
Received 17 September 2023, accepted 4 October 2023, date of publication 9 October 2023, date of current version 17 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3322932

Effective Neurofeedback Training of Large
Electroencephalogram Signals
Using Serious Video Games
HAITAO HUANG 1,3, (Member, IEEE), MIN-CHUL SHIN 1,4, JIEUN LEE 2,
AND SEUNG-HYUN YOON 1
1Department of Multimedia Engineering, Dongguk University, Seoul 04620, South Korea
2Division of Computer Engineering, Hansung University, Seoul 02876, South Korea
3Department of Computer Application, Chengdu College of University of Electronic Science and Technology of China, Chengdu, Sichuan 610056, China
4Suinjae Brain Science, Seoul 02792, South Korea

Corresponding author: Seung-Hyun Yoon (shyun@dongguk.edu)

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT)
under Grant NRF-2021R1A2C2012663.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Korea Electroencephalogram Neurogical Association.

ABSTRACT Neurofeedback can be utilized to treat various neuropsychiatric disorders in children.
However, therapists primarily set threshold values for neurofeedback training. Thus, the training effect
becomes subjective owing to the experience of the therapist. A clinically inexperienced therapist could set
inappropriate thresholds, rendering the training ineffective. In this study, an effective neurofeedback system
that includes signal processing of large amount of electroencephalogram (EEG) data and auto thresholding
and provides various training contents was developed. The system uses a method that determines optimal
threshold values, which are significant for an effective neurofeedback system. The success or failure of
the activation and inhibition of specific EEG frequencies was determined based on these threshold values.
The system determined an optimal threshold value to obtain the target success rate using a numerical
optimization technique. The success or failure feedback for the reward and inhibit EEG frequencies was
generated using auto thresholding. This feedback was sent to the training contents by the inter-process
communication module to control the contents. Most training content was implemented as serious video
games by using a commercial game engine. Success feedback on reward EEG frequency leads to game
progress. By contrast, failure feedback on inhibiting EEG frequency hinders game progress. Consequently,
the user gains the self-regulation ability to enhance the reward EEG frequency and suppress the inhibit EEG
frequency. A pilot study involving five children with attention deficiency was conducted to demonstrate the
effectiveness of the developed system. The results demonstrated that the childrent’s attention improved after
neurofeedback training.

INDEX TERMS Neurofeedback, biofeedback, comprehensive attention test (CAT), attention deficit
hyperactivity disorder (ADHD), auto thresholding, serious video game.

I. INTRODUCTION
The recent convergence of brain science with information
communication technology has resulted in the development
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of novel technologies such as neuroinformatics and
brain-computer interaction (BCI). An important representa-
tive of this convergence is biofeedback therapy, often referred
to as biofeedback. In biofeedback, biosignals are converted
into perceivable information played as feedback to the
subject over visual, auditory, haptic, or other interfaces. Such
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information helps subjects be aware of their physiological
signals and consequently improve the self-regulation ability
of the corresponding physiological functions.

Electroencephalogram (EEG) is an important biosignal
widely used in various applications. Anwar et al. [1] used
EEG to record human brain activity during gaming. They
proposed a method for classifying the expertise level of a
game player and argued that their method could improve
the effectiveness of the educational system. Neurofeedback
is a specific type of biofeedback focusing on EEG as
a biosignal to promote the self-regulation of brain func-
tion. Neurofeedback can be utilized to treat neuropsy-
chiatric disorders in children, including learning disabili-
ties, attention deficit hyperactivity disorder (ADHD), and
autism.

In neurofeedback, electrodes are placed on the head of the
subject tomeasure brainwaves in real time. An efficient signal
processing technology is required to extract the reward and
the inhibit frequency signals in real time from brainwaves
measured from several electrodes. When the amplitude of a
reward frequency exceeds a specified threshold, successful
feedback is generated, such that the subject can recognize the
activation of the corresponding frequency. However, when
the amplitude of an inhibit frequency exceeds a specified
threshold, failure feedback is generated. As this process
of activating certain EEG frequencies above the threshold
and teaching the subject to recognize their brainwave state
is repeated, the subject learns to actively self-regulate the
desired frequencies of the brainwave. Because this technique
demonstrates that the autonomous and central nervous
systems can be self-regulated, it has been continuously
studied as noninvasive therapy without side effects in treating
or improving brain disorders [2], [3].

A neurofeedback system consists of an operating software
for the therapist and training content for subjects. The oper-
ating software analyzes the power of the EEG frequencies
of the subject in real time. Based on the real-time state of
a subject, the thresholds of reward and inhibit frequencies
are adjusted manually by the therapist, who controls the
training condition of the subject. Our research is motivated
from the fact that appropriate thresholds are necessary for
improving the training effects. In cases where a clinically
inexperienced therapist sets inappropriate thresholds, the
therapy produces a relatively weak effect. Therefore, finding
the optimal thresholds is vital for effective neurofeedback
training. Training content is typically provided in the form
of a serious video game to enable subjects to intuitively
recognize their brainwave conditions.

Two issuesmust be considered to improve the effectiveness
of neurofeedback training. First, a method to automatically
calculate and adjust thresholds must be developed to mini-
mize over-reliance on clinical expertise and the continuous
presence of the therapist during a neurofeedback session.
Second, creating and provisioning high-quality content must
be facilitated and simplified. In this paper, we addressed these
issues and developed a complete neurofeedback system that

supports the these features. Contributions of this paper are as
follows:
• The proposed system supports adaptive automatic
thresholding for effective neurofeedback training.
A numerical optimization technique to automatically
calculate the thresholds is proposed to achieve the
success rates designated by a therapist.

• The proposed system provides an inter-process com-
munication (IPC) module that transmits real-time EEG
analysis results to a commercial game engine to develop
effective training content (video games) rapidly and
conveniently.

• A pilot study involving five children with attention defi-
ciency was conducted to demonstrate the effectiveness
of the developed system. The results demonstrated that
the children’s attention improved after neurofeedback
training.

The remainder of this paper is organized as follows. Sec-
tion II discusses previous studies and relevant clinical tests
on neurofeedback training. Section III presents the method
used for acquiring, processing, and analyzing EEG signals.
In addition, it explains the generation of success and failure
feedback from EEG signals and the auto thresholding method
for effective training. Section IV describes the production
of various training contents and their control mechanisms
depending on the success and failure feedback from the EEG
signals. Section V provides pilot test results for five children
with ADHD symptoms to confirm the effectiveness of the
developed neurofeedback training system. Finally, SectionVI
concludes the paper and suggests the future work.

II. RELATED WORK
The primary premise of neurofeedback is grounded in the
observation that the wavelengths of brainwaves are related
to the level and type of mental activity at any given time.
Berger [4] measured the brainwaves of humans for the first
time in 1929. Since then, many related studies have been
conducted. Nowlis and Kamiya [5] performed an experiment
in which subjects were orally instructed to recognize the
activity corresponding to the alpha wave. They found that the
subjects were able to regulate the state of their brainwaves.

The EEG frequency bands typically used in neurofeedback
are the sensorimotor rhythm (SMR) in the 12–15 Hz range,
theta wave in the 4–7 Hz range, and high beta wave in
the 22–36 Hz range. Wyrwicka and Sterman [6] discovered
that an increase in the SMR in cats reduced the motor
activity and spasms. They also showed that the specific
brainwaves of a cat can be increased by operant conditioning.
Sterman et al. [7] attached a sensor to the position of the
somatosensory center of the cerebral cortex in each epileptic
and performed neurofeedback training to strengthen SMR.
The results of the training showed that the development of
epilepsy decreased in four patients who were not controlled
by chemical treatment. Sterman and Bowersox [8] regarded
the somatosensory thalamic nuclei as the source of SMR.
They demonstrated that the activation of SMR is related to

112176 VOLUME 11, 2023



H. Huang et al.: Effective Neurofeedback Training of Large Electroencephalogram Signals

quiet wakefulness, reducing the excitability of afferent and
efferent nerve pathways. Lubar et al. [9] carried out training
and research on neurofeedback for children with ADHD.
They published the clinical result in the test of variability
of attention for the theta and beta waves in the 4–8 Hz and
16–20 Hz ranges, respectively. The decrease in the theta
wave and the increase in the SMR helped improve continuous
performance.

Recent advances in BCI technologies have accelerated
the development of neurofeedback systems [10], [11].
Various techniques using brainwaves are actively utilized
in neurofeedback systems that provide communication and
control functions for people with severe disabilities [12].
Furthermore, ADHD, autism, simple tic disorders, and many
other mental diseases can be explained by the distortion
of brainwaves and event-related potentials. Many studies
have shown that neurofeedback is effective in treating and
improving these diseases [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23]. However, the clinical efficacy of
neurofeedback remains controversial. For a comprehensive
review of this issue, we refer to a survey [24].

Although neurofeedback therapy has significant advan-
tages and potential, it also has limitations. Neurofeedback
training is not as effective as the existing medications
and surgery. Moreover, acquiring high-quality content is
challenging because the training content needs to be devel-
oped by both skilled and clinically experienced experts.
In addition, various experimental and clinical studies must
be conducted to develop stable and efficient systems.
Despite these difficulties, neurofeedback training produces
few side effects, and its benefits continue longer than
that of medication. Neurofeedback training also helps with
significant cognitive activities; thus, it can be applied in
various fields. Vernon et al. [25] suggested preparing various
training protocols that can provide predictable effects through
continuous clinical research and technical development to
maximize the effects of neurofeedback training.

There are several commercial neurofeedback systems
available, such as Procomp of Thought Technology Ltd.
(Canada) [26], EEGer of EEG Store (US) [27], and
Bioexplorer of Cyberrevolution Inc. (US) [28]. Procomp
is widely used by clinicians, supports two channels, and
provides neurofeedback and biofeedback training. However,
this system is difficult to operate. EEGer has been used by
US clinicians extensively. It is intuitive and easy to use.
However, its training content is limited. Bioexplorer supports
a general purpose biofeedback system, is primarily used
by developers or researchers, and includes various program
build-up functions.

In neurofeedback training, the primary task is to process
EEG data in real-time and effectively. The data exhibits
temporal properties, and recurrent neural network (RNN)
algorithms possess the capability to handle time series data
and capture temporal dependencies. Previous studies have
utilized RNN for tasks such as EEG classification and pre-
diction [29]. Due to the outstanding stability, robustness, and

generalization ability of RNN in dealing with the temporal
data of nonlinear dynamic systems, Kumar et Al. [30], [31],
[32], [33], [34]. have conducted extensive research based
on RNN. However, this study focuses more on real-time
guidance of trainers’ EEG data rather than EEG classification
or prediction. For this purpose, we adopt a personalized
weighting scheme to capture temporal correlations in the data
and utilize an adaptive threshold for constraining and guiding
the data, thereby achieving the training objectives.

In this paper, we developed a complete neurofeedback
system supporting an adaptive auto thresholding function that
analyzes the training state of a subject and automatically
calculates the optimum threshold. Moreover, the proposed
system supports interoperability with a commercial game
engine; thus, high-quality content can be made easily.
These features distinguish the proposed system from existing
systems and canmake neurofeedback training more effective.

III. ADAPTIVE AUTO THRESHOLDING
A. ACQUISITION AND PROCESSING OF EEG SIGNALS
Fig. 1 illustrates the overview of the proposed system.
The front part of the system includes a set of hardware
for extracting and amplifying EEG signals. The operating
software consists of two modules. The first one analyzes
the amplified EEG signals and compares their amplitudes
with the thresholds set by a therapist to generate success or
failure feedback. The other automatically adjusts thresholds
to improve the training effect. The training content works
with the operating software to increase success feedback and
decrease failure feedback.

High-precision EEG measurement techniques have been
developed, and the accuracy and performance of EEG
measurements have significantly improved over the years.
This paper utilized NEURONFLEX [35], which follows
the P2 communication protocol of the OpenEEG module
and enables stable 2-channel EEG measurements over an
extended period of time. It measures raw data between 0 and
1023 expressed in 10-bits at 256 times per second and
transmits the data to the PC. The transmitted raw data were
converted into a potential value in the range of −512 µV
to +511 µV. The 256 converted data were divided into
eight packets and transmitted to a digital signal processing
(DSP) module. The DSP module performed the following
tasks: first, a power spectrum analysis was performed on the
real-time EEG signal via fast Fourier transform (FFT) [36].
The power spectrum analysis shows the amplitude of each
frequency by converting the EEG signals in the time domain
into the frequency domain. This paper applied FFT to
2048 sampling data measured for 8 s. The sampling rate
of the raw data was 256 Hz; therefore, the amplitudes of
the frequency ranging from 0 Hz to 128 Hz were obtained;
Second, the DSP performed band-pass filtering of EEG
signals in the training frequency range. Two types of digital
filters are commonly used in discrete signal processing.
Infinite impulse response (IIR) type filter has a regressive
function that uses the previous output as the current input,
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FIGURE 1. Overview of the neurofeedback training system: EEG data acquisition (red arrow), EEG signal transmission from the amplifier to the PC
(blue arrow), visual conduction of the training content (green arrow).

TABLE 1. EEG frequency ranges and the types of brainwaves used in
neurofeedback training.

requiring fewer orders for efficient filtering than the finite
impulse response (FIR) filter. Thus, an IIR band-pass filter
was used to extract brainwaves in the EEG frequency range,
as shown in Table 1.

Equation (1) expresses the IIR-based band-pass filter used
in the proposed system for extracting the SMR (12 to 15 Hz).

y[t] = b0x[t]+ b1x[t − 1]+ b2x[t − 2]

+ a0y[t − 1]+ a1y[t − 2], (1)

where x[t] and y[t] are the input and output values at time
t , and bi and ai are the coefficients of the feedforward
and feedback filters of order 2 and 1, respectively. These
coefficients were determined experimentally using the Iowa
Hills filter design system [37] and an elliptical polynomial as
follows:

b0 = 0.3679, b1 = −0.7063, b2 = 0.3679

and a0 = −1.8702, a1 = 0.9706.

Fig. 2 shows the result of magnitude response generated by
the filter in Equation (1). Intuitively, this filter amplifies the
signals from 12 Hz to 15 Hz. Fig. 3 shows the real-time EEG
signals (in black) and three band-pass filtered signals: theta
waves (in red), SMR (in green), and high beta waves (in blue).

B. DECISION OF SUCCESS AND FAILURE SECTION
The proposed neurofeedback system analyzed theta waves
(4–7 Hz), SMR (12–15 Hz), and high beta waves
(22–36 Hz) in EEG signals to provide feedback to the
subjects. The theta and high beta waves are the inhibit

FIGURE 2. Magnitude response of the IIR filter in Equation (1).

FIGURE 3. Real-time EEG signals and three band-pass filtered signals of
theta wave (low inhibit), SMR (reward), and high beta wave (high inhibit).

frequencies; a failure feedback was generated when the
amplitude of their frequencies exceeded the threshold set
by the therapist. By contrast, the SMR corresponds to the
reward frequency; a success feedback was generated when
the amplitude of its frequency exceeded the threshold set by
a therapist. The generated feedback was delivered as input to
the training content, provided in the form of a video game,
determining the game progress. Consequently, to proceed
in the game as intended by the subject, the amplitudes of
theta and high beta waves need to be maintained below
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FIGURE 4. Decision of success and failure sections in theta wave (low
inhibit), SMR (reward), and high beta wave (high inhibit).

the threshold values. In addition, the amplitude of the
SMR should remain above the threshold. Through real-time
feedback training, a subject learns to regulate one’s brainwave
conditions. This training mechanism was designed to set an
optimum threshold that can help create precise feedback and
improve the training effect. A comparison with a threshold
was periodically made because EEG signals are oscillatory
waves with period and amplitude. In the SMR corresponding
to frequency domain of 12–15 Hz, a success feedback was
generated when the sum of the power values (E) in the
corresponding frequency domain was greater than or equal
to the threshold, as shown in the following equation:

E =
15∑

k=12

|fk | ≥ τSMR, (2)

where fk is the amplitude of frequency k , and τSMR is the
threshold of SMR.

In a similar manner, a failure feedback was generated for
theta and high beta waves, when the sum of the power values
in the corresponding frequency domain was greater than or
equal to the thresholds of theta and high beta waves. The
system analyzed the power of the EEG frequency for the last
0.25 s every 0.125 s, so success or failure feedback is also
generated every 0.125 s.

Fig. 4 shows the feedback generated by applying the
proposed method to the theta wave (low inhibit), SMR
(reward), and high beta wave (high inhibit). In the reward
signal frequency, the sections marked in green lines are
the periods in which the success feedback was generated.
Similarly, in the inhibit signal frequencies, the sections
marked in red lines are the periods in which the failure
feedback was generated.

C. COMPUTING THRESHOLDS
A substantial amount of failure feedback was generated when
a high threshold value of the reward frequency (SMR) was set
for a subject who did not undergo neurofeedback training,
making the training ineffective. By contrast, a success
feedback was generated in most cases when a low threshold
value of the reward frequency was set, making the content
too easy for the subject. However, in this case, the subject

did not achieve the desired training effect. This observation
also holds true for the inhibit frequency. Therefore, a therapist
needs to clearly identify the condition of a subject and
carefully adjust the thresholds of the reward and inhibit
frequencies to improve the effectiveness of training.

This paper used the auto thresholding method proposed
by Shin et al. [38]. The proposed system allows a therapist
to designate a desired target success rate for the reward and
inhibit frequencies. The system analyzes the success ratio
for a specific time for each training frequency and uses the
ratio to automatically calculate a threshold that can ensure the
desired success rate designated by the therapist. The success
rate (%) St at current time t can be computed as follows:

St =
NS × 0.125

T
× 100, (3)

where T is a specific period during which the success rate
is calculated (typically T = 1, 2, 4, or 8 s) and NS is the
total number of occurrences of success for period T . The
constant 0.125 was multiplied because success and failure
were determined every 0.125 s.

Suppose that a therapist designates the desired success
rate Ŝ for the reward frequency (SMR). The current success
rate St can be equal to or greater than Ŝ if NS =

⌈̂
S × T

12.5

⌉
,

derived from Equation (3). From Equation (2), E is obtained
every 0.125 s. The results can be arranged in descending order
as follows:

E1 ≥ E2 ≥ · · · ≥ ENS ≥ ENS+1 ≥ · · · (4)

In the reward frequency, the desired success rate Ŝ can be
achieved by setting the threshold τSMR between the ENs and
ENs+1. By contrast, in the inhibit frequency, the above results
need to be arranged in ascending order. Moreover, a new
threshold should be selected between the ENs and ENs+1 to
obtain a designated success rate.

Thus, the calculated thresholds are effective under the
assumption that brainwaves occurring for the previous T
are repeated for the next T . However, this assumption does
not typically hold true in real training. Consequently, the
thresholds obtained in the above method do not guarantee
the desired success rate. To solve this problem and acquire
an optimum threshold close to the desired success rate,
it is necessary to consider all patterns of brainwave data of
the previous m intervals. This study proposes a method for
obtaining an optimum threshold by considering all previous
eight intervals (m = 8). Let St−kT (τ ) be the success rate
determined by threshold τ at the k-th previous interval. The
cumulative cost function C(τ ) of the difference between the
desired success rate Ŝ and each success rate for the eight
intervals can be defined as follows:

C(τ ) =
8∑

k=1

wk
∣∣̂S − St−kT (τ )∣∣2 , (5)

where wk is the weight of St−kT (τ ) and satisfies
∑
wk = 1.

Because the brainwave of the subject was most likely to
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Algorithm 1 The Pseudo-Code of the Proposed System
Procedure: EEG Acquision & Processing
while All_System_Running do

eeg_data← acquire_eeg(); // EEG acquisition
preprocessed_d← preprocess_eeg(eeg_data); // EEG preprocessing
USB_transmit_data(preprocessed_d); // EEG transmission

Procedure: Auto Thresholding
while Control_System_Running do

converted_d← conv_vol(preprocessed_d); // Voltage conversion
processed_d← process_eeg(converted_d); // EEG IIR filtering
threshold← calculate_threshold(processed_d); // Adaptive threshold calculation
decision← Gen_decision(processed_d, threshold); // Decision generation (Success/Failure)
UDP_transmit_decision(decision); // Decision transmission using UDP
TCP_transmit_ui_control(ui_control); // UI control transmission using TCP

Procedure: Running Training Contents
while Game_Contents_Running do

packets← receive_packets(); // Receive packets
update_data(packets); // Update EEG amplitude data and decision
data
if decision == ‘‘Success’’ then

generate_reward_content(); // Positive control of training content

else
generate_inhibit_content(); // Negative control of training content

TCP_transmit_ui_control(ui_control); // Game UI control transmission using TCP

repeat the latest pattern, the following weights were used:

w1 =
128
255

, w2 =
64
255

, w3 =
32
255

, w4 =
16
255

,

w5 =
8

255
, w6 =

4
255

, w7 =
2
255

, w8 =
1
255

. (6)

These weights can be obtained by wk = 28−k

28−1
. The

threshold obtained from Equation (4) was set as the initial
value τ0 to minimize C(τ ) of Equation (5). Numerical opti-
mization [39] can be performed to calculate an optimal τ ∗.
The optimal threshold was not calculated at every moment.
However, the threshold was automatically calculated when
the difference between the present success rate St and
the target Ŝ exceeded a specified allowable error (εS ) for
specified time (εT ). Fig. 5 shows an example of these control
parameters, where Ŝ, εS , and εT were set to 65%, 5%,
and 4 s, respectively. The thresholds were automatically
updated when the success rate of the reward frequency was
below 60% (or above 70%) for over 4 s. Consequently, the
adaptive auto thresholding function can help a therapist with
neurofeedback training and improve the training efficiency.
The main procedures of adaptive auto thresholding algorithm
are described in Algorithm 1.

D. RESULT OF AUTO THRESHOLDING
The proposed auto thresholding algorithm was implemented
in C++ language and executed on a PC integrating an
Intel i7-4790 3.6 GHz CPU, 16 GB main memory, and an

FIGURE 5. Example of control parameters and allowable success range:
target success rate (Ŝ = 65%), allowable error (ϵS = 5%) and time
(ϵT = 4 s).

NVIDIA GeForce GTX770 graphic card. Raw brainwave
data were measured for 10 min to evaluate the performance
of the proposed method. An IIR-based band-pass filter was
applied to the raw data, and brainwave data of the SMR
domain were extracted. An initial threshold τ = 3.5 µV
and S of 65% were set for the SMR obtained. The success
or failure feedback was generated at 0.125 s intervals to
calculate the average success rate. Table 2 shows the various
experimental results; the last column shows the average
success rate of each experiment. The average success rate
of the first experiment was calculated without applying the
auto thresholding function. An average success rate of 73.5%
was obtained. Therefore, the initial threshold was set to a
low value, and success feedback was generated in most cases.
In this case, the threshold value should be adjusted to a high
value to achieve the target success rate of 65%.

In the second experiment, for the same target success
rate and initial threshold, the auto thresholding method was
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TABLE 2. Auto thresholding experiments for SMR with different
allowable errors and allowable times.

activated with an εs = 10% and εT = 1 s. For the
SMR data for 10 min, 98 new thresholds were automatically
calculated; an average success rate of 69.2% was obtained.
The same conditions were applied from the third to the fifth
experiments. The allowable error gradually decreased. The
thresholds were renewed more frequently as the allowable
error decreased, resulting in a success rate closer to the target
success rate.

The same allowable error was applied from the sixth to
eighth experiments, but the allowable times were different.
The number of renewals of the threshold and average success
rate were measured. The thresholds were renewed less
frequently as the allowable time increased. Thus, the average
success rate was far from the target success rate. When the
allowable time was 6 s, the average success rate was beyond
the allowable error range of the target success rate.

Table 3 shows different types of experiments where a
therapist changes the target success rate, allowable error, and
time every 1 min. The raw data of brainwaves were measured
for 9 min. As demonstrated by the experimental results, the
proposed auto thresholding technique calculated an optimal
threshold that can produce a success rate closest to the target
success rate. Fig. 6 shows the target success rates and actual
success rates of the experiment in Table 3. Exact success or
failure feedback can improve the training effect. If a fixed
threshold is used, the subjects obtains significantly high or
low success rates, which can not produce good training results
in general. The proposed auto thresholding technique can
effectively solve this problem and improve the training effect.

Our automatic threshold adjustment method does not
significantly increase the computational cost compared to
existing systems that manually adjust thresholds. Further
calculations include only the numerical optimization of Equa-
tion (5). Moreover, this calculation can also be controlled
by therapist-specified control parameters such as allowable
error(εS ) and time(εT ). Other processing steps are also
included inmost existing systems, so this is not a critical issue
for performance comparison.

IV. PRODUCTION OF TRAINING CONTENTS
A. INTEROPERABILITY WITH A COMMERCIAL GAME
ENGINE
The conventional training content is primarily created by the
SDK provided by EEG devices and the operating system.

TABLE 3. Auto thresholding experiments for various target success rates
changing in real time.

FIGURE 6. Auto thresholding results for various target success rates
changing in real time and actual success rates.

Thus, creating new content is a highly laborious and time-
consuming task. To create high-quality training content
conveniently and quickly, the proposed system supports
interoperability with unity3D [40], a widely used commercial
game engine. Eight types of outputs are available depending
on the combination of success or failure feedback for theta,
SMR, and high beta waves. The proposed system uses an
inter-process communication (IPC) module and transmits
the outputs to the training content every 0.125 s through
a user datagram protocol (UDP). Figure 7 shows the IPC
module between the EEG control system and game engine.
We utilized C++ language to encapsulate the required
IPC data into static library functions using object-oriented
programming and these functions were invoked by the
unity3D engine to achieve real-time data transmission.

Thanks to the IPC module, existing games available in the
online asset store can be reused and customized as educa-
tional content with expert guidance from the training center’s
clinical experts. For pilot testing, we customized content
scenarios, including game character selection, overall color
tone (leaning toward the dark side), specified audio effect
frequencies (alternating between high and low frequencies),
and other elements. We also employed artificial intelligence
(AI) characters to ensure automatic game progression, and
used decision data transmitted through IPC to control the
game, including visuals, character movement speed, sound
effects, game progression, and other controls. As a result, this
interoperability between systems and game engines allows
developers to use the full capabilities of the unity3D engine
and significantly reduces the time and cost required to create
training content.
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FIGURE 7. The inter-process communication (IPC) module of proposed system.

FIGURE 8. Failure feedback (theta), success feedback (SMR), and failure feedback (high beta) transmitted to a training content through the IPC
module.

Fig. 8 shows an example of aircraft racing content
controlled by the real-time outputs transferred by the IPC
module. For example, the success feedback of the reward
frequency (SMR) increases the speed of a player character
(PC) aircraft. However, the failure feedback of the low (theta)
or high (high beta) inhibit frequency increases the speeds
of the non-player character (NPC) aircrafts on the left and
right sides or darkens the background image of the training
content. Success feedback during training leads to the game
progress, whereas, failure feedback hinders it; thus, subjects
are induced to increase success feedback, training them to
control their brainwaves (see Supplementary Video).

B. NEUROFEEDBACK AND CONTROL OF TRAINING
CONTENTS
Fig. 9 shows more examples of training contents produced
using the proposed system and unity3D engine. Table 4 lists
the training contents and their mappings between feedback
and controlling the content. The control protocols for each

FIGURE 9. Various training contents for neurofeedback training: (a) Inner
Tube, (b) Car Racing, (c) Brick Breaker, and (d) Fox Racing.

training content were carefully determined by EEG clinical
experts to maximize the training effect.
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TABLE 4. Neurofeedback and control of training contents.

V. PILOT TEST
A neurofeedback training was conducted on children with
ADHD symptoms using the proposed training system. This
experiment aimed to conduct a pilot study to confirm the
usability of the developed training system.

A. SUBJECTS AND EXPERIMENTAL PROTOCOL
According to the results of the Comprehensive Attention
Test (CAT) [41], five children with a potential for ADHD
were targeted. The subjects were classified as ‘reduced’ and
‘boundary’ rather than ‘normal’ in several attention tests
to determine the possibility of ADHD. A neurofeedback

TABLE 5. ID, age, CAT results, and inspection dates of the subjects.

training system was used to evaluate whether these test items
were improved. Table 5 shows the subject ID and age, CAT
results, and EEG and CAT inspection dates before and after
training.

Neurofeedback training was conducted at an institute [42]
in Seoul, Korea. The subjects were trained twice a week
for 25–30 min per session. The training was conducted
using only serious video games developed by this system.
No other trainingwas conducted in parallel and no psychiatric
drugs were used during the training period. After training
for approximately 20 times, the brainwave signals before
and after training were compared; Section V-B describes
the results. CAT results before and after training were also
compared; Section V-C describes these results.

B. BRAIN MAPPING RESULTS
The training results were analyzed based on the brain-
wave frequency power. The brainwave frequency power
was measured by attaching an EEG sensor based on
a 10–20 system [43]. In this study, the measuring instruments
were attached to F3, F4, T3, T4, C3, C4, Cz, and Oz. F3 and
F4 are symmetrical positions of the frontal lobes, T3 and T4
are symmetrical positions of the temporal lobes, and C3 and
C4 are symmetrical positions of the central lobes. EEG was
also measured at Cz and Oz in the parietal and occipital lobes
(Fig. 10).
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FIGURE 10. Brainwave relative map of S1: (a) before and (b) after neurofeedback training.

TABLE 6. CAT result of S3 before and after neurofeedback training.

Brainwaves are classified into delta, theta, alpha, low beta,
beta, high beta, and gamma waves according to the frequency
band. The brainwave relative map shows the relative intensity
of the amplitude of each brainwave frequency as a percentage
with respect to the sum of all amplitudes of the brainwave
frequencies. Fig. 10a and b show the relative maps of subject
S1 before and after neurofeedback training, respectively.
Taking the F3 position as an example, the percentages of theta
and low beta brainwaves before and after training were 26.5%
and 6.1% and 24.0% and 6.6%, respectively; therefore, the
inhibit frequency power decreased, and the reward frequency
power increased.

Fig. 11 shows the brainwave relative color maps of the
brainwave relative map of subject S1. Relative color maps
were generated separately by dividing the 2–4 Hz frequency

range. The percentage values of frequencies calculated at
the eight measurement locations were converted to color,
and smooth-varying color areas were created for the entire
brain area.

The 2–4 Hz brainwave, which was strongly measured in
the frontal lobe of the subject, weakened after neurofeedback
training. The 4–6 Hz brainwave also weakened after training.
The strong low-frequency (2–8 Hz) brainwave in the frontal
lobe indicates that the brain’s arousal control function is
weak, commonly observed in children with ADHD. After
the neurofeedback training developed in this study, the
amplitudes of low-frequency brainwaves in the frontal lobe
weakened.

The frontal theta-beta ratio (TBR) also decreased. The
TBR is the ratio between theta and beta frequency powers;
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FIGURE 11. Brainwave relative color maps of S1 before and after neurofeedback training.

FIGURE 12. Brainwave relative color maps of all subjects before and after training.
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TABLE 7. CAT result of all subjects before and after neurofeedback training.

frontal TBR reduces as attentional control improves [44]. The
percentages of the theta and low beta wave powers in the
frontal left area of the brain (F3) before and after training
were 26.5% and 6.1% and 24.0% and 6.6%, respectively. This
indicates a decrease in the TBR (Fig. 10).

C. CAT RESULTS
This subsection evaluates the effectiveness of the training
from a medical perspective. The CAT results before and after
training in the five subjects were compared. Table 6 shows
the CAT results for subject S3.

The visual selective attention evaluated according to
the average response time before and after training, was
‘boundary’ and ‘normal,’ respectively. The sustained atten-
tion to response task evaluated according to the average
response time before and after training was ‘boundary’
and ‘normal,’ respectively. The attention in the Flanker
test evaluated according to the standard deviation of the
response time before and after training, was ‘decreased’ and
‘normal,’ respectively. All five subjects showed improved
CAT results after neurofeedback training, and no parameters
worsened.
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VI. CONCLUSION
This study aimed to develop a sophisticated neurofeedback
system for effective training. The proposed system includes
an adaptive thresholding function that automatically adjusts
the thresholds according to the target success rates, allowable
error, and time set by therapists. This system creates
accurate feedback at 0.125 s intervals by comparing the
thresholds with the power spectrum values. In addition,
the generated success or failure feedback is analyzed to
calculate the success rate for a particular duration. In case
where the calculated success rate exceeds the error range
of the target success rate set by the therapist, the system
analyzes the previous brainwave patterns of the subject
and automatically calculates an optimized threshold that
can lead to the target success rate. Moreover, the proposed
system is compatible with existing game engines, such as
unity3D, resulting in the rapid production of various training
contents.

A pilot test on five children with ADHD symptoms
was performed to demonstrate the effectiveness of the
proposed system and training contents. After training for 3–4
months, all subjects showed significant improvements in the
brainwaves and CAT results.

The proposed method can improve neurofeedback training
effects and the limitations of conventional face-to-face
training can be resolved. Adjusting the thresholds is usually
done by an experienced therapist, and employment and
expenses are charged accordingly. When using the auto
thresholding method proposed in this study, training can be
performed without a therapist, or one therapist can manage
multiple EEG training at the same time, thereby reducing the
constraints of employment, cost, and time.

The developed system supports high scalability. Neuro-
feedback training can be started immediately for any EEG
other than SMR, theta, and high beta, which were the training
targets in our study, just by setting the frequency band, EEG
type (reward or inhibit), initial threshold, and target success
rate. The developed system is also compatible to other EEG
devices. Most EEG devices adopt a sampling rate of 256 or
512 Hz, and if the EEG device manufacturer provides a
protocol to obtain sampled EEG data, it can be used in the
developed system. Training contents are also made with a
widely used commercial game engine, so it is easy to change
training contents or add new contents.

The developed neurofeedback system has been imple-
mented and utilized in the brain training center where the pilot
test was conducted.

Furthermore, a human factor study will be conducted to
analyze the outcomes before and after training to prove the
practicability of the proposed system.

APPENDIX
EXPERIMENTAL RESULTS OF ALL SUBJECTS BEFORE AND
AFTER TRAINING
In this appendix, we present experimental results of all
subjects before and after training.

A. BRAINWAVE RELATIVE COLOR MAPS OF ALL SUBJECTS
BEFORE AND AFTER TRAINING
The brainwave relative color maps of all five subjects are
presented in the Fig. 12.

B. CAT RESULTS OF ALL SUBJECTS BEFORE AND AFTER
TRAINING
The CAT results for all the subjects are presented in the
Table 7.
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