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ABSTRACT As one of the key technologies in the field of Prognostic and Health Management (PHM),
Remaining Useful Life (RUL) prediction technology plays an important role in equipment health main-
tenance and fault detection. For complex devices, the degradation process of the remaining useful life of
the device is often difficult to be described with mathematical or physical models, so data-driven methods
has become an important and feasible method in the field of RUL prediction. This paper proposes a
data-driven deep learning fusion model based on CNN-ATTENTION-LSTM-ATTENTION-PARALLEL
(CALAP) model, in which Convolutional Neural Networks (CNN) and Long Short-TermMemory Networks
(LSTM) are adopted to extract the spatial features and temporal features of the data in parallel, and both of
them combine the corresponding attention mechanism allowing the network to focus on important factors.
The CNN path fuses CBAM and the LSTM path fuses attention mechanism. We evaluate the proposed
model on the C-MAPSS dataset released by NASA and compare it to the state-of-the-art. The RMSE of
the proposed model is reduced by nearly 2-5%, and the score is reduced by nearly 8-10% under simple
conditions. Experimental results prove that the model has relatively high prediction accuracy and good
robustness.

INDEX TERMS RUL prediction, convolutional neural networks (CNN), convolutional block attention
module (CBAM), long short-term memory (LSTM), attention mechanism, turbofan engine.

I. INTRODUCTION
Prognostic and Health Management (PHM) refers to the use
of sensor technology to obtain equipment operation data
and information, and to evaluate, predict, and manage the
health status of equipment with the help of mathmatical
algorithms and artificial intelligence technology. PHM can
provide equipmentmaintenance plans based on the prediction
results to prevent potential failures from having a major
impact on equipment later, thereby reducing human and
financial losses and providing a safe production environment,
also make machinery and equipment run more safely and
reliably. Remaining Useful Life (RUL) prediction technology
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is an indispensable part of PHM. RUL can be defined as the
number of operational cycles from the current moment to
the moment of machine failure. The prediction of equipment
RUL can be realized by analyzing the operation data of the
equipment or establishing a suitable equipment degradation
model.

There are twomain types of RUL prediction techniques [1],
one is a model-based method, and the other is a data-driven
method. However, in general, it is difficult to establish an
accurate model to describe the degradation process of equip-
ment. Data-driven approaches have become increasingly
popular thanks to recent advances in sensor systems and big
data technologies [2], [30], [35]. Comparedwithmodel-based
RUL prediction technology, the data-driven method relies
less on prior knowledge [31]. Through data analysis and
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feature extraction of the monitoring data collected by the sys-
tem or components, the implicit information of the data can
be obtained, which provide more useful information for the
prediction of RUL. So data-driven methods play an important
role in the current RUL prediction technology [34].

In industrial activities, mastering the health status and
the RUL of equipment is conducive to timely updating the
maintenance plan to ensure the orderly progress of production
activities [22], while reducing maintenance costs and time
costs, and recovering certain economic and personnel losses.
Overall, the main contributions of the article are as fol-
lows:
1) At present, most data-driven prediction models use

one or a single variant of neural network for fea-
ture extraction, which is difficult to maintain good
generalization ability in complex prediction envi-
ronments. CALAP combines the advantages and
disadvantages of the current mainstream deep learn-
ing models and popular algorithms, allowing CNN
and LSTM to play their respective data feature
extraction functions to improve the model’s RUL
prediction accuracy. The fusion model can adapt to
different data distributions and different data char-
acteristics, and is more capable of processing outliers
and noise data, and has higher generalization ability.

2) We add CBAM to the CNN path and add atten-
tion mechanism to the LSTM path, so that the
network can adaptively adjust the weight according
to the importance of the input data, and focus on
important factors, thereby improving the accuracy
of themodel, reducing the amount of calculation, and
improving the efficiency of calculation.

3) In the experimental section, we provide detailed and
sufficient ablation experiments to verify the effective-
ness of the proposed fusion model.

II. LITERATURE REVIEW
In this section, we review the mainstream deep learning pre-
diction models in recent years.

Fully Connected Neural (FCN) Networks is an artificial
neural network with good data fitting ability. Gebraeel et al.
[3] developed neural-network-based models in bearing fail-
ures prediction, and used the vibration information obtained
from a large number of bearings from operation to failure
to train the model to predict the bearing operating time.
Tian [4] introduced a validation mechanism in training pro-
cess to improve the prediction acurracy. Because the FCN
model has a weak ability to extract spatial and temporal
features, FCN is rarely used as a prediction model alone, and
is usually combined with other deep learning networks for
prediction. Badu et al. [6] first applied Convolutional Neural
Networks (CNN) to RUL estimation in the field of prediction.
Convolution filters and pooling filters are applied along the
time dimension to muti-channel sensor data for automatic
feature learning from raw sensor signals. Ren et al. [7] pro-
posed deep convolution neural network for the prediction

for bearing RUL and used spectrum-principal-energy-vector
in feature extraction process. Yoo et al. [8] proposed a new
time-frequency image feature to construct HI and predicted
the RUL. Huang et al. [38] developed a deep convolu-
tional neural network-multilayer perceptron to extract the
one-dimensional temporal features and two-dimensional spa-
tial features of bearings, enabling the quantification of the
prediction interval of RUL. Recurrent Neural Networks
(RNN) is also widely used in the field of RUL prediction
due to its good sequential modeling ability. In industrial
production, the data obtained by sensors is almost all time-
series data. It is not surprising that RNN is applied in RUL
prediction. Heimes [9] utilized the recurrent neural network
model using the EKF algorithm to estimate the RUL of the
system and produced relatively high accuracy. As a variant of
the RNN model, Long Short-Term Memory (LSTM) solves
the problem of gradient disappearance and can effectively
process long sequences. Zheng et al. [10] applied LSTM
to RUL estimation and pointed out that LSTM outperforms
traditional methods as well as CNN in predicting RUL.Wu et
al. [11] used dynamic differential for inter-frame information
extraction and proposed vanilla LSTM to get good RUL
prediction accuracy. Deng et al. [37] proposed a hybrid GRU-
PFmethod, combining data-driven and physics-basedmodels
into the PF framework to quantify the uncertainty of the
RUL of the ball screw. Kong et al. [48] and Chen et al. [49]
combined LSTM with other network models to predict the
remaining useful life of turbofan engines.

In recent years, Autoencoder (AE) has been favored by
researchers in the field of RUL prediction because of its
powerful deep feature expression ability [12], [45], [46].
Ren et al. [50] combined deep autoencoders and deep neural
networks (DNN) for RUL predictionwithout increasingDNN
size. SAE is formed by stacking multiple AEs, and is trained
by an unsupervised greedy pre-training method. Ma et al.
[13] presented a deep approach for RUL prediction based on
SAE and logistic regression. Performance degradation fea-
tures from multiple sensors were extracted by stacked sparse
autoencoder and multiple features were fused by multilayer
self-learning. Focusing on high-precision RUL prediction for
reliability, Wei et al. [59] proposed a SAE-GMR-based RUL
prediction framework. Ye et al. [60] proposed a deep learning
model based on parallel convolutional autoencoder (PCAE)
and applied it to the feature generation phase of the diagnostic
framework. Deep Belief Networks (DBN) is derived from a
fast greedy algorithm proposed by Hinton et al. in [15], which
can learn a layer of deep directed belief network, provided
that the top two layers form an undirected associative mem-
ory. Zhang et al. [16] proposed a multiobjective deep belief
networks ensemble (MODBN) method. MODBNE uses a
multi-objective evolutionary algorithm combined with tradi-
tional DBN training techniques to develop multiple DBNs
while subjecting accuracy and diversity as two conflict-
ing goals. Moreover, the introduction of the optimization
algorithm can also improve the prediction accuracy of DBN.
Li et al. [17] presented a method based on the bispectrum
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TABLE 1. The main advantages and disadvantages of each representative method.

entropy and DBN, and introduced the Quantum Parricle
Swarm Optimization (QPSO) for searching the optimal value
of initial parameters of the network.

How to transplant the trained network to new target objects
is a problem that researchers are concerned about. Transfer
learning is also more and more important in the field of RUL
prediction [51], [52], [53], [54]. Ding et al. [36] proposed a
method combining deep metric learning and transfer learning
to solve regression problems. Sun et al. [14] proposed a
deep tranfer learning (DTL) model based on SAE, which can
transplant the trained model to the new prediction object. The
SAE network is first trained by running on fault data, and then
the trained network is transferred to a new tool for online RUL
prediction. Qian et al. proposed to use deep discriminative
transfer learning network [57], relationship transfer domain
generalization network [56], ensemble weighting subdomain
adaptation network [58], and maximummean square discrep-
ancy [55] for fault prediction, and verified the effectiveness
of the proposed method through relevant experiments, which
promoted the development of transfer learning-based meth-
ods in prediction models. The problem of RUL prediction
under limited data is also paid attention by researchers.
Kong et al. [61] developed a first prediction time (FPT)
identification method, combined with degeneracy factors and
SBiLSTM, and proposed a multi-step ahead rolling predic-
tion method to predict RUL. Li et al. [39] used first prediction
time identification and time-series feature windows to predict
the RUL of rolling bearings under limited data. Zhu et al.
[40] proposed a Bayesian semi-supervised transfer learning
intelligent fault prediction framework based on active query,
which can perform RUL prediction across machines under
limited data. Zhou et al. [41] made effective use of historical
data and proposed a time series prediction method based on
dynamic transfer learning under limited data.

In TABLE 1, we summarise the main strengths and
weaknesses of current representative deep learning predic-
tion models and cite the corresponding representative work.
As can be seen form the references mentioned above, most
of the data-driven predictions are one or a single variant
neural network model. The fusion model can combine the
advantages of different networks, make up for the shortcom-
ings, and adapt to complex systems and changing working
conditions. The RUL prediction model of this development
strategy has become a new research direction. This paper aims
to fill the gap in this direction and proposes a data-driven deep
learning fusionmodel (CALAP), namely the CNN-Attention-
LSTM-Attention-Parallel algorithm model. CALAP extracts
the spatial features of the data through the CNNpath, and uses
the LSTM path to extract the temporal features of the data.
Both paths are combined in parallel. The convolutional layer
in CNN can perform dimensionality reduction processing
on high-dimensional input data, and has the advantage of
automatically extracting effective features. The pooling layer
samples data of each dimension, which can further reduce
the data scale and improve the generalization ability of the
network. LSTM can learn long-term dependencies in time
series data, and make full use of the characteristics of sensor
signal time series. At the same time, we embed CBAM in the
CNN path, and embed the attention mechanism in the LSTM
path, so that the network can focus on the key features in the
data, give greater weight to important features, and make up
for the shortcomings caused by manual feature extraction.
In summary, the CALAP model makes up for the lack of
CNN’s feature extraction ability in temporal data and the
lack of LSTM’s feature extraction in spatial data, while the
introduction of the two attentional mechanisms also reduces
the amount of computation and improves the computational
efficiency. Experimental studies show that the fusion model
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FIGURE 1. The overall architecture of the CALAP model.

has better prediction accuracy and better robustness than the
single model.

III. METHODOLOGY
A. PROPOSED NETWORK ARCHITECTURE
In this section, we introduce the architecture of CALAP
model (as shown in FIGURE 1). CALAP is mainly devel-
oped based on two important deep neural networks. Deep
neural network has a great advantage in the era of big data
because of its ability to mine useful information frommassive
data and its powful nonlinear data fitting ability.

The proposed CALAP model consists of two main paths,
which are developed based on two deep neural networks,
i.e., CNN and LSTM, respectively. The CNN is responsi-
ble for extracting the spatial features of the data, and the
LSTM is responsible for extracting the temporal features
of the data. At the same time, the two are combined with
the corresponding attention mechanism to allow the network
to focus on important factors. The CNN path fuses CBAM
and the LSTM path fuses attention mechanism. The two
paths extract features in parallel, and the extracted features
are concatenated as predicted features. We will describe the
important components of the CNN path and the LSTM path
in detail below.

B. THE CNN PATH
This path mainly includes two one-dimensional CNN layers
and one CBAM layer.

1) CONVOLUTIONAL NEURAL NETWORKS (CNN)
CNN is a type of feedforward neural network that includes
convolution calculations and has a deep structure. CNN
is proposed by the inspiration of biological receptive field
mechanism. In recent years, many studies have successfully
applied CNN to sequence data processing, such as RUL pre-
diction, natural language processing, etc. The convolutional
layer and the pooling layer are two important components of

FIGURE 2. One of the one-dimensional neural networks of the CALAP
model.

FIGURE 3. The overall architecture of CBAM.

CNN. The special structure of CNN enables it to effectively
extract the spatial features of the input data [42], [43], [44].
The convolution layer uses the convolution filter to convolve
the input data to obtain the feature map, so as to achieve the
effect of data dimensionality reduction. The pooling layer can
further reduce the data size and improve the generalization
ability of the network.

In this paper, the data to be processed is usually the
sequence features from the sensor, and the spatial features
in the time series data are not as obvious as the spatial
features of the image data. Therefore, the CALAPmodel uses
one-dimensional convolutional neural network. FIGURE 2
shows one of the one-dimensional neural networks of the
CALAP model.

2) CONVOLUTIONAL BLOCK ATTENTION MODULE (CBAM)
CBAM was first proposed by Woo et al. [19] and it is
a lightweight attention module. CBAM can be embedded
into any convolutional network with almost no overhead.
FIGURE 3 shows the overall architecture of CBAM. It con-
tains two continous sub-modules, namely Channel Attention
Module (CAM) and Spatial Attention Module (SAM), which
act on the channel and space respectively.

a: CHANNEL ATTENTION MODULE (CAM)
As shown in FIGURE 4, the input feature map passes
through the MaxPool layer and AvgPool layer in parallel, and
the size changes from 128∗H∗W to 128∗1∗1. In Shared MLP
module, it first reduces the number of channels to the original
1/r times (r means reduction ratio). The r in this experiment
is 2. During this period, a ReLU activation is required, and
then it is restored to the original number of channels. The two
results are added to the corresponding elements, and activated
by sigmoid to obtain the output result of CAM.
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FIGURE 4. The structure of CAM.

FIGURE 5. The structure of SAM.

FIGURE 6. The specific structure of the CNN path in CALAP.

It can be computed as:

Mc (F) = σ (MLP (AvgPool (F)) +MLP (MaxPool (F)))

(1)

b: SPATIAL ATTENTION MODULE (SAM)
The output result of CAM is restored to 128∗H∗W size by
multiplying with the source data (as shown in FIGURE 3)
and the result is call channel-refined feature. As shown in
FIGURE 5, the channel-refined feature obtains two 1∗H∗W
feature maps through MaxPool and AvgPool, then concate-
nated and convolved by a convolution layer. Finally, the
output result of SAM is obtained through a sigmoid function.

It can be computed as:

Ms (F) = σ
(
f 7×7 ([AvgPool (F) ;MaxPool (F)])

)
(2)

where f 7×7 represents a convolution operation with the filter
size of 7 × 7 [19].

Finally, the specific structure of the CNN path is shown in
FIGURE 6.

C. THE LSTM PATH
This path mainly includes one LSTM layer and one attention
mechanism layer.

1) LONG SHORT-TERM MEMORY (LSTM)
The input of the feedforward network is independent of each
other, and the current input has nothing to do with the past or
the future. However, in some tasks, such as RUL prediction,

FIGURE 7. The cell structure of LSTM.

it often occurs that the input of the model is not only related
to the current input, but also related to the past states. This
requires more powerful models for processing sequence data.
Therefore, the LSTM network with the ability to capture
long-term data relationships has a very good application in
RUL prediction. Hochreiter et al. [18] proposed a new archi-
tecture called LSTM, which solved the problem of gradient
disappearance in RNN through the design of memory infor-
mation flow and gate structure.

FIGURE 7 shows the cell structure of LSTM. It can be
expressed as:

ft = σ
(
Wf · [ht−1, xt ] + bf

)
(3)

it = σ (Wi · [ht−1, xt ] + bi) (4)

C̃t = tanh (WC · [ht−1, xt ] + bC ) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

ot = σ (Wo [ht−1, xt ] + bo) (7)

ht = ot ∗ tanh(Ct ) (8)

where xt is the input at time step t, ht is the hidden state at
time step t, Ct−1 is the previous cell state, Ct is the updated
cell state, W and b are the weights and biases of the corre-
sponding gated cells, and σ () and tanh () are sigmoid and tanh
functions.

Although LSTM has good time series data modeling capa-
bilities, it does not distinguish the importance of the learned
features. For inputs with too long time steps, some previous
information may be lost. Therefore, we design an LSTM that
incorporates an attention mechanism, by assigning different
weights to different features, so that LSTM can more effi-
ciently use historical information to generate the output of
each time step. We’ll go into more detail in the next section.

2) ATTENTION MECHANISM
The attention mechanism [24], [25], [26] is inspired by
humans. When our vision perceives the scene in front of us,
it scans the overall image to obtain key areas of focus, and
then devotes more attention. When the neural network intro-
duces the attention mechanism, it can increase the computing
power in limited circumstances, focus on key information,
reduce attention to other information, and allocate computing
resources to important factors.
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FIGURE 8. The specific structure of the LSTM path in CALAP.

FIGURE 9. The sliding window example.

Assume that the features learned by the LSTM network for
one sample can be expressed asH = {h0, h1, . . . , ht }T . If the
self-attention mechanism is introduced [21], the attention
weights for different time steps t of ht can be expressed as:

Attention = 8
(
W T ht + b

)
(9)

whereW and b are the weight matrix and bias vector, respec-
tively, and 8() is the activation function.
Then use the softmax function to normalize the attention

matrix, and finally perform element-by-element multiplica-
tion with the original data to obtain the output of the attention
mechanism.

Finally, the specific structure of the LSTM path is shown
in FIGURE 8.

D. THE SLIDING WINDOW
we use the sliding window method to collect sample data.
Reference [5] mentioned this method. Assume that the origi-
nal data can be expressed as a matrix Aij of sizem×n, the size
of the sliding window is S, and the sliding step is P. The slid-
ing window starts to collect data from the first row, and the
first sample data A0ij(i = 0, 1, . . . , S; j = 0, 1, . . . , n) with a
size of s× n is obtained. Then the sliding window moves the
step size P along the direction of the column to get the second
sample data A1ij(i = 0+P, 1+P, . . . , S+P; j = 0, 1, . . . , n)
with a size of s×n. Similarly, we can get the T-th sample data
as ATij (i = 0+T ∗P, 1+T ∗P, . . . , S+T ∗P; j = 0, 1, . . . , n).
FIGURE 9 shows the sliding process of the sliding
window.

TABLE 2. The overview of the dataset.

IV. EXPERIMENT
All experiments are performed on a PC with Intel Core
i7 CPU, 8 GB RAM and GEFORCE GTX 1650 GPU.

A. DATASET INTRODUCTION
Our research uses the turbofan engine degradation simulation
data set [28] provided by NASA, which is simulated by
commercial modular aviation propulsion system simulation
(C-MAPSS) and is a widely used benchmark data [23]. The
data has four sub-datasets, namely from FD001 to FD004,
and each sub-dataset has different types of operating con-
ditions and fault conditions. The overview of the dataset is
shown in TABLE 2.
The dataset consists of multiple multivariate time series.

Each sub-dataset is further divided into a training subset
and a testing subset [27], in which the training set records
the sampling values of each time series of multiple state
parameters of the aeroengine from normal to fault in the
complete cycle. The test set contains the state parameter
values before a certain point in time before the failure. The
true RUL corresponding to the test data set is also provided.

Each row is the instantaneous data captured by the sensor
in a single cycle, and each column represents a different
variable, a total of 26 columns, consisting of engine unit
number and cycle number, three operating settings, as well
as 21 sensor values. For the meaning of the specific sensor
representatives, please refer to [20].

B. DATA PREPROCESSING
In order to better understand the data, we visualized the three
operational setting data and 21 sensor data in the dataset.
FIGURE 10 and FIGURE 11 show the FD001 training data
as an example.

We found that sensors 1, 5, 6, 10, 16, 18 and 19 always have
constant values while the engine is running, which means
that these sensor data have little impact on engine life and
do not contribute to engine RUL prediction. So we can delete
these sensor-related data, and for the remaining operational
setting data and sensor data, we use the following formula
to normalize the data. Generally, the features extracted from
the original signal have different scales of input values, and
normalization is necessary to map the features extracted from
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FIGURE 10. Sensor data for all engines (three operational setting data
and data from sensor 1 to sensor 9).

FIGURE 11. Sensor data for all engines (data from sensor 10 to sensor21).

the vibration signal to a specific equal interval [32].

xi′ =
xi − minxi

maxxi − minxi
(10)

In [6], [9], and [10], a piece-wise linear RUL target func-
tion is proposed, as shown in FIGURE 12, which limits the
maximum RUL to a constant value and then starts to linearly
degrade after a certain degree of usage. Different datasets
have different maximum values. Here, the dataset of FD001 is
taken as an example. In order to better simulate the change of
the remaining useful life along time, we process the turbofan
target data in the same way as [6], [9], and [10].

C. TRAINING PARAMETERS
1) THE CNN PATH
As shown in FIGURE 6, each CNN layer uses the ReLU
activation function for activation and one-dimensional max-
imum pooling for pooling. The previous CNN layer has a
filter of size 2 × 1, the number of channels produced by the
convolution is 64, and the maximum pooling layer has a filter
of size 2 × 1. The filter size of the latter CNN layer and the
maximum pooling layer filter are the same as the previous
CNN layer, but the number of channels produced by the
convolution is 128. After two convolutional layers, we input
it to the CBAM layer to let the convolutional network focus
on important spatial features. CBAM is a lightweight atten-
tion module that can be well embedded into the convolution

FIGURE 12. Piece-wise RUL of C-MAPSS RUL_FD001 dataset.

network, which we mentioned above. Finally, the output of
the CNN path is obtained through two linear layers.

2) THE LSTM PATH
As shown in FIGURE 8, the data is first fed into an LSTM
layer with a hidden layer size of 50 and a layer count of
1. Then the output of our LSTM is input to the attention
machanism layer to let the network pay attention to important
time serie temporal features. Finally, the output of the LSTM
path is obtained through two linear layers and one dropout
layer. The dropout rate of dropout layer is 0.2.

3) MODEL TRAINING PROCESS
For the data that has been preprocessed, we use the sliding
window method to collect sample data and then pass the
collected sample data into the network model for training.
The batch size of the training set is 100, and the batch size of
the test set is 64. The time window has a size of 30 [21] and
a step size of 1. The Adam algorithm is used for optimization
in the training process and its learning rate is 0.001.

4) EVALUATION CRITERIA
To better compare the performance of the proposed model on
testing data, we need some objectivemeasure of performance.
In this experiment, we use two ways: Scoring Function and
Root Mean Square Error (RMSE) [27], [47]. FIGURE 13
shows the difference between these two functions.

a: SCORING FUNCTION
This scoring function was proposed by Saxena et al. [33] and
it can be discribe as follow:

S =


∑N

i=1

(
e−

hi
13 − 1

)
for hi < 0∑N

i=1

(
e
hi
10 − 1

)
for hi ≥ 0

(11)

where S is the computed score, N is the number of engines in
testing data, and hi = estimated RUL i − true RUL i.
The scoring function is more inclined to early prediction,

i.e., the estimated RUL value is smaller than the actual RUL
value [16], and later prediction may cause equipment to be
unmaintained due to too late prediction. This is in line with
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FIGURE 13. The difference between RMSE and scoring function.

TABLE 3. The test RMSE, score and test time for each dataset.

the characteristics of the aerospace industry. The safe oper-
ation and maintenance of equipment is extremely important
to this industry, and a small failure may cause immeasurable
losses. The score function is also the scoring function used in
the PHM08 challenge [16].

b: RMSE
RMSE is to give equal weight to early and late predictions
[29]. This is not the same as the scoring function. Combining
the scoring function and RMSE can more comprehensively
evaluate the performance of the model. The formulation of
RMSE is as follows:

RMSE =

√
1
N

∑N

i=1
h2i (12)

D. RESULTS
1) VISUALIZATION OF PREDICTION RESULTS
Based on the above theory and experimental process,
we tested the CALAP model. The test set contains FD001-
FD004. We train each data set ten times, take the network
model with the smallest RMSE each time for efficiency test-
ing, and obtain the average test RMSE, test score and test time
of the model, as shown in TABLE 3. FIGURE 14 shows the
prediction effect of the model on the testing data.We can see
that for FD001 and FD003, the model has a good prediction
effect, and for FD002 and FD004, the prediction effect is
relatively reduced. This is influenced by the characteristics
of different datasets, which we will analyze in detail in the
‘‘COMPARE TO THE STATUS-OF-THE-ART’’ section.

2) ABLATION STUDY
In order to show the fusion effect of the proposed model more
intuitively, we conduct ablation experiments on the proposed
model. By disassembling and combining the model, we can
get the following five parts:

TABLE 4. The results of the ablation experiment.

1. One-dimensional CNN
2. One-dimensional CNN + CBAM
3. LSTM
4. LSTM + Attention Mechanism
5. Proposed model

Here we show two representative sub-datasets: FD001 and
FD004 as examples. The specific results are shown in TABLE
4 and FIGURE 15. In addition, we take the FD001 data set
as an example, use t-sne technology to visualize the hidden
feature extraction of 30 samples in several different network
layers, and provide a visualization of one of the sample data,
as shown in FIGURE 16. It can be seen from the figure
that the features of the original sample after dimensionality
reduction are messy, and from the visualized data, it can
be seen that the importance of each feature is not clearly
distinguished, and the importance of the same feature at
different time steps is not significantly different. However,
after the convolutional neural network and the long-short
memory network, the hidden features extracted by them show
a certain regular distribution after dimensionality reduction.
It can be seen from the visualized data that some features
start to show a large proportion, and the proportion of the
same feature at different time steps is also quite different.
Then the attention technology was introduced. We embed
CBAM in the CNN path and embed the attention mechanism
in the LSTMpath, allowing the network to focus on important
factors, so that the important points of different features can
be distinguished. From the visualized data, it can be seen
that certain features passing through the CBAM layer and
the attention mechanism layer have a prominent proportion,
and the proportion of the same feature at different time steps
is also quite different. This shows to a certain extent that
the introduction of attention technology enables the network
to focus on key features, making the proportion of features
that can affect the remaining useful life of the turbofan
engine larger, thereby improving the prediction effect of the
remaining useful life. At the same time, the effectiveness and
superiority of the model are also verified to a certain extent.

3) COMPARE TO THE STATUS-OF-THE-ART
TABLE 5 shows the experimental results of the proposed
method on the test data and compares it with the state-of-
the-art methods. All methods outperform FD002 and FD004
on FD001 and FD003. This is because FD001 and FD003
are relatively simple, and there are relatively few operating
conditions and fault types, which were mentioned in the
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FIGURE 14. Prediction performance on each dataset a) FD001 b) FD002 c) FD003 d) FD004.

FIGURE 15. The results of the ablation experiment a) RMSE results (FD001) b) Score results (FD001) c) RMSE results (FD004) d) Score results
(FD004).

FIGURE 16. Network visualization with t-sne and data visualization.

‘‘DATA INTRODUCTION’’ section. In addition, the number
of engines tested by FD002 is 259, and the number of engines
tested by FD004 is 248, both much higher than FD001 and

FD002. Therefore, the sum of the scores of all the engines
of FD002 and FD004 are of different orders of magnitude.
Moreover, the performance of the proposed model has a clear
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TABLE 5. Compare to the state-of-the-art methods on testing data.

advantage over LSTM on simple datasets. But on complex
datasets, the performance of LSTM model is better than the
proposed model. At the same time, through the experimental
data, it can be observed that the CALAP model is not capa-
ble of early prediction of the remaining life of the engine
operating under the six operating conditions, and the score
is relatively large. Therefore, the proposed model is more
suitable for prediction tasks that are not so demanding for
early prediction.

V. CONCLUSION AND RESEARCH OUTLOOK
In this paper, we propose a data-driven deep learning fusion
model—CALAP. First, we preprocess the data, use the time
window to collect sample data, and use parallel methods
to enable CNN and LSTM to extract spatial features and
temporal features respectively. At the same time, the two
combine the corresponding attention mechanism to learn
important features. Finally, The proposed model is compared
with existingmethods, the relative superiority of the proposed
method is confirmed under the scoring function and mean
square error (RMSE) evaluation criteria.

Judging from the experimental results, there is still room
for improvement in the prediction accuracy of turbofan
engines. In future work, we will try to further optimize the
model to improve the prediction accuracy and make it pro-
duce better results on complex datasets. The dataset used in
this article is a classic dataset in the field of RUL prediction,
but the year of the dataset is relatively old. We will try to use
the latest dataset for research in subsequent research. We also
plan to develop a RUL prediction model under complex

working conditions based on transfer learning. Moreover, the
model can not only be used in the field of RUL prediction,
but also transferable to other suitable tasks.
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