
without demanding a separate wearable device. Details of the
representative commercial intelligent garment systems are
shown in Table 2.
While the table highlights some of the paramount com-

mercial IGS available in the market, it’s worth noting
that the wearable technology spectrum in sports is broad
and continually expanding. Beyond the field of Intelligent
Garment Systems, the athletic domain has embraced a slew
of other wearable devices. Activity trackers such as Fitbit
and Garmin have gained immense traction for their role
in optimizing athletes’ daily physical activities. Intelligent
shoes, with Under Armour’s HOVR series as a notable
example, have revolutionized footwear by embedding sensors
that monitor crucial parameters like pace and stride length.
Additionally, innovative sportswear, like Sensoria’s heart
rate monitoring sports bra, has bridged the gap between
apparel and technology. Even minimalist devices, such as the
Oura Ring, pack a punch by providing insights into metrics
like body temperature and heart rate, aiding athletes in
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understanding recovery patterns. As the convergence between
technology and sportswear deepens, athletes and trainers are
better equipped than ever to harness data for performance
enhancement.

V. CHALLENGES AND FUTURE DIRECTIONS
Intelligent Garment Systems (IGS) for bioelectric monitoring
during long-term sports face several challenges regarding
real-time monitoring and connection problems between IGS
and sensors. One of the main challenges is the complexity of
accurately capturing and monitoring the bioelectric signals
during sports activities, particularly when the athletes are
engaged in highly dynamic movements. To mitigate this,
advanced sensor calibration techniques and noise-filtering
algorithms can be employed to improve the accuracy of
bioelectric signals. These movements may cause significant
fluctuations and noise in the bioelectric signals, which can
impact the accuracy of the monitoring results. Another
significant challenge is ensuring the reliability and stability
of the connection between IGS and sensors during long-term
sports. Emerging technologies like low-energy Bluetooth and
Zigbee protocols can offer more stable and energy-efficient
connections. This requires the development of robust and
flexible connections that can withstand the repeated and
intense physical movements involved in sports activities
while also ensuring a stable and uninterrupted data transfer
between the sensors and IGS. In addition, maintaining the
durability of fabric-based electrodes after washing remains
a significant challenge [149], [150]. Coating technologies
using hydrophobic materials could potentially extend the
lifespan of these electrodes. Besides, the stability and
accuracy of wireless data transmission systems between IGS
and terminals, such as textile-based NFC communication
devices [151] in long-lasting sports monitoring, is also a
challenge that cannot be ignored. The use of error-correction
codes can enhance the reliability of data transmission.
Moreover, developing a highly reliable power source for
IGS is also essential to ensure continuous and uninterrupted
monitoring during long-term sports. Innovations in energy
harvesting from body movements or thermal energy could
offer sustainable power solutions. Furthermore, there are no
widely recognized industry standards for e-textiles and IGS,
such as test procedures for E-textiles [152] and intelligent
garment systems, resulting in commercial wearable products
that are more gimmicky than valuable, preventing consumers
from getting the wearable products they need.

However, there is currently an important work ongoing
aiming at the definition of standards for e-textiles by
IPC (https://www.ipc.org). IPC standards recognize that
textile-based electrical and electronic assemblies (E-Textile
Wearables) are subject to classifications by intended end-item
use. Three general end-product classes have been established
to reflect differences in manufacturability, complexity, func-
tional performance requirements, and verification (inspec-
tion/test/laundering) frequency. It should be recognized that
there may be overlaps of products between classes.

Class 1 General E-Textile Wearables
Includes products suitable for application categories where

the major requirement is a function of the completed
assembly.

Class 2 Dedicated Purpose E-Textile Wearables
Includes products where continued performance and

extended life is required, and for which uninterrupted service
is desired, but not critical. Typically, the end-use environment
would not cause failures.

Class 3 High Performance/Harsh Environment E-Textile
Wearables

Includes products where extended-lifetime, high reli-
ability, and performance or performance-on-demand are
critical, equipment downtime cannot be tolerated, end-use
environment may be uncommonly harsh, and the equipment
must function when required, such as life support or other
critical systems.

This standard also recognizes Class 2 and Class 3 products
that may be designed to be disposable after one- or short-
time use. Requirements specific to these product use cases
are identified in this standard.

Test methods encompassing various damages such as
mechanical (flexing, stretching, bending, torsion, abrasion),
exposure (chemical, microbes, sweat, salt water, temperature,
washing, etc.) are defined to help the designers and manufac-
turing companies to determine the e-textile system class and
to make them more reliable and ready for the market.

Moreover, an emerging area of interest that warrants
further exploration is the optimization of the size, weight,
flexibility, and battery life of commercially available IGS
systems. These parameters are critical for the practical
application and commercial viability of IGS but are often
overlooked in existing literature. Future research could focus
on developing lightweight and flexible systemswith extended
battery life to enhance user comfort and experience.

In terms of future research directions, there is a need
to advance further the technologies and algorithms for
bioelectric signal processing and analysis to increase the
accuracy and reliability of bioelectric monitoring during
sports activities. Machine learning algorithms, particularly
neural networks, could be integrated for real-time data
analysis, offering more nuanced insights into athletes’
performance. Additionally, developing new and innovative
materials and connection technologies is required to enhance
the stability and reliability of the connections between
IGS and sensors. The use of nanomaterials and conductive
polymers could offer more robust and flexible connections.
Another research direction is how to use the big data of
human bioelectrical signals in long-last sports as a data
source to train models for sports performance prediction.
Such models allow professional athletes and technicians
to obtain not only a simple description of performance
in sports in real time but also to predict performance
trends and prevent possible future injuries. Also, due
to the characteristics of long-lasting sports monitoring,
intelligent garment systems require higher specifications of
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power supply configuration, energy harvesting devices, high-
density portable power supply, etc. Exploring these areas
could potentially become the main focus of future research.
Furthermore, integrating artificial intelligence and machine
learning technologies into IGS could provide valuable
insights into the complex bioelectric signals generated during
sports activities and support more accurate and effectivemon-
itoring and analysis of athletic performance. Nevertheless,
some associations and standardization organizations, such as
IPC (www.ipc.org), IEC (www.iec.ch), CEN (www.cen.eu),
AATCC (www.aatcc.org), etc., are committed to developing
industry standards on E-textile wearable devices, which will
enhance the development of IGS for long-term monitoring of
sports.

VI. DISCUSSIONS
Drawing upon the meticulous examination of the literature,
as well as the observational analysis of both laboratory and
commercially-oriented products, the present discussion seeks
to highlight the key discrepancies between laboratory-based
IGS specifically engineered for bioelectric monitoring during
sports activities and their market-driven IGS counterparts.
By emphasizing the interplay of business-driven decision-
making and market assessment perspectives, this study
identifies three critical factors that account for the incongruity
between laboratory research and market products.

First, the reliability and stability of laboratory-based IGS
often pose challenges, potentially falling short of meeting the
stringent safety requirements of the market. As underscored
in Section V, accurately capturing and monitoring bioelec-
tric signals amid highly dynamic movements constitutes
a significant obstacle, with the potential to compromise
monitoring outcomes. To address this, future research could
explore adaptive algorithms that can filter out motion arti-
facts, thereby enhancing the reliability of bioelectric signal
capture during dynamic activities. Ensuring the reliability
and stability of the connection between IGS and sensors
during extended sports activities is another paramount
concern. This could be mitigated by employing fault-tolerant
communication protocols that can re-establish connections
swiftly, ensuring minimal data loss. Consequently, these
limitations hinder laboratory-based IGS from satisfying the
rigorous market demands regarding safety and stability.

Market-oriented IGS products often prioritize essential
functionalities to strike a balance between performance and
cost. However, this focus can lead to a misalignment with
the extensive capabilities inherent in laboratory-engineered
systems, some of which may not directly address the specific
needs of the consumer base. This divergence contributes to
the existing gap between academic research and market-
oriented products. To bridge this gap, involving end-users in
the design phase can align the IGS features more closely with
market demands.

Moreover, the transition of these advanced technologies
from academic settings to the commercial sector is often
impeded by a lack of specialized expertise within commercial

R&D department. This deficiency further widens the dis-
connect between academic advancements and their practical
applications, leading to a protracted integration of innovative
technologies into market-ready IGS products. To mitigate
these challenges, fostering interdisciplinary collaborations
between academic researchers and industry professionals
could facilitate a more seamless transition from research to
market, thereby narrowing the existing gap.

Lastly, the research and development departments within
the market often lack personnel possessing the requisite
professional background and research capabilities to expedite
the transition of novel technologies intomarketable IGS prod-
ucts. This gap could be bridged by fostering collaborations
between academic researchers and industry professionals,
facilitating a more seamless transition from the lab to the
market. This shortcoming leads to a protracted integration
of innovative technologies into commercially-oriented IGS,
leaving ample room for improvement in technical aspects.

Considering these factors, the gap between laboratory-
based Intelligent Garment Systems (IGS) and market-
oriented products emerges from the reliability and stability
issues encountered by laboratory IGS, the misalignment
of features with market demands, and the absence of
skilled professionals capable of bridging the gap between
research and market product development. By implementing
these suggested approaches, there is potential for a more
seamless translation of laboratory IGS research into viable
and valuable market products.

VII. CONCLUSION
The increasing popularity of wearable monitoring technology
in sports has driven the development of intelligent garment
systems. In addition to the primary bioelectric sensors elabo-
rated upon in this review, it is imperative to acknowledge the
burgeoning role of alternative wearable sensors in the realm
of comprehensive sports monitoring. These encompass tem-
perature sensors for thermoregulatory assessment, pressure
sensors for nuanced gait analysis, and optical sensors for the
quantification of blood oxygen saturation levels. While not
traditionally incorporated into Intelligent Garment Systems
(IGS), the integration of these auxiliary sensors could furnish
a more holistic methodology for athlete monitoring, thereby
augmenting the system’s utility and broadening its applicative
scope. Despite advancements in this field, specific challenges
persist, particularly regarding the reliability of these systems
in extended athletic activities. The stability of the intelligent
garment system is influenced by several factors, including
the composition of electrodes, the connection between
sensors and the clothing system, as well as the subsequent
processing of collected signals. To address these issues,
academic and commercial sectors continually improve their
products to meet higher requirements. In the field of
sports and healthcare, the future of Intelligent Garment
Systems (IGS) is anticipated to be significantly influenced
by the integration of advanced biomechanical sensors and
machine learning algorithms. These advancements are poised
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to enhance real-time data analytics, thereby facilitating
more nuanced and individualized health monitoring and
performance optimization strategies.

As Intelligent Garment Systems (IGS) continue to mature,
ethical considerations and privacy safeguards surrounding
the handling of sensitive bioelectrical data are becoming
increasingly salient. It is thus incumbent upon future research
endeavors to prioritize the formulation of robust encryption
algorithms and user verification mechanisms to ensure the
confidentiality and integrity of data pertaining to athletes and
healthcare recipients.

Additionally, the sustainability of power sources for
IGS is a pivotal concern for facilitating continuous, long-
term monitoring. Investigative efforts could be directed
towards the exploration of energy-harvesting modalities,
including but not limited to thermoelectric and piezoelectric
mechanisms, as a means to proffer enduring and eco-friendly
energy solutions, thereby amplifying the system’s operational
longevity.

Future advancements in IGS are expected to focus on
the integration of AI-based predictive analytics for early
detection of health risks and the development of more
energy-efficient components to extend battery life. This
review offers a focused technical examination of intelligent
garment systems geared towards sustained monitoring in
sports activities. It aims to contribute to the existing body of
knowledge by discussing the interplay of advanced materials
and artificial intelligence techniques. The work is intended as
a useful point of reference for both scholars and professionals
in the field.
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