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ABSTRACT Distributed Denial of Service (DDoS) attacks pose a significant threat to the security of
networking systems, as they can cause widespread disruption and even bring down entire distributed
systems platforms. In this paper, we propose an approach called the DEQSVC that leverages quantum
machine learning techniques to detect DDoS attacks with high accuracy. The DEQSVC integrates the most
efficient dimensionality reduction techniques, a robust featuremapmethod, and an efficient kernel estimation
technique to improve data encoding, learning process, and detection accuracy. To evaluate the performance
of the proposed DEQSVC, we conducted simulations using the Qiskit platform and executed the approach
on an IBM quantum computer. Our results demonstrate that the DEQSVC outperforms several benchmark
algorithms commonly used in intrusion detection systems. Specifically, the DEQSVC achieves a detection
accuracy of 99.49, indicating its effectiveness as a highly accurate and efficient method for detecting DDoS
attacks.

INDEX TERMS DEQSVC, QSVM, quantum machine learning, entanglement, encoding, DDoS attacks,
cybersecurity, LDAP protocol.

I. INTRODUCTION AND BACKGROUND INFORMATION
In recent years, there has seen a substantial number of security
attacks on networking architecture and distributed systems.
These attacks are due to both quantum and classical security
attacks [1], [6], [10]. One of the most prominent attacks that
threaten cybersecurity is the DDoS attacks [2], [9], [32]. The
idea of these attacks is to use multiple machines to send an
extensive number of malicious requests to capture a network
or harm the distributed system components.

Many quantum machine learning solutions have been
developed to counter DDoS attacks, but these solutions have
performance gaps that make them unreliable in detecting
these attacks. For example, some of the existing quantum
solutions suffer from qubit decoherence. This limitation
generates an insufficient correlation factor between the
entangled qubits, decreasing their performance in detecting
cybersecurity attacks [3], [4], [5]. Also, many quantum
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machine learning models need to be trained continuously
and they have a notable low detection performance when
the same classifier is applied to several attacks [17], [20].
Moreover, many quantum machine learning techniques have
complex tasks that may take a long time to complete, and
computational errors may occur [6], [7], [11].

We intend to address the above-mentioned problems by
using the proposed DEQSVC, which integrates effective
dimensionality reduction techniques, a robust feature map
encoding method, and an efficient Quantum Support Vector
Classifier (QSVC) to detect DDoS attacks [8]. The proposed
DEQSVC uses a ZZFeatureMap to encode the classical
dataset into quantum states and entangle them to capture
the complex relationship between the input data features.
Then the entangled quantum states are passed to the Pegasos
QSVC to detect DDoS attacks. The PQSVC algorithm uses
a quantum linear systems solving algorithm to efficiently
estimate the kernel function without explicitly computing it,
allowing the algorithm to handle high-dimensional feature
spaces and large datasets more efficiently [33], [34]. This
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can potentially lead to improved classification accuracy by
finding the hyperplane that maximally separates the two
classes.

In the proposed work, we intend to detect DDoS attacks
that occur on the Lightweight Directory Access Protocol
(LDAP). The LDAP protocol is a lightweight client-server
cross-platform that is used for directory service authentica-
tion [21]. The reason for selecting this protocol is that it
is widely adopted and highly susceptible to DDoS attacks.
This is because the LDAP protocol is built on top of the
TCP/IP protocol and serves to set up authentication policies
for a large number of users. By leveraging the LDAP
protocol, it becomes possible to authenticate all employees
in an organization simultaneously, eliminating the need for
individual authentication policies [2], [21], [22]. As a result,
it is crucial to implement robust security approaches for the
LDAP protocol.

To verify the performance of the proposed DEQSVC
we conducted experiments on the IBM quantum computer
and compared it with traditional Quantum Support Vector
Machine (QSVM) approaches and other quantum machine
learning techniques [11], [15], [17]. The results show
the superiority of the proposed DEQSVC over the other
approaches.

The following are the contributions of our work.
1) Developed an approach that integrates the most

efficient dimensionality reduction techniques with
quantum entanglement to improve data encoding and
detection accuracy.

2) Applied a robust feature map method to encode the
classical data into quantum data.

3) Demonstrated that DEQSVC enhances the cyber-
security of communication protocols by achieving
a significant detection accuracy of DDoS attacks,
outperforming well-known DDoS attacks detection
models.

4) Conducted performance evaluation experiments to
evaluate DEQSVC on the genuine IBM quantum com-
puter compared to the Qiskit simulation environment.

The remainder of this paper is organized as follows: In
section II, we survey the most relevant existing quantum
machine learning security solutions against DDoS attacks,
pointing out their pros and cons, and how they counter these
attacks. Section III describes the methodology of our QSVC
approach, including the dataset, standardization and scaling
techniques, dimensionality reduction technique, quantum
encoding method, and the training process of DEQSVC
to detect DDoS attacks. In section IV, we illustrate the
experimental results of DEQSVC using Qiskit and directly
run it on an IBM quantum computer. In section V, we discuss
future directions. Finally, section VI presents the conclusion
of our proposed work.

II. RELATED WORK
In this section, we investigate several quantum machine
learning solutions against DDoS attacks, pointing out
their pros and cons in terms of protecting communication
systems.

A. QUANTUM MACHINE LEARNING SECURITY
SOLUTIONS
This section discusses the most recent quantum machine
learning approaches used to detect cybersecurity DDoS
attacks on communication systems, as well as their pros and
cons. This section also illustrates tools used to develop the
surveyed quantum machine learning solutions, as well as the
datasets that are utilized to conduct the proposed experiments
for these solutions.

Soliman et al. developed a network intrusion detec-
tion algorithm called Quantum Vaccine Immune Clonal
Algorithm (QVICA) [12]. The proposed algorithm uses
bio-inspired quantum techniques and the Estimation of
Distribution Algorithm (EDA) to detect DDoS attacks. The
experimental results indicate that the proposed algorithm
achieved 94% classification accuracy of DDoS attacks.

Dong et al. proposed the quantum beetle swarm optimiza-
tion algorithm to detect malicious network intrusions [13].
The algorithm utilizes the least-square quantum regression
to decompose the features matrix of intrusion attacks,
which results in minimizing the computational complexity
of classical extreme machine learning. The results showed
that the proposed model enhances the convergence rate for
detecting malicious security attacks.

Gong et al. developed an efficient DDoS attacks detection
approach based on Quantum Genetic Optimization and the
BP neural network (DQGA-BP). The proposed approach
enhanced the rotation angle of the quantum revolving gates
of the QGO algorithm; thus, it has better convergence and
searching abilities [14]. The experimental results show that
this algorithm has 0.51% average detection and s 0.37% false
alarm rates.

Bang et al. developed a quantum machine learning
approach based on a single measurement and a first-in-first-
out (FIFO) memory technique to detect cybersecurity attacks
on communication protocols, such as TCP/IP and LDAP. This
approach allows a receiver to learn a unitary transformation
related to the quantum task identified by a sender, which
enables the detection of a malicious third-party attacker [16].
Gouveia et al. developed an unsupervised Quantum-

Assisted Support Vector Machine (QASVM) approach to
detect cybersecurity attacks against communication protocols
(e.g., LDAP) [17]. The proposedQASVMapproach enhances
the security of NIDs in terms of quantum-assisted computing.
The approach shows promising results; it achieved 93%
accuracy when it was applied to the NSL-KDD dataset and
75% accuracy when it was applied to the NB15 dataset.

Yamany et al. developed an Optimized Quantum-based
Federated Learning (OQFL) framework to counter adver-
sarial attacks in intelligent transportation systems [18]. The
proposed security defense approach utilizes a Quantum
Particle SwarmOptimization algorithm (QPSO) to update the
learning rate hyperparameters and a cyber defense approach
to detect adversarial attacks. The results indicate that the
OQFL technique is robust against cybersecurity attacks.

Chen et al. proposed the Quantum-inspired Ant Lion
Optimized Hybrid K-means (QALO-K) for malicious intru-
sion detection in communication systems [19]. The hybrid
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TABLE 1. Quantum machine learning security detection approaches of
DDoS attacks.

approach employs quantum computing techniques and swarm
intelligence methods to enhance the k-means algorithm to

TABLE 1. (Continued.) Quantum machine learning security detection
approaches of DDoS attacks.

converge towards the global optimal direction rather than
falling into a local direction. This results in increasing the
accuracy of detecting malicious network intrusions.

Payares et al. developed a Quantum Ensemble Model
(QEM) for detecting DDoS attacks [11] on LDAP and SSDP.
The idea behind the proposed model is to use quantum
superposition to store sets of parameters to generate an
ensemble model of quantum classifiers measured in a parallel
environment. The proposed ensemble approach utilizes the
angle encoding method to generate four qubits to detect
DDoS attacks. The detection process works by measuring a
Pauli Z gate operator on every two qubits, then the results are
passed into a SoftMax function to produce two-dimensional
probability vectors that classify data into two classes: DDoS
and benign. The results show that the proposed approach
achieves high detection accuracy, recall, precision, and F-
score for DDoS attacks.

Islam et al. developed a hybrid classical-quantum neural
network to detect cybersecurity attacks in the cloud-
supported in-vehicle environment [15]. The idea of the
proposed approach is to extract high-dimensional features
using the neural network and process them using qubits to
detect amplitude-shifted cybersecurity attacks. The results
show that the proposed hybrid approach achieved 94%
detection accuracy.

As seen in Table 1, many of the existing quantum
machine learning detection techniques for DDoS attacks
have limitations that limit their detection performance. The
security detection approaches in [11], [12], [14], and [15]
have complex training computations, which result in inef-
ficient detection accuracy. The quantum models in [13],
and [19] suffer from qubit decoherence, which results in
misclassifying normal network behaviors as DDoS attacks.
The approach in [16] is limited to one qubit and cannot use
more than one qubit to detect DDoS attacks, which results
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in insufficient detection accuracy. The approaches in [17]
have weak encoding algorithms, and there is no statistical
similarity between the training and the testing models, which
indicates that the results are not accurate. Furthermore,
the approaches in [11], and [18] cannot handle large-scale
datasets. Additionally, most of the methods provided use
PCA, while our method uses the fast-independent component
analysis (ICA) to find independent variables in our feature set
and reduce its dimensions.

III. DEQSVC FOR DETECTING DDOS ATTACKS
In this section, we will illustrate the workflow of the
DEQSVC algorithm and how quantum computing is used
to enhance the performance of the classical SVM in the
detection of DDoS attacks.

As mentioned in section II, the existing quantum, classical,
and hybrid approaches suffer from gaps that limit their
performances, such as qubit decoherence, low detection
performance, and inaccurately calculating complex tasks that
take a long time to solve (e.g., the kernel trick) [3], [4], [5],
[6], [7]. However, to overcome these limitations and provide
an accurate detection model for cybersecurity attacks,
DEQSVC as seen in Figure 1 and Algorithm 1 consists of five
phases: data selection, preprocessing, encoding, DEQSVC
training, and detection.

FIGURE 1. DEQSVC detection approach.

A. THE DDOS ATTACKS DATASET
To train our models, wewill use the DDoS Evaluation Dataset
(CIC-DDoS2019), which contains Benign and the most up-
to-date common DDoS attacks [11], [21]. It contains the
results of the network traffic analysis (e.g., attack time)
using CICFlowMeter-V3 with labeled flows based on the
time stamp, source and destination IP addresses, source and
destination ports, protocols, and attack vectors. Moreover,
it includes the event logs (windows and Ubuntu event logs)
per device.

In our proposed experiment, we will use all the 80 features
of the dataset and a sample dataset that has 5000 data
points of type DDoS_LDAP protocol, which means that
we are using the CSV file that contains DDoS attacks on
the LDAP protocol as well as benign traffic. Also, we will
perform the necessary preprocessing to have only two class
labels: Benign, which means that the analyzed data does not
represent any security threats and LDAP-type DDoS attacks.

B. DATA PREPROCESSING
The preprocessing step has three parts: data cleaning, data
balancing (scaling and normalization), and dimensionality
reduction. This step is very crucial in terms of detection

Algorithm 1 The Pseudocode of the DEQSVC
1: Import all the necessary quantum libraries from Qiskit
2: Import all the necessary machine learning libraries

—-Preprocessing—-
3: Manual data cleaning

4: Class labels = [’BENIGN’, ’DDoS_LDAP’]
5: Data: Read dataset (DDoS_LDAP.csv)
6: Standardize the dataset:
StandardScaler.fit_transform(Data)

7: Split the preprocessed dataset into training and testing datasets:
Initialize the Seed
Initialize the training dataset size
Initialize the testing dataset size
8: Reduce the Dimensions of the dataset:
FastICA(the resulting required features, random states)
FastICA.transforms(Training dataset)
FastICA.transforms(Testing dataset)

9: Normalize the dataset:
MinMaxScaler.transform(Training dataset)
MinMaxScaler.transform(Testing dataset)

—-Encoding:—-
10: FeatureMap = ZZFeatureMap(transforms the training and the testing
datasets into quantum states) #two qubits

—-Training and testing processes—-

#Training and testing on a quantum simulator on the local classical computer
11: backend = (‘statevector simulator’)
12: QuantumInstance = QuantumInstance(backend, shots, seed,
transpiler=seed)
13: Kernel = QuantumKernel(featureMap, quantumInstance)
14: DEQSVC = PegasosQSVC(kernel, training parameters)
15: DEQSVC.fit(training data)
16: DEQSVC.score(test data)

#Training and testing on the IBM quantum computer
11: IBMQ.save_account(access token)
12: Provider = IBMQ.get_provider(‘ibm-q’)
13: IBMQC = provider.get_backend(IBM quantum computer)
14: QuantumInstance = QuantumInstance(IBMQC, shots, seed,
transpiler=seed)
15: Kernel = QuantumKernel(featureMap, quantumInstance)
16: DEQSVC = PegasosQSVC(kernel, training parameters)
17: DEQSVC.fit(training data)
18: DEQSVC.score(test data)

—- Output—-
Print prediction classes: DDoS_LDAP as 1, BENIGN as 0
Calculate and print Accuracy
Calculate and print recall
Calculate and print precision
Calculate and print F-score

Calculate and print the error rate

model preparation because we are dealing with real-world
network traffic data that is not correctly balanced, scaled,
and distributed. Therefore, we need to handle this data with
the necessary preprocessing to improve the performance of
DEQSVC and generate accurate results.
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The preprocessing step has three parts: data cleaning, data
balancing (scaling and normalization), and dimensionality
reduction. This step is very crucial in terms of detection
model preparation because we are dealing with real-world
network traffic data that is not correctly balanced, scaled,
and distributed. Therefore, we need to handle this data with
the necessary preprocessing to improve the performance of
DEQSVC and generate accurate results.

1) DATA CLEANING
The dataset has real-world data points that represent network
traffic, and due to this, the dataset contains inaccurate
information that results in poor detection accuracy. To solve
this problem, we cleaned up the dataset as follows:

1) Eliminate all the data points that have null values or
white spaces.

2) Remove data points with a missing percentage more
than a specified threshold in the original network traffic
analysis using the CICFlowMeter-V3.

3) Remove features with a single unique value that does
not belong to a formal range distribution.

4) Eliminate collinear data points with a correlation more
than a specified correlation coefficient.

2) DATA BALANCING
The dataset contains real-world network traffic data that is
imbalanced and has an informal distribution range. However,
to increase the detection accuracy of the DEQSVC model,
the dataset must be standardized and normalized. Thus,
we used the StandardScaler and MinMaxScaler methods to
balance our dataset and normalize it to a formal distribution
range [24].

StandardScaler is the process of standardizing features by
eliminating the mean and scaling to a variance unit. The
equation for standardizing a dataset sample x is as follows.
z = (x − v)/s, where v is the Mean and s is the standard
deviation of the training dataset [24]. However, we scale each
feature independently by calculating the relevant statistics
on the data points in the training set, and then the Mean
and standard deviation are stored to be utilized on later data
using the transformmethod. After we standardize the dataset,
we reduce its dimensions and transform each of them into a
range of (−1,1) using the MinMaxScaler.

In the DEQSVC model, we standardized and normalized
the dataset because most of the selected dataset features
have a center around 0 and have variance in the same
order [23]. However, if a feature has a variance that is
orders of magnitude larger than others, it will control the
kernel function and make the training model unable to learn
from other features accurately. Thus, by performing the
standardization and normalization processes, we increase the
detection accuracy of our proposed model.

3) DIMENSIONALITY REDUCTION
As described above, we intend to develop a QSVC approach
that has the highest possible detection accuracy of cybersecu-
rity DDoS attacks. However, the high dimensionality of the
dataset may cause poor detection accuracy as well as poor

training times. To overcome this issue, we used the fast ICA
Dimensionality reduction technique to reduce the dimensions
of the training dataset to two dimensions. The fast ICA is an
enhanced version of the ICA and is a common dimensionality
technique that is used to separate variables that have more
than one outcome into independent sub-components [25].

The fast ICA method works by representing the sample
dataset as a random vector x = (x1, x2, . . . ., xm)T and
the random states associated with the observed variables
as random vector s = (s1, s2, . . . ., sn)T . The goal is to
transform x using a linear static transformation into a vector
of maximally sub-independent components estimated by
some function F (s1, s2, . . . ., si)T of independence [25].
In our case, the dataset contains linearly independent data

points. Therefore, we used the following fast ICA equation to
generate the reduced features:

xi = di,1s1 + . . .+ di,ksk + . . .+ di,nsn. (1)

Here, di,k is the mixing weight of the data point di and
x = (x1, x2, . . . ., xm)T is the sum of the independent sub-
components of the random states sk , k = 1, 2, 3, . . . , n. The
results of the fast ICA reduce the dataset to two features,
as illustrated in Figure 2.

FIGURE 2. The obtained dimensions using the fastICA.

As seen in Figure 2, the fast ICA process generates
two features, and we have only two labels: Benign and
DDoS_LDAP. We first applied the PCA, but it caused
DEQSVC to generate poor detection accuracy [25]. While
the ICA looks for independent variables, the PCA technique
only searches for uncorrelated relationships. Uncorrelated
variables have a linear relationship; however, our dataset
contains linearly independent data points. Therefore, the fast
ICA allows DEQSVC to generate high accuracy.

C. DATA ENCODING
There are various encoding techniques used to represent
classical datasets as quantum states. The idea is to transform
a classical datapoint x and encode it into a quantum circuit
as gate parameters to create a quantum state |ψ⟩ [26], [27].
In DEQSVC, we use the ZZFeatureMap to transform our
data. Havcilek et al. proposed a feature map family to encode
n-dimensional data into n qubits [28]. The map is generated
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first by the unitary:

|ψ⟩ = Uφ (x⃗) = Uφ(x⃗)H
⊗nUφ(x⃗)H

⊗n (2)

where the unitary gate Uφ(x⃗) is defined as:

Uφ(x⃗) = exp

i ∑
S⊆[n]

φs (x⃗)
∏
i∈S

Pi

 (3)

With Pauli operators Pn ∈ {I ,X ,Y ,Z }
⊗n. Some examples

of first-order Pauli operators in matrix form are:

I =

[
1 0
0 1

]
Z =

[
1 0
0 −1

]
Y =

[
0 −i
i 0

]
X =

[
0 1
1 0

]
(4)

The index S describes the connectivity between qubits,
S ∈

{( n
k

)
combinations, k = 1, . . . , n

}
. In Qiskit the data

mapping function φs defaults to:

φs (x⃗) =

{
x0 if k = 1∏
j∈S

(
π − xj

)
otherwise

}
(5)

Originally, we used this feature map named the PauliFea-
tureMap in Qiskit. This map is the more general form of the
feature map where Pauli operators are used to describe the
connections between features and qubits. The 2-Qubit Pauli
feature map takes the circuit form:

FIGURE 3. Pauli feature map family circuit.

Figure 3 shows the Pauli Feature Map Family Circuit. The
ZFeatureMap is a first-order Pauli Z-Evolution circuit such
that there is no interaction between features in the encoded
data leading to a circuit with no entanglement gates. As such
the ZFeatureMap is the case for k = 1 where the Pauli strings
are fixed as [‘Z’]. This map can be computed efficiently
classically and thus provides no quantum advantage [26],
[28] If it is allowed to use general real values φs (x), d =

2 is sufficient to encode P-Hard problems in the output
probability. This assumption is possible in the scenario
where the output probability can only be approximated
using multiplicative error [29]. For a single repetition of
the ZFeatureMap, we may approximate the kernel with an
additive error that scales with the number of samples on
the uniform distribution over n classical bits. As such, for
this case we may compute the kernel classically, proving no
quantum advantage [27], [28].
Furthermore, the ZZFeatureMap used in DEQSVC is a

second-order Pauli Z-Evolution circuit. As opposed to the
first-order counterpart, this is the case for k= 2 with the Pauli

strings [‘Z’,’ZZ’] which can be described using the matrix
form:

ZI =

[
1 0
0 −1

]
⊗

[
1 0
0 1

]
=

 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


(6)

IZ =

[
1 0
0 1

]
⊗

[
1 0
0 −1

]
=

 1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


(7)

ZZ =

[
1 0
0 −1

]
⊗

[
1 0
0 −1

]
=

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


(8)

where Zi ∈ {IZ ,ZI ,ZZ }, and Uφ(x⃗) is represented by the
following formula:
Uφ(x⃗) = exp(i

∑
S⊆[n]

φs (x⃗)
∏
i∈S

Zi) as seen in [28].

The ZZFeatureMap data mapping function φS for 2 qubits:

φS = (π − xi)
(
π − xj

)
(9)

The ZZFeatureMap contains two local interactions and
must have two or more qubits to have a potential for quantum
advantage. The kernel that is to be estimated must also be
classically hard to compute to gain any quantum advantage.
Recall that our data has been reduced to two dimensions,
so we consider the two-qubit case.
Using the following one and two qubit gates we can

describe our unitary:

Uφ{i,j}(x) = exp
(
iφ{i,j} (x)ZiZj

)
(10)

Uφ{i}(x) = exp
(
iφ{i} (x)Zi

)
(11)

Uφ(x) = exp
(
iφi (x)Zi + iφj (x)Zj + iφi,j (x)ZiZj

)
(12)

According to Uφ(x⃗) and equation (5), Zi = ZI
and Zj = IZ [27].
Although this encoding method is effective for our

purpose, it is clear to see how adding more qubits would
exponentially increase the cost of quantum operations. More
work must be done if this feature map is to be applied
efficiently for large values of n, the number of qubits.

FIGURE 4. One repetition of the ZZFeatureMap.

As seen in Figures 4 and 5, the execution of the encoding
technique will transform the dataset x into an n-qubits
dataset with the form of |ψ⟩ = Uφ(x) |ψi⟩⊗2 [26], [27].
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FIGURE 5. The encoding circuit – encodes a classical dataset x⃗ into a
quantum dataset |ψ⟩

Figure 4 illustrates the quantum data encoding circuit that
is illustrated above to generate two qubits datasets: |ψ⟩ =

{|q0⟩ , |q1⟩ }. The encoding circuit consists of two qubits
q0, q1, ZZFeatureMap with two shifting gates X⊗2, unitary
operator Uψ(x) (two Hadamard gates H⊗2, and one unitary
gate uϕ(x)). The results of this circuit are the quantum dataset
|ψ⟩ that has all data points in the classical dataset mapped
into two qubits.

Once the data is represented as quantum states, the kernel
function estimates the inner products of the states, and the
kernel is finally used to generate the hyperplane in the Hilbert
space for classifying the dataset [27]. The kernel must be
classically hard to estimate up to an additive polynomial small
error for there to be potential for quantum advantage [30].
If the kernel can be estimated classically there will be no
conceivable benefits from the quantum nature of our system.

D. TRADITIONAL QUANTUM KERNEL ESTIMATION
The kernel trick allows us to use a higher dimensional space
to represent our features without having direct access to those
features. Kernels do so by making use of the inner products
of the feature space, preserving the necessary information for
calculation.

Originally, we used Qiskit QSVM to solve the traditional
dual quadratic SVM problem where we must first maximize

LD (α) =

t∑
i=1

αi −
1
2

t∑
i,j=1

yiyjαiαjK
(
xi, xj

)
(13)

where
∑t

i=1 aiyi = 0 and αi ≥ 0. Which can be solved using
standard quadratic programming solvers [28]. The solution
will be given by the vector α∗

=
(
α∗

1 , . . . , α
∗
t
)
.

The density operator expansion is defined as:

ρ (x) =

4n∑
i=1

ai (x) σi = |φ (x)⟩ ⟨φ (x)| (14)

where the Pauli decomposition coefficients ai ∈ R, and
the density matrix σi ∈ Pn ∈ {I ,X ,Y ,Z }

⊗n, and recall
our two-qubit ZZ Feature map with Pauli strings [‘Z’,’ ZZ’]
corresponding to the Pauli operators [IZ ,ZI ,ZZ ]. According
to equation (2), equation (4), and [27], we then represent the
kernel as a form of the density operator ρ (x):

K (x, z) = | ⟨φ (x) | φ (z)⟩|2 = tr [ρ (x) ρ (z)] (15)

K (x, z) = tr [ρ (x) ρ (z)] = tr

[
4n∑
i=1

ai (x) σiai (z) σi

]
(16)

As Pauli matrices are mutually orthogonal in terms of the
trace inner product, we have the relation tr

[
PαPβ

]
= δα,β2n.

Which we can expand for only the real coefficients [27].

K (x, z) = tr
[
σ 2
i

] 4n∑
i=1

ai (x) ai (z) = 2n
4n∑
i=1

ai (x) ai (z)

(17)

We may now optimize the Lagrange multipliers such
that the equation above corresponds to the kernel we have
estimated using DEQSVC. Any quadratic programming
solver may be used to solve for ai [27]. Now we may finally
classify our test data using the sign of the traditional SVM
equation:

N∑
i=1

αiyiK (xi, x) (18)

E. DEQSVC MODEL – ENHANCED QSVM APPROACH
In our experiment, we selected the Pegasos QSVC algorithm
implemented in Qiskit. Pegasos is a stochastic sub-gradient
descent algorithm used ‘‘for solving the optimization problem
cast by Support Vector Machines’’ [30]. Rather than treating
the problem as a constrained quadratic programming prob-
lem, Pegasos treats the SVM problem as an unconstrained
loss minimization problem. While there are various methods
of generating an SVM, Pegasos uses stochastic subgradient
descent, that is, it uses noisy unbiased gradients in addition to
a confined set of step sizes to solve the convex minimization
problem.
In this section, we illustrate how we use the Pegasos

QSVC algorithm to estimate the kernel for our training and
test samples using Qiskit. After we encode the classical n-
dimensional dataset x into the n-qubits dataset, the QSVC
needs to estimate the kernel K (x, z) for all pairs of training
samples. Which will be used by our SVM to generate
the hyperplane separating the two classes of datapoints,
[‘BENIGN’,’ DDOS_LDAP’] or [0,1]. This is done as
follows:
Once classical data x⃗ is transformed into the quantum

dataset |ψ⟩ using the ZZ feature map:
|ψ (x)⟩ = Uφ(x) |0⟩⊗n (19)

The kernel to be estimated K (x, z) is defined as:
K (x, z) = |⟨φ (x) | φ (z)⟩|2 (20)

Our QSVC treats the training as a loss minimization
problem using the following representation [30]:

λ

2
∥w∥

2
+

1
m

∑
(x,y)∈S

l (w; (x, y)) (21)

Here, the weight vector w and ⟨w, x⟩ denotes the standard
inner product between the two vectors. The training set S and
l (w; (x, y))are given by.

S = {(xi, yi)}mi=1, xi ∈ Rnandyi ∈ {+1,−1} (22)

l (w; (x, y)) = max {0, 1 − y⟨w, x⟩} (23)
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By the representer theorem, we can solve the loss
minimization problem by expressing the optimal solution as
a linear combination of the training instances. Using only our
kernel operator we can access the inner products of our data
and express our lossminimization in terms of the implicit data
mapping function φ (x):

λ

2
∥w∥

2
+

1
m

∑
(x,y)∈S

l (w; (φ (x) , y)) (24)

And according to equation (18), equation (19), and [30],
l (w; (φ (x) , y)) is represented by the following formula:

l (w; (φ (x) , y)) = max {0, 1 − y⟨w, φ(x)⟩} (25)

Recall that the data mapping function can be estimated
using kernel evaluations, also for simplicity, we continue to
use the data mapping representation φ (x) when we refer to
kernel estimation. Shalev-Shwartz proves for all t we can
rewrite wt+1 as:

wt+1 =
1
λt

t∑
i=1

1
[
yit ,

〈
wt , φ

(
xit

)〉
< 1

]
yitφ

(
xit

)
(26)

where 1 takes the value 1 if the binary statement is true,
0 otherwise. Rather than solving a dual quadratic problem,
as do most SVM classifiers, Pegasos minimizes the primal
problem using the kernels.

Algorithm 2 Kernelized Pegasos Algorithm as Seen in [30,
Figure. 3]

INPUT :S, λ,T
INITIALIZE: Set α1 = 0
FOR t = 1, 2 . . . , T
Choose it ∈ {0, . . . , |S|} uniformly at random
For all j ̸= it , set αt+1[j] = αt [j]
If yit

1
λt

∑
αt [j]y (it)K

(
xit , xj

)
< 1, then:

setαt−1 [it ] = αt [it ] + 1
Else:
Set αt+1 [it ] = αt [it ]

OUTPUT : αT+1

As seen in algorithm II, For each t, αt+1 ∈ Rm counts how
many times j has been selected with non-zero loss [30].

αt+1 [j] =
∣∣{t ′ ≤ t : it ′ = j ∧ yj

〈
wt ′ , φ

(
xj

)〉
< 1

}∣∣ (27)

We now represent our weight vector wt+1 in terms of αt+1:

wt+1 = (
1
λt

)
m∑
j=1

αt+1 [j] yjφ
(
xj

)
(28)

By the representer theorem, we find that the optimal
solution to our minimization problem is spanned by the
training instances in the form of w =

∑m
i=1 α [i]φ (xi).

According to equation (20), we may now rewrite the problem
in terms of our kernel and α.

min
α

(λ/2)α [i]α [j]K
(
xi, xj

)
+ (1/m)

m∑
i=1

× max

0, 1 − yi
m∑
j=1

α [j]K (xi, xj))

 (29)

Pegasos does not ever access the inner products using the
data mapping function but rather via the kernel evaluations.
We then take gradients concerning α with stochastic gradient
descent. The Pegasos QSVC is well suited for large datasets
as the runtime does not depend directly on the size of the
training set [30]. However, for our experiment, we will not
benefit much from this quality as our training set is relatively
small.

Now that we have an optimized kernel, we present the
QSVC used to generate the hyperplane which binarily
classifies our test data. Our SVC will then classify test data x
depending on the sign of the following:

N∑
i=1

αiyiK (xi, x) (30) (30)

where the Lagrange multipliers are αi ∈ Rn, and pairs
of training data are (xi, yi). The Lagrange multipliers are
parameters optimized by the SVC to solve for the optimal
hyperplane.

FIGURE 6. The trained DEQSVC model.

Figure 6 shows the DEQSVC circuit. Here, we apply the
necessary measurements on the quantum dataset to generate
the trained DEQSVCmodel that will form a hyperplane in the
Hilbert space to detect DDoS cybersecurity attacks. Once the
model is trained, using our measurement gates on each qubit,
we can then collapse the quantum states to produce a classical
result of either 0 or 1. Therefore, DEQSVC will detect and
classify the data into two labels: DDoS_LDAP as 1, which
represents themalicious DDoS attacks on the LDAP protocol,
and BENIGN as 0, which means there is no malicious threat.

IV. EXPERIMENTS AND RESULTS
This section provides a clear view of the computational detec-
tion performance of DEQSVC compared to the benchmark
approaches, the QEM, QSVM, Quantum Neural Network
(QNN), QASVM, and Hybrid Classical Quantum Neural
Network (HCQNN) [11], [15], [17], [35]. Moreover, the
results show the behavior of quantum models against
malicious attacks and the potential for quantum advantage in
cybersecurity.
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TABLE 2. The setup of the experimental environment on the dell i-5 intel
core computer.

A. QSVM EXPERIMENTATION USING LOCAL QISKIT
SIMULATION
We used Qiskit through Python Jupyter on an I-5 Intel core,
6GB RAM computer to conduct our detection experiments of
DDoS attacks and evaluate the performance of the traditional
QSVM approach against the benchmark models.

In Tables 2 and 3, we depict all the crucial components of
the setup of our experimental environment. Other variables
concerning the benchmark approaches are set based on the
experiments in [11], [15], and [17]. For example, the epoch
number of the QNN in [15] is 30, so in our experiment, we set
this value to 30 for consistency. We selected the state vector
quantum simulator since the data encoding technique and
the kernel function of the QSVM model will represent the
quantum states as a state vector. Therefore, this simulator is
the best option for local testing of our experiment.

B. DEQSVC EXPERIMENTATION USING LOCAL QISKIT
SIMULATION
Using Qiskit on the same Dell machine, we implement
DEQSVC to estimate our kernel and hyperplane. Unlike the
QSVM approach which solves the loss minimization problem
in the form of a dual quadratic, DEQSVC solves the loss
minimization using sub-primal stochastic gradient descent.

TABLE 3. The setup of the experimental environment for DEQSVC.

TABLE 4. The results of the comparison in terms of the performance
metrics.

In our first experiment, we applied the PCA, but it
decreased the performance of DEQSVC by generating
72% detection accuracy. The PCA technique searches
solely for uncorrelated variables while the fast ICA looks
for independent variables. Uncorrelated variables have a
linear relationship; however, our dataset contains linearly
independent data points. Therefore, the fast ICA increases
the detection accuracy of the DEQSVC by more optimally
minimizing the features of our dataset to two features [24].
As seen in Table 4, DEQSVC generated 99.49% detection

accuracy, 99% recall, 99% precision, and 99% F-score. This
means that DEQSVC outperformed the benchmark models
[11], [15], [17], [35] in generating higher performance
results. Note that the QEM in [11] generated the lowest
detection performance results compared with the other
detection models.

As seen in Fig. 7 and Table 4 the DEQSVC model has
the lowest detection error rate among all the benchmark
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FIGURE 7. The error rate of the DEQSVC compared to the benchmark
models.

approaches at 0.5%. TheQSVMgenerated a 3.31% error rate,
which means that it wrongly classified 3.31% of the data.
Here, the QEM has the highest error rate of 34.65.

FIGURE 8. The wall time of the DEQSVC compared to the benchmark
models.

Fig. 8 and Table 6 show the wall time (the total running
time of each model) in seconds. Note that the QNN and
HCQNN wall time (5256 and 7560 seconds) were omitted
for visual clarity. The DEQSVC wall time is comparable
to that of the QASVM while. The reason for the faster
performance of DEQSVC lies in the data encoding and kernel
estimation approaches III. This preserves our data in the
that are explained in section form of inner products, which
speeds up the detection process of DDoS attacks while also
improving accuracy. DEQSVC also performs better than the
benchmark models by making use of the fast ICA to reduce
the dimensionality, while also preserving the independent
variables in our data. The HCQNN had the longest run time
among all the models with 7560 seconds of wall time and
only 97% accuracy, proving far inferior to our model.

C. DEQSVC EXPERIMENTATION USING IBM QUANTUM
COMPUTER
In this section, we describe our experimental results of
DEQSVC on an IBM quantum computer. The purpose of

TABLE 5. The setup of the experimental environment on the IBM
quantum computer.

conducting this experiment is to demonstrate that DEQSVC is
accurate even with the properties of noisy intermediate scale
quantum (NISQ) devices.

The first four elements of Table 5 are fixed in both the
classical and quantum computer setups.Wewere successfully
able to execute DEQSVC by creating an account on the
IBM quantum website and then using Jupyter to integrate
the access token of our account into our DEQSVC code.
Then, we identified the provider of the IBM quantum
service (ibm-q) that provides access to the backend cloud
service that runs the IBM Quantum computer. We then chose
a quantum computer for which we chose IBM’s 7-qubit
quantum computer, ibm_oslo. Finally, we executedDEQSVC
to run on the quantum computer. The current computational
resources provided by IBM suffer from various API issues
as well as long queue times making it extremely difficult to
calculate the true wall-clock time. The results of the execution
are illustrated in Table 6.

IBM uses a fair share queuing system to ensure that
a process sent to IBM Quantum will not dominate the
resources. If a job sent to IBM is deemed too large to run in a
single job, IBM will split the job into multiple jobs, which
are queued after each job is finished, increasing the time
spent in the queue. Another limitation lies in the job/circuit
submission, if a job error is encountered due to a failure
on IBM’s side, the job will not be resent to the queue for
resubmission of the circuit(s). This can hinder accuracy as
was encountered various times in the testing of DEQSVC.
Certain IBMQuantummachines tend to encounter these sorts
of errors more frequently than others in our experimentation.
IBM Oslo was the most reliable machine in the list of
available providers though it suffered from large queue times
as many other jobs had been submitted to the machine.
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TABLE 6. Results of DEQSVC on the IBM quantum computer.

Table 6 illustrates that the results obtained from running
DEQSVC on the IBM Quantum device are slightly less
accurate than the model on the state vector simulator. This
can be attributed to the noise and faults from the decoherence
of qubits. The current error correction schemes used by these
quantum systems must be improved to further extend the use
of quantum computers.

V. FUTURE WORK RECOMMENDATIONS
In this paper, we developed DEQSVC to detect DDoS
attacks against the networking architecture of cybersecurity.
The QSVC approach achieved a high detection accuracy
of 99.49%, with an error rate of 0.51% using a simulator.
DEQSVC on IBM’s quantum computer only generated an
accuracy of 92% with an error rate of 8%. Therefore, future
work should be conducted to improve the hyperparameter
tuning of DEQSVC and adopt error-correcting mechanisms,
which will enhance the data processing of the QSVC
approach and generate higher detection accuracy.

We intend to extend the application DEQSVC by applying
it to different cybersecurity attacks datasets to see the
resultant behaviors. Furthermore, we are also interested in
applying the proposed model to medical issues, such as
cancer datasets, and seeing the resultant behaviors.

To provide a more reliable quantum system IBM must
improve upon its backend service by limiting the number of
errors certain machines are subject to. They must also ensure
that failed jobs due to IBM’s errors are retried before they are
discarded. More work must also be done in the development
and implementation of error correction to provide more
accurate results for all sorts of quantum algorithms.

VI. CONCLUSION
Quantum machine learning is a significant technology that
possibly enhances the computational power of a system and
increases its performance in terms of data processing. In this
work, we proposed the DEQSVC that integrates effective
dimensionality reduction techniques, a robust feature map
encoding method, and an efficient QSVC to detect DDoS
attacks.

The implementation of DEQSVC has three main phases:
first, the dataset is preprocessed, then encoded into a quantum
dataset (quantum states), and then the model is trained, in our
case to detect DDoS attacks. In the preprocessing phase,
we first manually clean the dataset, standardize it using the
StandardScaler method, and then reduce its dimensionality
using the FastICA technique. Finally, the generated dataset
is normalized using the MinMaxScaler. In the encoding
process, the ZZFeatureMap encoding technique is used,

to transform the classical dataset into a quantum dataset.
Finally, the DEQSVC is trained by estimating the kernel
matrix that is used to generate the hyperplane in the Hilbert
space. The hyperplane is then used to classify our data as
benign network traffic or as a DDoS attack.

To verify the performance of the DEQSVC approach,
we compared it with a traditional QSVM and benchmark
algorithms using a widely used DDoS attack dataset named
CIC-DDoS2019. The results showed that DEQSVC outper-
formed the benchmark algorithms by generating 99.49%
accuracy, 99% recall, 99% precision, 99% F-score, and a
0.51% error rate. Furthermore, we demonstrated the accuracy
of the QSVC by running it on the IBM quantum computer.
DEQSVC surpasses the benchmark algorithms by use of its
feature encoding and dimensionality reduction techniques as
well as the stochastic gradient descent training method used.

It is crucial to detect and prevent DDoS attacks using
efficient security solutions because they can harm and
shut down an entire networking platform. Therefore, this
proposed work demonstrates that quantum machine learning
can enhance the cybersecurity of NIDSs and make themmore
robust against DDoS attacks.
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