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ABSTRACT Recently, through the progress achieved in the study of computer science, automated test
assemblies of parallel test forms, for which each form has equivalent measurement accuracy but with a
different set of items, have emerged as a new standard tool. An important goal for automated test assembly
is to assemble asmany parallel test forms as possible. Althoughmany automated test assemblymethods exist,
maximum clique using the integer programming method is known to be able to assemble the greatest number
of assembled test forms with the highest measurement accuracy. Nevertheless, because of the high time
complexity of integer programming, the method requires a month or more to assemble 300,000 tests. This
study proposes a new automated test assembly using Zero-suppressed Binary Decision Diagrams (ZDD): a
graphical representation for a set of item combinations. This representation is derived by reducing a binary
decision tree. According to the proposedmethod, each node in the binary decision tree corresponds to an item
of an item pool, which is a test item database. Each node has two edges, each signifying that the corresponding
item is included in a test form or not. Furthermore, all equivalent nodes are shared, providing that they have
equal measurement accuracy and equal test length. Numerical experiments demonstrate that the proposed
method can assemble 1,500,000 test forms within 24 hr, although earlier methods have been capable of
assembling only 300,000 test forms within 10 days.

INDEX TERMS Automated test assembly, item response theory, parallel test, zero-suppressed binary
decision diagrams.

I. INTRODUCTION
With the rapid development of computer science technolo-
gies, automated test assemblies [1], [2], [3], [4], [5] of parallel
test forms, for which each form has equivalent measurement
accuracy but with a different set of items, have been put to
practical use. For instance, parallel test forms are necessary
when a testing organization administers tests at different
times. To accomplish this mode of testing, parallel test forms
are assembled in which all forms have equivalent qualities
so that examinees who have used different test forms can
be evaluated objectively using the same scale. Consequently,
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parallel test forms ensure that their scores are equivalent even
if different examinees with the same ability take distinct tests.

Automated test assemblies have resolved difficulties such
as high computational costs [1], [2], maximization of the
number of tests [3], [5], minimization of item exposure
bias [4], and so on. Most recently, automated test assembly
has been applied for computerized adaptive testing (such as
[6], [7]), which selects and presents the optimal item for
individual examiners.

Earlier studies [1], [2], [3], [4], [5], [8], [9], [10], [11],
[12], [13], [14], [15] have formulated a test assembly as a
combinational optimization problem. The test assembly seeks
a combination of items that satisfies given test constraints,
such as the test lengths and ability measurement accuracy
from an item pool.
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Themost widely recognized automated test assembly is the
Big Shadow Test method (BST), which uses Mixed-Integer
Programming (MIP) [8]. This method assembles parallel
test forms sequentially by minimizing the difference of
measurement accuracies between a current assembled test
and a set of items that remain in the item pool. Although
the Big Shadow Test method can impose test constraints
on parallel test forms effortlessly using MIP, the method
does entail two crucially important shortcomings. First, the
ability measurement accuracy of the examinee decreases as
the assembled number of test forms increases. Second, this
method does not guarantee maximization of the number of
assembled test forms. Test organizations allocate different
test forms to each examinee to secure the items from item
leaks and exam cheating by the test-takers. Therefore, the
second difficulty is a severe difficulty for automated test
assembly. Ideally, the number of assembled test forms should
exceed the number of examinees.

To resolve this shortcoming, Ishii et al. [3], [16] formalized
an automated test assembly with overlapping conditions as a
maximum clique problem (MCP), which is a combinational
optimization in graph theory. The automated test assembly
constructs a graph in which the vertices and the edges
respectively represent tests satisfying the test constraint and
represent satisfaction of the overlapping constraint. Then,
this method extracts the maximum clique from the graph
as parallel test forms. The automated test assembly can
guarantee the maximum number of assembled test forms
exactly. The maximum clique method assembled 10–1,000
times the number of assembled test forms that the traditional
methods did. However, this method limits the number of
assembled test forms to a hundred thousand because the
maximum clique problem has high space complexity.

To reduce the high space complexity of the maximum
clique method, Fuchimoto et al. [5] proposed the Hybrid
Maximum Clique Algorithm with Parallel Integer Program-
ming (HMCAPIP), which is known to assemble the greatest
number of assembled test forms with the highest measure-
ment accuracy. As the first step, test forms are assembled with
the overlapping constraint as amaximum clique problemwith
low time complexity, but with high space complexity. The
second step, using integer programming (IP) with low space
complexity but with high time complexity, repeats the parallel
search of the tests satisfied with the overlapping constraint
for all currently assembled tests. However, HMCAPIP retains
the heavy time complexity of IP. For example, it requires
one week or more to assemble 300,000 test forms. Moreover,
the parallel search effectiveness depends on the computer
specifications.

To improve the number of assembled test forms, this
study proposes a new automated test assembly using Zero-
suppressed Binary Decision Diagrams (ZDD). A ZDD
is an efficient graphical representation of a set of item
combinations [17]. Actually, ZDD is derived by reducing
a binary decision tree using reduction rules [17]. These

reduction rules are able to decrease the calculation time
and computer memory limitation efficiently. Because of
this benefit of ZDD, many studies have solved real-world
problems such as grid power loss minimization [18], region
partitioning for disaster evacuation [19], architectural floor
planning [20], and Stackelberg models of combinatorial
congestion games [21].

Using the proposed method, each node in the binary
decision tree corresponds to an item of an item pool. Each
node has two edges, respectively representing whether the
corresponding item is included in a test form or not. The
binary decision tree can enumerate all parallel test forms with
the satisfied test constraints. Nevertheless, the binary decision
tree has high space complexity O(2n/n), where n represents
the number of items. To relax this high space complexity,
the proposed method compresses the binary decision tree
using ZDD in a breadth-first manner [22]: an efficient
construction technique for reducing computer memory and
calculation time. Specifically, all equivalent nodes are shared,
provided that they have equivalent measurement accuracies
and equivalent test lengths. Unfortunately, measurement
accuracies of two nodes are rarely equivalent. Therefore, the
proposed method shares those nodes when the difference in
measurement accuracies between the two nodes is less than
the threshold value. Then, the measurement accuracy of the
shared node is approximated by the average measurement
accuracies of the two nodes. Consequently, the proposed
method can assemble parallel test forms without redundantly
repeating calculations for measurement accuracies and test
lengths.

However, this ZDD has a larger measurement error than
HMCAPIP has because the shared node is approximated by
the average measurement accuracy. Furthermore, this ZDD is
incapable of controlling overlapping items. To resolve these
shortcomings, the proposed method repeats random sampling
[17] from ZDD with low time complexity O(n) to enumerate
parallel test forms with measurement errors that are less than
a determined value and with a number of overlapping items
that is less than a determined value.

Numerical experiments demonstrate that the proposed
method can assemble 1,500,000 test forms within 24 hr,
although the earlier method can assemble only 300,000 test
forms within 10 days.

II. IRT
Most earlier studies of automated test assembly have
evaluated the measurement accuracies of parallel test forms
(such as [1], [2], [8], [10], [11], [12], [23]) using Item
Response Theory (IRT) [24], [25]. It is noteworthy that
IRT can measure the ability of examinees on the same
scale, even when the examinees have taken different tests.
In the two-parameter IRT logistic model, which is employed
in most earlier studies, the probability that an examinee
j(= 1, 2, . . . ,m) with ability θj ∈ (−∞,∞) answer item
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i(= 1, 2, . . . , n) correctly is defined as

pi(θj) =
1

1+ exp(−1.7ai(θj − bi))
, (1)

where ai ∈ [0,∞) and bi ∈ (−∞,∞) respectively represent
the respective discrimination power and difficulty of item i.
The asymptotic variance of estimated ability based on IRT
approaches the inverse of Fisher Information [24]. Therefore,
IRT typically employs Fisher Information as an index of the
measurement accuracy for the examinee’s ability to estimate.
In the two-parameter logistic model, the Fisher Information
is defined when item i provides an examinee’s ability θ using
the following item information function.

IIF i(θ ) = 1.72ai2pi(θ )(1− pi(θ )). (2)

This item information function implies that items with high
Fisher Information IIF i(θ ) are highly discriminatory in the
examinee’s ability. The test information function TIFTest (θ )
of a test form Test is defined as

TIFTest (θ ) =
∑
i∈Test

IIF i(θ ). (3)

The asymptotic standard error of estimating θ̂ , which is
SE(θ̂ ), is the reciprocal of square root of the item and test
information function at a given ability level θ̂ .

SE i(θ̂ ) =
1√

IIF i(θ̂ )
, (4)

SETest (θ̂ ) =
1√

TIFTest (θ̂)
. (5)

Therefore, using the test information function, the testing
organization administrators can estimate the measurement
accuracy of a test form.

Actually, the test information function is a continuous
function of the examinee ability and the item characteristic
parameters. Traditional methods (e.g. [1], [2], [8], [10],
[11], [12], [23]) treat values of the test information function
discretely to simplify computation. For instance, these
methods have been evaluated specifically for some points
2 = {θ1, . . . , θk , . . . , θK } on the ability level θ . According
to traditional methods, this study treats the test information
function similarly.

III. TRADITIONAL METHODS OF AUTOMATED TEST
ASSEMBLY
This section introduces two typical automated test assembly
methods from earlier research.

A. BIG SHADOW TEST METHOD
The most widely recognized automated test assembly
method, which uses mixed integer programming (MIP), is the
Big Shadow Test method (BST) devised by van der Linden
[8]. Actually, BST assembles parallel test forms sequentially
by minimizing the difference of the test information between

an assembled test form and a set of items remaining in the
item pool. The set of remaining items is called the shadow
test. Actually, BST optimizes the following MIP problem.

variables

xi =


1 if i-th item is selected
into the assembling test form

0 otherwise
,

y ≥ 0,

zi =


1 if i-th item is selected
into the shadow test form

0 otherwise
.

minimize

y

subject to

K∑
k=1

|

n∑
i=1

IIF i(θk )xi − T (θk )| ≤ My, (6)

K∑
k=1

|

n∑
i=1

IIF i(θk )zi − TST (θk )| ≤ MST y, (7)

n∑
i=1

xi = M , (8)

n∑
i=1

zi = MST , (9)

xi + zi ≤ 1. (10)

(i = 1, 2, . . . , n)

where

TST (θk ) =
MST

M
T (θk ), (11)

Therein,M andMST respectively represent the numbers of
items in the assembling test form and the shadow test form.
Also, T (θk ) denotes a target value of the test information
function at the ability level θk for the assembling test form.
For the shadow test, TST (θk ) is a target value of the test
information function at ability level θk . The test quality
constraints without an information function (e.g., test time
limits) can be included among the constraints of the MIP.

Actually, y simultaneously represents the minimum dif-
ference between the information function of the assembled
test and the target value T (θk ), and the difference between
information functions of the shadow test and the target value
TST (θk ).
Solving the MIP assembles a test form using items

one-by-one to assemble parallel test forms. Although this
greedy algorithm of BST reduces computational costs, its
measurement accuracy for the examinee’s ability decreases
as the number of assembled test forms increases.
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FIGURE 1. Outline of the maximum clique method.

B. HYBRID MAXIMUM CLIQUE ALGORITHM USING
PARALLEL INTEGER PROGRAMMING METHOD
Hybrid Maximum Clique Algorithm Using Parallel Integer
Programming method (HMCAPIP) [5] is known to assemble
the greatest number of tests with the highest measurement
accuracy.

Many automated test assemblies [1], [2], [8], [10], [11],
[12], [23] have solved a problem to minimize differences
in ability measurement accuracies based on test information
among tests. Nevertheless, they are not guaranteed to
maximize the number of assembled test forms. Testing
organizations must therefore allocate different tests to each
examinee to secure the item contents.

To overcome this difficulty, Fuchimoto et al. [5] proposed
a two-step parallel algorithm. The first step of their method
assembles parallel test forms with an overlapping constraint
as a maximum clique problem [3], [16] that has low time
complexity but high space complexity. The clique is a graph
structure, which is any two vertices with an edge. Here,
the overlapping constraint (OC) restricts the number of
overlapping items among tests. Figure 1 presents an outline of
the maximum clique method. The method constructs a graph
in which the vertices and the edges respectively represent
tests satisfying the test constraint and tests satisfying the
overlapping constraint. The maximum clique method extracts
the maximum clique as parallel test forms from the graph.

The second step, using integer programming (IP) method
[26] with low space complexity but high time complexity,
repeats the parallel search of the tests satisfied with the
overlapping constraint for all currently assembled tests. The
IP for assembly of a new test is presented below.

where

xi =


1 if the i-th item
is selected in the feasible test, and
0 otherwise.

maximize
n∑
i=1

λixi, (12)

FIGURE 2. Binary decision tree and zero suppressed binary decision
diagrams.

subject to
n∑
i=1

xi = M, (13)

LBθk ≤

n∑
i=1

IIFi(θk )xi ≤ UBθk , (14)

(k = 1, 2, . . . ,K )
n∑
i=1

Xi,rxi ≤ OC,

(r = 1, 2, . . . , |C|)

Xi,r =


1 if the i–th item is selected in the r–th test

in the current clique C , and
0 otherwise.

(15)

Therein, λ1, λ2, . . . ,λn respectively denote random vari-
ables distributed uniformly on [0,1], LBθk and UBθk denote
a lower bound and an upper bound for the test information
function on TIFTest (θk ). Actually, {λi}(0 ≤ i ≤ n) are
resampled after each problem is solved.

IV. PROPOSED METHOD
Currently, HMCAPIP is known to be capable of assembling
the greatest number of test forms. Nevertheless, the improve-
ment of HMCAPIP is constrained because of the high time
complexity of IP in the second step. Particularly, HMCAPIP
requires one week or more to assemble 300,000 tests because
the IP computation time increases along with the number
of assembled test forms. Moreover, the HMCAPIP parallel
search performance depends on the computer specifications.

To resolve these difficulties, we propose a new automated
test assembly: ATA-ZDD (Automated Test Assembly using
ZDD). According to the proposed method, each node in
the binary decision tree corresponds to an item of an item
pool. Each node has two edges, respectively representing that
the corresponding item is included in a test form, or not.
The binary decision tree can enumerate all parallel test
forms with the satisfied test constraints. Nevertheless, the
binary decision tree has high space complexity O(2n/n).
To relax this high space complexity, the proposed method

VOLUME 11, 2023 112807



K. Fuchimoto et al.: Automated Parallel Test Forms Assembly Using Zero-Suppressed Binary Decision Diagrams

FIGURE 3. Outline of the proposed method.

compresses the binary decision tree using ZDD based on
a breadth-first manner [22], [27], which is known as an
efficient construction technique for reducing the necessities
for computer memory and calculation time. Specifically, all
equivalent nodes are shared, provided that they have the same
measurement accuracies and the same test lengths. Because
of this feature, the proposed method can assemble the parallel
test forms without redundantly repeating calculations for the
measurement accuracies and the test lengths.

A. ZERO SUPPRESSED BINARY DECISION
DIAGRAMS (ZDD)
Actually, Zero Suppressed Binary Decision Diagrams (ZDD)
[17] constitute an efficient data structure for a set of item
combinations from a finite set.

Figures 2(a) and 2(b) respectively depict examples of
binary decision tree and zero-suppressed binary decision
diagrams. These data structures have terminal nodes of two
kinds represented as rectangles in Fig. 2: 0-terminal and
1-terminal. Paths from the root node to the 1-terminal node in
these data structures correspond to a set of item combinations.
Then, every non-terminal node shown as a circle in Fig. 2 is
labeled by an element of a finite set with order. Moreover,
each has two edges: the 0-edge and 1-edge. The 1-edge
(0-edge) signifies that the parent node is included (not
included) in the item combinations. Therefore, the data
structures of Fig. 2 correspond to the same set of item
combinations, which is {{a, c}, {b, c}, {c}}.
The salient difference between data structures of

Figs. 2(a) and 2(b) is their degree of compression efficiency.
In fact, ZDD can enumerate only three nodes for the set of
item combinations in Fig. 2(b). To construct efficient data
structures, Minato [17] applies the following two reduction
rules to the binary decision tree:
• Share all equivalent nodes having the same item and the
same pair of children.

• Delete all nodes for which 1-edge points directly to the
0-terminal node.

By the two reduction rules, ZDD can enumerate all feasible
solutions efficiently with a reasonable calculation time and
memory limitation.

B. AUTOMATED TEST ASSEMBLY USING ZDD (ATA-ZDD)
This section presents a new automated test assembly:
ATA-ZDD. For automated test assembly using ZDD, the anal-
yses used for this study define a finite set I = {x1, x2, . . . , xn}
with ordered items, where n is the item pool size. Then
S ⊆ I is designated as an item combination. For a given test
constraint function f : 2S → {0, 1}, the families of sets T for
f are denoted as T = {S ⊆ I | f (S) = 1}, which are called
the parallel test forms. Here, the test constraints are defined
formally as presented below.

|S| = M (test lengths), (16)

LBθk ≤

∑
xi∈S

IIFxi (θk ) ≤ UBθk .

(k = 1, 2, . . . ,K )

(test information constraints) (17)

The main idea of ATA-ZDD is to enumerate the item
combinations satisfying these test constraints using ZDD.
Here, we describe the use a test length variable as TL and
a test information array as TI = [ti1, . . . , tik , . . . , tiK ] for
using the breadth-first technique [22], [27] and branch-and-
bound. The test length variable and each element of the
test information array respectively correspond to |S| (eq. 16)
and

∑
xi∈S IIFxi (θk ) (eq. 17) at ability level θk . The main

algorithm of ATA-ZDD consists of five steps, as presented
in Fig. 3.

1) Step 1 generates a root node x1 and sets zero for the
test length variable TL and each element TI [k] of the
test information array.

2) Step 2 generates a 0-child node and a 1-child node with
a 0-edge and a 1-edge. Then, step 2 adds one to the
test length variable TL of 1-child nodes. Furthermore,
step 2 adds the item information Ii(θk ) of i to each
element TI [k] of the test information array of 1-child
nodes.

3) Step 3 shares all equivalent nodes (having the equiv-
alent test length variable TL and the equivalent test
information array TI ). Nevertheless, ATA-ZDD shares
those nodes when the difference in test information
between two nodes is less than the threshold value

112808 VOLUME 11, 2023



K. Fuchimoto et al.: Automated Parallel Test Forms Assembly Using Zero-Suppressed Binary Decision Diagrams

Algorithm 1 ATA-ZDD
1: procedure ATA-ZDD(n,M )
2: create a new node vroot ▷ root node
3: vroot .state.TL ← 0
4: for k ← 1 to K do
5: vroot .state.TI [k]← 0
6: end for
7: N1 ← {vroot } ▷ Ni is node sets of depth i
8: for i← 2 to n do
9: Ni ← ∅
10: end for
11: Nn+1 ← {0-terminal node, 1-terminal node}

12: for i← 1 to n do
13: for each v ∈ Ni do
14: for each x ∈ {0, 1} do ▷ 0-edge, 1-edge
15: {i′, state′} ← Child(i,M , v.state, x)
16: ▷ i′ is the depth of the child node. state′ is TL and TI of the child node.
17: v′ ←create a new node ▷ child node
18: if {i′, state′} is {n+ 1, 0} then
19: v′ ← 0-terminal node
20: else if {i′, state′} is {n+ 1, 1} then
21: v′ ← 1-terminal node
22: else
23: v′ .state← state′
24: share_node← False
25: for each w ∈ Ni+1 do

26: if v′ .state.TL = w.state.TL then
27: for k ← 1 to K do
28: if Ith ≤ |v

′ .state.TI [k]− w.state.TI [k]| then
29: next w
30: end if
31: end for
32: UpdateState(v′,w)
33: v′ ← w ▷ share node
34: share_node← True
35: break
36: end if
37: end for each
38: if share_node is False then
39: Ni+1 ← Ni+1 ∪ v

′

40: end if
41: end if
42: v.child[x]← v′
43: end for each
44: end for each
45: end for
46: return Reduce(vroot )
47: end procedure
48: procedure Child(i,M , state, x)
49: if x = 1 then
50: state′ .TL ← state.TL + 1
51: for k ← 1 to K do
52: state′ .TI [k]← state.TI [k]+ IIFi(θk ) ▷ IIFi(θk ) in eq(2)
53: end for
54: end if
55: if state′ .TL = M then
56: for k ← 1 to K do
57: if not LBθk

< state′ .TI [k] < UBθk
then

58: return {n+ 1, 0} ▷ 0-terminal node
59: end if
60: end for
61: return {n+ 1, 1} ▷ 1-terminal node
62: end if
63: if state′ .TL + n− i < M then
64: for k ← 1 to K do
65: ifUBθk

< state′ .TI [k] then

66: return {n+ 1, 0} ▷ 0-terminal node
67: end if
68: end for
69: end if
70: return {i+ 1, state′}
71: end procedure
72: procedure UpdateState(v′,w)
73: for k ← 1 to K do
74: w.state.TI [k]← (v′ .state.TI [k]+ w.state.TI [k])/2
75: end for
76: end procedure

Ith because the test information arrays of two nodes
are rarely equivalent. Then, each element of the test
information array is approximated by the average of the
test information elements of two nodes when the nodes
are shared.

4) Step 4 connects 1-edge to 1-terminal node if the test
length variable TL and the test information array TI
satisfy the test constraints (eq. 16, eq. 17) after Step 3.

5) Step 5 prunes a 1-edge or 0-edge that does not satisfy
the test constraint by connecting the 0-terminal node.
The pruning has the three conditions presented below.
1. M < TL.

2. UBθk < TI [k] (k = 1, 2, . . . ,K ).
3. M = TL and TI [k] < LBθk

(k = 1, 2, . . . ,K ).

6) ATA-ZDD repeats Step 2 through Step 5 for all items
of finite set I according to the order. Then, ATA-ZDD
applies the reduction rules to the constructed ZDD.

The ATA-ZDD algorithm is presented as Algorithm 1.
Algorithm 1 is unable to enumerate exactly parallel test forms
to satisfy the test information constraints (eq. 17) because
each element of the test information array for shared nodes
is approximated by the average of the test information of
two nodes in Step 3. Furthermore, this ZDD cannot control
overlapping items.

To resolve these shortcomings, ATA-ZDD enumerates test
forms that satisfy these constraints exactly using random
sampling [17] with low time complexity O(n) from ZDD.

For this discussion, we define the families of sets with the
test constraints and the overlapping constraints as parallel test
forms with overlapping items TOC .
The algorithm consists of the following three steps.

1) Step 1 sets TOC to φ.
2) Step 2 searches for a test form using random sampling

[17] from ZDD (T ∈T ). Here, the random sampling
has low time complexity O(n).

3) Step 3 checks that the random sampling test form T
satisfies the test information constraints (eq. 17) and the
overlapping constraints with all parallel test forms with
overlapping items TOC (∀TOC ∈ TOC | (|TOC ∩ T | ≤
OC)). When the random sampling test form T satisfies
these constraints, it is added to the parallel test forms
with overlapping items TOC (TOC ← TOC ∪ T ).

4) The proposed method repeats Step 1 through
Step 3 until a determined calculation time is reached.

This algorithm is shown in Algorithm 2 as ATA-ZDD with
OC.

Thus, ATA-ZDD with OC can enumerate parallel test
forms with the equivalent test information and with the
number of overlapping items that is less than a determined
value via repeating random sampling [17] from ZDD with
low time complexity O(n).

V. EXPERIMENTS
This section presents experiments demonstrating the effec-
tiveness of the proposed method: ATA-ZDD.

A. EFFECTIVENESS OF THE THRESHOLD PARAMETER
The proposed method has a tradeoff by threshold parameter
Ith between the number of assembled test forms and that
of nodes for ZDD construction. Therefore, we evaluate the
tradeoff by changing the value of the threshold parameter
to obtain the optimal value maximizing the number of
assembled test forms. We compare the performances by
changing the values of the threshold parameter Ith using
both simulated and actual item pools. Items in the simulated
item pools have discrimination parameters and difficulty
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Algorithm 2 ATA-ZDD with OC
1: procedure ATA-ZDD with OC(OC)
2: TOC ← ∅
3: while within a time limitation do
4: for each T ∈ T do ▷ random sampling
5: for each k ∈ K do
6: TIFθk ← CalculateTestInfo(T , θk ) ▷ eq(3)
7: if TIFθk < LBθk or UBθk < TIFθk then
8: ▷ Test information constraint
9: Next T

10: end if
11: end for
12: for each TOC ∈ TOC do
13: if OC < |T ∩ TOC | then
14: ▷ Overlap constraint
15: Next T
16: end if
17: end for
18: TOC ← TOC ∪ T
19: end for
20: end while
21: return TOC
22: end procedure

TABLE 1. Details of the actual item pool.

TABLE 2. Test information constraints for automated test assembly.

parameters according to the two-parameter logistic model of
IRT. We generated discrimination parameters as log2 a ∼
N (0, 12) and difficulty parameters as b ∼ N (0, 12).
A detailed description of the actual item pool is presented
in Table 1. This actual item pool is used for the synthetic
personality inventory (SPI) examination: a popular Japanese
aptitude test [28].

For this study, the constraints applied for the test are
presented below.

1) The test contains 100 items.
2) The test information constraints are described by the

lower and upper bounds of the test information function
in Table 2.

We determined these constraints according to the actual
test setting [28]. The threshold parameter of ATA-ZDD is
changed from 0.01 to 0.45 in 0.01 steps. Overlapping items
are not controlled for this experiment.

Here, we conduct experiments using a computer (Ryzen
9 5950X 3.40 GHz CPU; AMD Corp.) with 128 GB main
memory and operating system (64bit Ubuntu; Linux).

Table 3 presents the number of assembled test forms by
changing the value of Ith. In the table, No. tests signifies
the number of assembled test forms, Compression Ratio
expresses the number of nodes in ZDD divided by the number
of nodes in the binary decision tree, and Time denotes the
calculation time (minute) for ZDD construction.

As described previously, the proposed method entails a
tradeoff between the number of assembled test forms and
that of nodes for ZDD construction. When the threshold
parameter Ith is small, the proposed method tends to assemble
the greatest number of assembled test forms, but it causes
memory overflow.

When the threshold parameter Ith becomes large, the cal-
culation time and the number of nodes for ZDD construction
decreases because the number of shared nodes is increased.

Therefore, to decrease the calculation time and memory
limitations, the threshold parameter should be increased.
As described herein, the threshold is determined by the value
which can assemble the greatest number of assembled test
forms for each item pool.

Regarded in greater detail, Table 4 shows the number
of prunings in the Algorithm. 1 and the compression ratio
obtained using the reduction rules. When the threshold
parameter Ith becomes sufficiently small, the number of
prunings increases because the number of shared nodes
decreases and the number of branches increases. On the other
hand, differences in the compression ratio with reduction
rules are small, irrespective of the threshold parameter Ith.

B. COMPARISON OF ATA-ZDD TO CONVENTIONALLY
USED METHODS
To demonstrate the ATA-ZDD benefits, we compare the
number of assembled test forms of ATA-ZDD with those
produced using the traditional methods of (Big Shadow
Test Method [8] (designated for comparison as BST) and
Hybrid Maximum Clique Algorithm with Parallel Integer
Programming (designated for comparison as s HMCAPIP)
[5]) using simulated and actual item pools described in the
preceding subsection.

We set the test constraints as presented below.

1) The test contains 100 items.
2) The allowed maximum numbers of overlapping items

are changed from two to thirty by increments of two.
3) The time limitation of all methods is 24 hr.
4) The test information constraints are the same as those

presented in the preceding subsection.

We determined the parameter values of HMCAPIP
according to an explanation given in the literature by
Fuchimoto et al. [5]. For HMCAPIP and BST, we apply
CPLEX [29] for the integer programming problem.
Table 5 presents the numbers of assembled test forms

produced using the proposedmethod and using the traditional
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methods, by changing item pool sizes and overlapping
constraints.

When OC becomes large, the proposed method can
assemble a greater number of assembled test forms than the
traditional methods do. It is noteworthy that the proposed
method can assemble the 1,500,000 test forms within 24 hr,
which would take one month or more if using conventional
methods. These findings suggest that the proposed method
has important advantages in large-scale testing, which
necessitates the number of test forms.

Even when OC becomes small, HMCAPIP can assemble
a slightly greater number of tests than other methods do.
The results demonstrate that the numbers converge to the
maximum number of assembled test forms because, as a
result of the tight OC, the exact maximum number of test
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forms is not large. Nevertheless, because the test information
is approximated by the mean when the nodes of ZDD are
shared, the proposed method does not guarantee exactly
the maximum number of assembled test forms. Therefore,
the performance of the proposed method is limited with a
tight OC.

When OC ≥ 24, because of the time complexity O(n) of
random sampling, the proposed method for item pool size =
1000 can assemble a greater number of test forms than the
proposed method for item pool size = 2000 does. In fact,
when OC = 24, the proposed method for item pool size =
1000 samples 1,640,000,000 test forms, but the proposed
method for item pool size = 2000 samples only 630,000,000
test forms.

Nevertheless, because each element of the test information
array is approximated by the mean when nodes are shared,
ATA-ZDD does not guarantee exactly all enumerations with
satisfaction of the test constraints. To evaluate the effective-
ness of this approximation, we simulate the percentage of
paths which satisfy the test information constraint when using
random sampling. Specifically, when the random sampling
is repeated one billion times, this experiment calculates the
percentage of paths which strictly satisfy the constraints of
the test information.
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TABLE 5. Numbers of tests assembled in 24 hours.

TABLE 6. Percentage of paths satisfying the test information constraint.

Table 6 shows that the percentage of paths that satisfy the
constraints of the test information. The results suggest that

the proposed method still has room for improvement in the
threshold parameter because the number of strictly satisfied
tests decreases as the amount of node-sharing increases.

VI. CONCLUSION
We proposed a new automated test assembly: ATA-ZDD.
According to this proposed method, each node in the
binary decision tree corresponds to an item of an item
pool. Each node has two edges, respectively signifying that
the corresponding item is included in a test form, or not.
Furthermore, all equivalent nodes are shared, providing that
they have the same measurement accuracy and the same test
length.

Numerical experiments demonstrated that the proposed
method assembled a greater number of test forms than the
conventional methods did. It is noteworthy that the proposed
method was able to assemble 1,500,000 test forms within
24 hr, whereas a currently widely used method assembled
only 300,000 test forms within 10 days. Moreover, these
results suggest that the drastically different quantities of
assembled parallel test forms created using these methods
would differ increasingly with extended calculation time.

Nevertheless, ATA-ZDD does not guarantee exactly all
enumerations with the satisfaction of test constraints: each
element of the test information array is approximated by the
meanwhen nodes are shared. Therefore, the proposedmethod
still has room for improvement of its threshold parameter
optimization because the number of strictly satisfied tests is
reduced as the number of node-sharing increases.

Furthermore, this study specifically examines automated
test assembly using only those constraints related to the
test length and test information. In fact, actual examinations
require other test constraints. For instance, the proposed
method does not regulate the number of times each item
has been used in the assembled test forms. Therefore, the
distribution of item usage counts is not uniform, which
is designated as an item exposure bias problem [30]. The
exposure bias problem is known to impair the reliability
of items and tests [30]. To resolve the item exposure
problem, we expect to implement the proposed method
using a probabilistic approach of item exposure such as
probabilistic eligibility by Linden [31] in computerized
adaptive testing (CAT).
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