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ABSTRACT Current biomedical research relies primarily on in silico studies to model complex systems
like cardiovascular hemodynamics. However, for comprehensive validation of mathematical models, real
in vitro experiments are indispensable. This paper introduces a framework that bridges these approaches
through the hybrid mock circulatory loop (hMCL), offering precise control, flexibility, and reproducibility.
This innovation enables the investigation of cardiovascular disease mechanisms in a controlled setting,
overcoming the limitations of live organism studies. The framework employs a modified autoencoder with
a partially guided latent space, incorporating physiological insights into a deep neural network. It leverages
time-delayed cardiovascular signals, including pressures, flow rates, and unmeasurable cardiovascular sys-
tem (CVS) parameters, to estimate critical parameters like aortic and mitral resistance, systemic resistance,
and left ventricle elastance. The autoencoder’s loss function is tailored to predict these parameters, enhancing
the understanding of cardiovascular dynamics. The study utilizes in silico data to train themodel and validates
it through in vitro tests using a hybrid mock loop device, yielding a remarkable accuracy of less than 5.7%
error in replicating CVS signals. Furthermore, the framework demonstrates the adaptability of CVS variables
to perturbations in closed-loop conditions and exhibits a diagnostic model with an impressive 98.55%
F1 score for classifying cardiovascular disease severity. This research significantly advances the field by
modifying the autoencoder to include physiological signals, introducing a novel loss function, developing
a structured network, presenting a diagnostic model, and proposing an innovative approach for generating
transient responses in cardiovascular hemodynamics, validated through in vitro and in silico experiments.

INDEX TERMS Aortic and mitral stenosis, cardiac contractility, CVS model parameter estimation, hMCL,
physiological consciousness deep network, systemic resistance change.

I. INTRODUCTION
The cardiovascular system (CVS) plays a crucial role in
the human body, and the prevalence of cardiovascular dis-
eases (CVD) has increased due to lifestyle changes in the
modern world. CVDs are responsible for approximately
one-third of all deaths globally [1]. To address this issue,
extensive research has been conducted to develop mod-
els for diagnosing, treating, and preventing cardiovascular
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abnormalities [2]. However, one of the challenges in ana-
lyzing, diagnosing, and treating CVD is the difficulty of
non-invasively measuring cardiovascular signals from a live
subject in real-time. The need to preserve the normal func-
tioning of the cardiovascular system and comply with strict
regulations imposed by authorities such as the FDA (Food
and Drug Administration) and NCBI (National Center for
Biotechnology Information) further complicates the process
[3], [4]. Therefore, the development and utilization of effec-
tive CVS models are essential in addressing these chal-
lenges. These models can provide valuable insights into the
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functioning of the cardiovascular system, help in early detec-
tion of abnormalities, guide treatment strategies, and aid in
the development of preventive measures.

There are basically two common type of experiment to
overcome these limitations: in silico and in vitro test. In
silicorefers to conducting experiments or simulations on a
computer or through computational models, often used in
fields like computer science and drug discovery, allowing
researchers to analyze complex systems and predict out-
comes [5]. On the other hand, in vitro involves conducting
experiments in a controlled laboratory environment, typically
using isolated biological components such as cells or tissues,
or biomedical device that can be conditioned using software
algorithm [14]. This method is crucial in biology and phar-
macology to study biological processes and test the effects
of various substances. While in silico is virtual and relies on
data and algorithms, in vitro involves physical experiments
with biological materials.

Model-based simulations and experiments are conducted
to generate synthetic cardiovascular system (CVS) signals,
which can be used for analyzing the CVS or emulating
certain conditions for diagnostics and treatment of live sub-
jects, such as aortic stenosis, heart failure, and more [5],
[6], [7], [8]. Although, in silico tests offer complete knowl-
edge of hemodynamic variables and parameters to interpret
the nature of CVS, they are highly sensitive to assump-
tions made in mathematical modeling. That restricts model
validity in a wide range of operation. To overcome such
limitations of in silico test, the in vitro studies are con-
ducted on physical analogous platforms for validation in
silico models [9]. The mock loops (MCL) are an example of
such devices filling the gap between clinical and engineer-
ing approaches. On the other hand, the hybrid mock loops
(hMCL) enable us to access a richer set of CVS variables
and parameters using either direct measurements or state
estimation [9], [10]. This approach provides valuable insights
into the behavior of the CVS and helps validate the assump-
tions made in mathematical models used for simulations.
The combination of in silico and in vitro tests enhances
our understanding of the cardiovascular system and aids in
the development of more reliable diagnostic and treatment
strategies.

The left ventricle (LV) pumping oxygenated blood to the
body is a very critical section of CVS. Any deviation of its
operation may have significant effects on the heart and other
organs. Its characteristics are modeled by the pressure, the
flow rate variables, and its elastance parameter. Together with
resistances of aortic and mitral valves, they play a critical role
in understanding the conditions of the CVS [11]. The mod-
eling of the overall systemic cycle is completed with basic
elements of fluid resistances, elastances and inertances in the
closed-loop hemodynamic system. Although those signals
coming from cyclic autonomous operation are periodic, they
show dependency to a wide range of factors such as age, time,
person to person, and other physiological conditions [12].

To accommodate such variations, different simplistic yet
powerful models are suggested in various details, e.g., [5].
Experimental setups reproducing cardiac functions and in
vitro data are essential for clinical studies. Such a system
validating the dynamic behavior using in vivo data obtained
from MRA is given in [13].
Data-driven models utilize machine learning and statistical

techniques to learn patterns and relationships from cardio-
vascular data. These models can be trained on large datasets
and used to make predictions, classify diseases, or estimate
physiological parameters. They offer flexibility in capturing
complex dynamics and individual variations in the cardio-
vascular system provided that a rich dataset is available.
They have used data coming from both in silico and in vitro
tests during the last couple of decades [14], [15], [16]. Such
algorithms are utilized for the identification and prediction of
the CVD and their treatment options to the experts [17].
In recent years, there have been many studies published

related to estimation of CVS parameters especially for
end-systolic left ventricular elastance (ELV ) and vascular
resistance (RSYS ) which are the basic indicators watched for
heart failure and systemic problems [18], [19]. Most of the
studies focus on the estimation of the (ELV ) using the physio-
logical data that can be measured invasively or noninvasively
[20], [21], [22]. In general, the principal pressure and/or
flow rate variables of CVS are considered in model devel-
opment for heart failure or deprecated contractility, e.g. [23].
When a complete state-space is not measurable, extended
Kalman filter methods are utilized for the measurement from
real patients, some devices such as Left Ventricular Assisted
Device (LVAD), or an artificial heart [22], [24], [25].

In this paper, the authors propose a novel framework based
on a deep neural network (deepnet) for modeling, estimating
key parameters of the cardiovascular system, and diagnosing
certain cardiovascular diseases. The deepnet is constructed
by a novel autoencoder called the physiologically conscious
autoencoder (PCAE) is trained on a dataset generated by
a five-state ‘‘principal’’ variable CVS model. The dataset
used for training the deepnet is produced from different
operations, including a healthy heart condition with varying
left ventricular elastance values, aortic stenosis simulated by
manipulating the aortic resistance, mitral stenosis mimicked
by adjusting the mitral resistance, and varying systemic vas-
cular resistances. By training the deepnet on this dataset,
the authors aim to generalize the relationships between the
CVS signals and these conditions. The autoencoder, which
is a type of neural network architecture frequently used for
dimensionality reduction and feature extraction, is modi-
fied to incorporate additional physiological signals into the
latent space. These additional signals, referred to as ‘‘critical
parameters,’’ represent key CVS parameters. By including
these critical parameters in the PCAE model, the authors
not only create a model for the CVS but also estimate these
important parameters. In addition to modeling and parameter
estimation, the authors employ another deepnet model for
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the classification of healthy hearts and different severities
of CVDs, including aortic stenosis, mitral stenosis, and sys-
temic vascular resistance. This classification model utilizes
the learned features from the PCAE model to classify the
different cardiovascular conditions. Furthermore, the authors
demonstrate that perturbing a critical parameter in the PCAE
model results in the corresponding adjustments in the CVS
principal variables. This indicates that the PCAE model is
able to reproduce the behavior of the CVS based on the
variation of critical parameters. Finally, all signals from
the proposed framework: the principal variables, the critical
parameters, the diagnostics, have been compared to in vitro
data obtained from the hMCL that authors developed [10].

The primary contributions of this study encompass several
key aspects: 1) The modification of a vanilla autoencoder
to incorporate relevant cardiovascular physiological signals;
2) Introduction of a novel loss function aimed at minimizing
the I/O mapping of critical parameters such as left ventricu-
lar elastance, left ventricular contractility, aortic, mitral, and
systemic vascular resistance into the latent space; 3) Devel-
opment of a structured network capable of accepting external
parameters to explore perturbed hemodynamic scenarios;
4) Presentation of a diagnostic model capable of classifying
severity levels defined by parametric ranges from the existing
literature pertaining to targeted cardiovascular diseases; and
5) The introduction of a novel approach for generating tran-
sient responses in cardiovascular hemodynamics, validated
through in vitro and in silico testing.

II. THE FRAMEWORK OF THE ARTIFICIAL CARDIOLOGIST
ASSITANT
The main objective of this research is to lay ground of a
framework to analyze and predict the health condition of
human CV system. In this section, we’ll start with analo-
gous reference model with lumped parameters of CVS. Then,
preparation of the training and the test datasets are discussed
with some explanations of cardiovascular degradation of
some structural and functional impairment of left ventricular.
At the same time an hMCL device is utilized to regenerate
relevant physiological signals and parameters for validation
purposes. We propose an autoencoder enhanced by some CV
physiological parameters for a better CVS modeling. A cost
function is derived to enable learning of both cardiovascular
pressure-volume signals and some critical parameters playing
roles in CVD diagnostics.

A. MODELLING CVS AND MORBIDITY
There have been numerous models at varying degrees of
complexity showing the internal hemodynamics in the heart.
For the purpose of left ventricular, that is considered to be the
main driving part, study a reduce order lumped CVS model
[5] has been taken as a reference model in this paper.
The analogous electrical circuit shown in Fig. 1 is written

in state space as,

ż=Ac (t) z+ Bc (t) p(z) (1)

where z = [PLV (t)PLA (t)PAP (t)PAO (t)QT (t)]T .
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Bc (t) =
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p (z) =


1
RM

r (z2 − z1)

1
RAO

r (z1 − z4)

 (3)

With the ramp signal modeling the switching functionality
of diodes,

r (η) =

{
η, if η ≥ 0
η, if η < 0

(4)

The four phases, isovolumic relaxation and contraction,
ejection, and filling, of the left ventricular response can now
be represented by thismodel (1) using the lumped parameters.

The emulation of healthy and morbidity conditions is
accomplished by reflecting structural deformations on the
lumped aortic, mitral, systemic resistances and contractility
of the left ventricular elastance in four severity levels, named
S1 through S4. The parametric ranges of these conditions that
are defined by our study are shown in Table 1.

In Table 1, CVS principal variables of a person in healthy
and different stages of disease conditions are parameterized.
In healthy condition, the Emax parameter range is shown to
be between 1-5 mmHg/ml interval [26]. In our study, the
proposed in silicomodel is tested between 1.4-2.5 mmHg/ml
as in [5]. The ranges of abnormal cases of Rm and Rsys are
selected according to the same study as well [5]. The RAO
values are taken from Iscan et al. studies [8] in which the
time-varying aortic resistance is modeled in their study to
represent the aortic regurgitation and stenosis cases. The last
stage of the CVD demonstrates worst case condition (S4) for
a given CV condition.

Therefore, the healthy condition is labeled asHi whenEmax
value is taken from S thi column for i = 1, 2, 3, 4 and the
remaining parameters kept at their nominal values as shown
in columnN in Table 1. The aortic stenosis (AS) severity level
is labeled as ASi when RAO value is taken from the column
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FIGURE 1. Dataset generation for CVS model development. In silico data are generated using Simaan’s base model [5]. This in silico model can be
conditioned to the specific CVS conditions such as aortic and mitral stenosis, systemic vascular change and variation in left ventricular contractility. The
principal and critical variables are transferred into the data processing unit to split into training and test dataset.

TABLE 1. CV Health Condition Parameterization. The values of all variables primarily used for CVS conditions are provided in the table. The values of
critical cardiovascular parameters were adjusted according to disease levels to create all in silico data. Parameter values were assigned based on the
conformity of the hMCL in vitro tests with the reference in silico model.

Si while the others kept at nominal values. Similarly, for
mitral stenosis (MS) and systemic resistance chance (SRC)
conditions severity levels are labeled as MSi and VSRi by
changing RM and RSYS from S thi column, respectively.

B. GENERATION OF CV PHYSIOLOGICAL DATASET FOR
DEEP-LEARNING
In Fig. 1, the CV dataset generation process using refer-
ence CVS models is shown. To obtain the reference time
series of the principal signals and critical parameters with
the labeled healthy and disease conditions of the aortic and
mitral stenosis, systemic vascular resistance change andmax-
imum elastance variation, the model is run with different
parameter. A representative latent space variables during the
dataset generation is depicted in Fig. 2. These signals and
the associated CV conditions are split into 30% test and 70%
training datasets and stored during the preprocessing phase.

The training data is produced by using these resistances
and maximum elastance values in which each of them is
changed at different times and time responses of CVS are
obtained to identify mitral and aortic stenosis, systemic vas-
cular change andmaximum elastance effect on cardiovascular
parameters Each training set related to N, S1, S2, S3 and S4
for each condition is run within the period of 180 second
with the sampling rate of 10Khz. After that, each condition is
assigned to specific states defining the diseases type of CVS.
After that, the normalization process is applied to the whole
data to improve autoencoder results. Due to time dependency
of CVS, the best beats are selected to represent the spe-
cific disease and its levels by using state variables which is
assigned to both healthy and disease conditions. Then, the
whole generated data is split into test and training one at the
rate of %30 and %70, respectively. The total training and test
data indicating disease and healthy conditions are depicted in
Table 2.
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FIGURE 2. Latent variables during dataset generation. Each time-dependent variable consists of the total latent space in accordance with the
CVS parameters. The key innovation is to create critical parameters of CVS using supervised learning to capture the history-dependent features
of CVS.

TABLE 2. PCAE data slicing for training and validation.

In Table 2, CV data is generated in beats, each represent-
ing one time history of heart circulation including complete
systole and diastole phases. The hMCL device is set to a spe-
cific resistance and elastance values to simulate the targeted
abnormalities.

Fig. 5 presents the hMCL configuration, encompassing
LV, aorta, and LA tanks with liquid components in blue.

The LV tank features the mitral valve, transferring liq-
uid from LA to LV during diastole, and the aortic valve,
directing flow from LV to the aorta during systole. Three
pipelines link tanks to adjustable resistances (RM , RA, RV )
for replicating pathophysiological states. To address LV’s
low-pressure nature, a balance tank (Tank1) reduces gas
pressure. A valve within the pipeline decreases pressure
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FIGURE 3. PCAE based CVD classification. Inputs are fed into the encoder with a time delay. Subsequently, outputs related to the latent
space and critical parameters are generated between the encoder and decoder. In the decoder output, an attempt is made to reproduce
the data provided in the input while also estimating critical cardiovascular parameters. For the diagnostic process, abnormal situation can
be conditioned using the latent space and critical parameters that determine the system’s response in the cardiovascular system.

FIGURE 4. Closed loop PCAE operations. To test the performance of the presented PCAE, the connection of critical cardiovascular parameters can be
severed, and external inputs can be fed. Moreover, the PCAE provided in the closed-loop response is designed to generate cardiovascular pressure-flow
values. During this data generation, the output of the decoder is fed back to the input of the encoder. This feedback enables the feeding of additional
critical cardiovascular parameters from external sources. Disease states, whether healthy or diseased, can be simulated using the presented PCAE by
altering only the critical cardiovascular parameter values.

for ease of control. Proportional gas valves regulate gas
inlet and outlet, responding to pressure differences between
tanks. The system employs three valves (g1, g2, g3) for

this purpose. The hMCL was assessed by modifying resis-
tance values to replicate aortic stenosis and systemic abnor-
malities through orifice area adjustments, enabling time
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response evaluation. Furthermore, diverse heart rate refer-
ences were implemented to gauge cardiac output in relation
to literature-documented physiological studies. The assess-
ment of our proposed method encompasses evaluating hMCL
capabilities, including variable stiffness, aortic and mitral
stenosis, and changes in systemic resistance. Importantly,
we demonstrate that existing hMCLs are incapable of sim-
ulating the FSM [36]. Our hMCL substantially enhances data
diversity, yielding more precise physiological conditions.
This experimental environment facilitates the simulation of
diverse conditions that are unattainable through real tissue
experiments or in vivotest. By rigorously replicating hMCL
according to the values in Table 1 through numerous repeat-
able experiments, we broaden data diversity and encompass
conditions untestable on real tissues.

The in vitro data is collected at 1 kHz on the platform
developed by authors [10]. It is important to notice that only
the in silico data is utilized during the training phase. Each of
the training dataset is set to be 2,300 beats for each disease
levels. The in silico tests are performed for 1,000 synthetic
beats for each case. Additionally, hMCL measurements are
only used to validate the proposed PCAE model.

Each feature vector related to the principal variables and
the critical parameter values are normalized between 0 and
1 by using physiological maximum and minimum values
(e.g., PLV is ranged between 0 and 200 mmHg, etc.).
The training and testing features contain both principal

variables x = (Plv,Pao,Pla,Vlv,Qlv)T and critical parameter
θ =

(
Elv,Emax ,Rao,Rm,Rsys

)T sets in order to represent
the targeted physiological properties related to normal and
abnormal cases. The calculation of the critical parameter
sets is done by using principal variables values at both in
silico and in vitro experiments. In both experiments, normal
and abnormal conditions are constructed by using Table 1
with the change of resistance and maximum elastance values.
After that, the measurements of in silico and in vitro are
achieved and assigned to specific cases for healthy andmitral,
aortic stenosis, vascular resistance and elastance changes
abnormalities.

C. THE PCAE ARCHITECTURE FOR CVS
The backbone of the proposed framework is Physiologically
Conscious Auto-Encoder (PCAE) as shown in Fig. 3. The
PCAE is constructed by feedforward neural networks (NN)
mapping the recurrent principal variables input space to the
latent space in the encoder block and then back to a prediction
of the principal variables in the decoder block. Our innovative
approach involves bifurcating the latent space, where infor-
mation is condensed, which differs from standard autoen-
coder practices. Traditional auto-encoders capture essential
features in this space to represent outputs. However, the
CVS yields time-dependent results. To accommodate this,
we introduce five physiologically conscious neurons within
the latent space for supervised learning of critical param-
eters (resistance, capacitance). The standard autoencoder

structure is updated to include this augmented latent space.
The remaining aspects of the vanilla autoencoder structure
remain unaltered. These changes are applied to supervised
learning through adjustments in the cost function and learn-
ing process. Consequently, our modified autoencoder can
express time-dependent states within a unified framework.
The latent space is modified by the cardiovascular parameters
(CVP) that cannot be measured non-invasively, including
aortic (AR), mitral (MR) and systemic (SR) resistances, end
systole (Emax) and time-varying elastance of left ventri-
cle (TV-LVE). The latent space vector is used for analysis
and diagnostics of targeted CVD conditions with an addi-
tional feedforward NN, called diagnostics model. The CVS
abnormalities considered are the left ventricular elastance
(TV-LVE) deviation, mitral (MS) and aortic (AS) stenosis and
vascular resistance change (VRC). Deep learning is achieved
using in silico generated dataset based on the models given in
[5]. The mathematical model is conditioned in both healthy
and abnormal cases.

The PCAE is shown, processing the principal variable
vector,

x = (Plv,Pao,Pla,Vlv,Qlv)T (5)

with Plv,Pao,Pla the left ventricular, the aorta, the left atrium
pressures, Vlv,Qlv the left ventricular volume and flow rate,
respectively. at the input stage and generates the latent space
internal φ(k) ∈RN1 and external θ (k) ∈RN2 vectors at its
output. The external θ (k) vector enables injection of external
physiologically conscious into the PCAE. The decoder block
maps the latent space back to predictions of the principal CV
variables.

Since both principal variables and critical CVS param-
eters are time-dependent a recurrent autoencoder is used
in our modeling. According to physiological information,
the average heart rate in a healthy person is in the range
of 60 to 120 bpm which means that the proposed method
includes 1000 to 2000 samples collected at 1 kHz [27]. So, the
input vector should be increased by using delay operation like

X =


xis (k)
xis (k − 1)
...

xis (k − N )

 (6)

with N picked large enough to form a window to enable
learning in time series.

After completing the preprocessing and data collection
phase extended PCAE input vector X and focused parameters
θis are made available for physiologically conscious learning
process. The input X is predicted by autoencoder, θis injected
into the loss function to steer some of the latent space neurons
to select physiological parameters simultaneously.

Let error vectors be,

ex = X−X̂, eθ=θ is−θ̂ (7)

with ex and eθ the autoencoder prediction and critical param-
eter error vectors, respectively. In this study, we target critical
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parameters of interest.

θ̂ =

[
ÊLV , ÊMAX , R̂AO, R̂SYS , R̂M

]T
(8)

to be estimated within the latent space.
The proposed augmented autoencoder model consists of

two phases: encoder and decoder sections. The encoder maps
the input vector to another one by using (9)-(11):

z(1)
= h(1)

(
W(1)X + b(1)

)
(9)

z(2)
= h(2)

(
W(2)z(1)

+b(2)
)

(10)

γ = h(3)
(
W(3)z(2)

+b(3)
)

≜ f (X, 2e) (11)

where the superscript indicates the layer number,W(i) is the
weight matrices and b(i) is the bias vector, h(i) is the activa-
tion function of ith layer,2e all learnable encoder parameters.
The encoder is constructed by a three hidden layer MLP. The
encoder output layer is split into internal φ and external θ̂

fields.

γ =

[
φT θ̂

T
]T

(12)

where φT= [φ1φ2. . .φm], θ̂
T
= [ÊLV Êmax R̂AO R̂SYS R̂M ].

The following decoder block is organized as,

z(4)
= h(4)

(
W4)γ + b(4)

)
(13)

z(5)
= h(5)

(
W(5)z(4)

+b(5)
)

(14)

X̂ = h(6)
(
W(6)z(5)

+b(6)
)

≜ g (γ,2d) = g ◦ f (X, 2)

(15)

where X̂ is the predicted principal variables, z(i) hidden
layer output, W(i) and b(i) are ith layer tunable weight
and bias matrices, 2d all learnable decoder parameters and
2 = {2e,2d}.
The cost function to train the autoencoder while guiding a

subset of the latent space is defined as

J = α1
1
N

∑N

n=1
eTx ex + α2

1
N

∑N

n=1
eTθ eθ

+ λ�weights + β�sparsity (16)

whereN is the total number of training samples, α1 and α2 are
the weights of variable prediction and parameter estimation
processes, λ is the L2 regularization term and β is the sparsity
regularization term, respectively. For the L2 regularization,
we have,

�weights =
1
2

∑L

l=1

∑nl

j=1

∑kl

i=1

(
w(l)
ji

)2
(17)

with L, nl, nk the number of hidden layers, the number of neu-
rons in the layer l, and the following layer, respectively. For
the sparsity rate, the Kullback-Leibler divergence formula is
used as in [28]:

�sparsity =

∑D(1,...,6)

i=1
ρ log

(
ρ

ρ̂

)
+ (1 − ρ) log

(
1 − ρ

1 − ρ̂

)
(18)

where ρ is sparsity proportion rate value and ρ̂ is the esti-
mated average output function value. The ρ̂ is calculated as

ρ̂
(l)
i =

1
N

∑N

j=1
z(l)i z(l−1)

j (19)

The cost function given in (16) is optimized using the
scaled conjugate gradient method [9]. The total error value
is also calculated by using the mean square error.

D. DIAGNOSTICS MODEL
The proposed framework includes another deepnet diagnos-
tics model to predict and classify the CV health conditions
including the severity level of abnormalities for the trained
diseases. A multilayer perceptron model with a softmax layer
is utilized to achieve these tasks for 16 classes of abnor-
malities which contains 4 healthy conditions with respect to
critical parameter sets of input variables.

The diagnostics model input is taken from the latent space
of PCAE,

γ =

[
φ1φ2 . . . φm ÊLV Êmax R̂AO R̂SYS R̂M

]T
(20)

Its output is the healthy and disease condition levels of
16 classes. The output layer’s softmax activation function is
[29], then

σ (z)i =
ezi∑K=16

j=1 ezj
(21)

with σ (z)i the probability of i. The hidden layers use sig-
moid activation functions, and the cross-entropy function is
performed to train the network.

Each of the class probabilities are obtained from (20), then,
the class which has maximum probability is assigned to 1 to
represent the stage of both healthy and diseases conditions.

E. USE OF PCAE FOR CVD TREATMENT
Once the PCAE is trained for the targeted abnormali-
ties and healthy conditions, the critical parameters may
be externally injected into the framework to observe their
effects on the CVS principal variables. This mechanism
enables an expert physician to tailor some treatment strate-
gies targeting those critical parameters and analyze the CVS
response. Total representation of closed loop PCAE is given
in Fig. 4.

After the training process, autoencoder output is feedback
to its input and the network is put in a cyclic condition.
At this stage the latent space parameter vector element(s)
may be switched to a desired parameter θ∗(t). The cyclic
autoencoder output converges to a different regimen that is
correlated to the corresponding principal variable state, hence
the effect of changing some of the critical parameters on CVS
are observed in detail by a cardiologist.

III. ILLUSTRATIONS
To demonstrate the capabilities of the proposed frame-
work, we have first showed the training and test perfor-
mances PCAE model driven by in silico healthy, aortic and
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FIGURE 5. Validation process of the proposed PCAE algorithm. All reference data were generated using hMCL. In the
tests, in silico, open-loop, and closed-loop PCAE data were compared for performance analysis. Additionally, disease
levels for the diagnostic model were compared in percentage units, and measurements were validated by generating
F1 scores, Kappa, and Matthew’s correlation coefficients. Validation was completed using RMS error values for the
comparison of physiological signals.

mitral stenosis, and systemic vascular resistance deviation
case datasets. Then, the PCAE model is validated on in
vitro tests. Then, the artificial cardiac assist model’s perfor-
mance is shown. Finally, we have shown PCAE CV model
response to some select critical parameter changes, including
Emax ,Rao,Rsym. Fig. 5 demonstrates the overall performance
analysis process applied for model assessment. All these sim-
ulations resulted in the principal variables, critical parameters
consistent with the literature and %94 F1 score accurately
classify the selected diseases.

In Fig. 5, in silicotest dataset is generated xis =

{Plv,Pao,Pla,Vlv,Qlv}is and critical parameters θ is ={
Elv,Emax ,Rao,Rm,Rsys

}
is using (1) while the in vitro tests

are conducted to produce the same physiological dataset xiv
and θ iv. The trained PCAE driven by xis predicts CV vari-
ables x̂OL and parameters θ̂OL. The processed in vitro test
outputs x̂iv and θ̂ iv are compared to model outputs in the
performance analysis. The latent space vector γ̂OL is utilized
by the diagnostics model for the CVD classification with the
outputs of four stages of each Healthy (H), Mitral Stenosis
(MS), Aortic Stenosis (AS) and SystemicVascular Resistance
(SVR) change conditions.

A. PCAE MODELING SIMULATIONS
The hyper-parameter optimization was accomplished by
changing their values which was given in Table 3. In Table 3,
there were five basic parameters to optimize the proposed
augmented autoencoder in terms of HLS-S, EF, DF, λ, β,
and ρ. Firstly, EF and DF were iterated by changing its acti-
vation function resulting the best combination with ‘‘logistic
sigmoid’’ and ‘‘pure linear’’ one. After that, the symmetric
hidden layer size and neuron numbers were improved until
the best performance were found out in which it was reached
at ‘‘200-120-10’’ and ‘‘15-120-200’’ for encoder and decoder,
respectively. Notice that the decoder input was increased up to
15 by feeding critical parameter sets. The best performance
was indicated as italic and bold line in Table 3 which had
3.436e-4 general mean square error. On the other hand, the
best performancewas changed in evaluation of critical param-
eter sets due to fact that the cost function parameters of the
error were set to be (α1 = 10, α2 =1).
After experimenting with some of the hyper-parameters,

we have reached satisfactory results when the encoder hidden
layers of 200-120-15, and λ =1e-10, β =1e-12, ρ =1e-5,
α1= 10,α2 = 1 are selected.
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TABLE 3. Auto-encoder hyper parameterization MSE results. All hyperparameter variations were evaluated sequentially based on their performance. With
each change, the best parameter was identified, and the next Parameter adjustment process was completed.

The trained PCAE is able to match the in silico data very
closely for all of Heathy, Aortic Stenosis (AS), Systemic
resistance (SYS), Mitral Stenosis (MS) cases as shown in the
first columns for the principal variables in Fig. 6 and for the
critical parameters in Fig. 7. When the same CVS conditions
are generated in vitro tests PCAE responses are shown in
the second columns in Fig. 6 for the principal variables and
in Fig. 7 for the critical parameters. Although the physical
limitations of hMCL device used showing some lag and
noisy response forElv,QLV ,Emax the remaining variables and
parameters have resulted in anticipated signals.

In terms of the diseases cases, AS affects only the left
ventricular pressure, the volume, and the flow rate at both
in vitro and in silico data are in accordance with the physio-
logical findings [25]. Vascular systemic resistance increment
pulled up aortic pressure to 150 mmHg but did not affect the
QLV (t) value in all cases. In the mitral stenosis case, all of the

pressures and volume values except PLA(t) are decreased in
accordance with the physiological data [30].

Especially for QLV (t) in diastole phase, highly sensitivity
to transfer blood into the left ventricle chamber can be seen.

The other parameters Rao (t) ,RM (t) and RSYS (t) have per-
fectly converged to their reference physiological values [10],
[12], [30], [31].

Notice that even though the model is trained on the in silico
tests, overall performance of the PCAE is acceptably well
when driven by the in vitro tests for all cases studied.
The classification performance of each class is shown in

the confusion matrix depicted in Fig. 8. Although the over-
all performance of 94.76% correct classification is found
to be satisfactory, it suggests even better results by paying
attention to the following observations. The model’s con-
fusion between H-I and H-II as well as AS-I and AS-II
is likely to be due to the assumptions made in Table 1.
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FIGURE 6. PCAE principal variables responses to In silico model and in vitro device [10].

FIGURE 7. PCAE critical parameter responses to in silico model and in vitro device [10].

Especially for H-I and H-II, the acceptable EMAXand PLV val-
ues were increased in the healthy physiological range while
VLV was kept constant in accordance with the frank-starling
law [32]. Similar observation has been noticed for AS-I and
AS-II case, where the VLV is kept constant through the time
response.

In order to show a statistical performance of the proposed
diagnostics model, F1 score together with the Matthews Cor-
relation Coefficient (MCC) [33] and the kappa statistics [34]
given in Table 4. MCC is added to take into account of the
imbalance between in silico and in vitro tests and the kappa
statistics is included to illustrate interrater reliability.
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FIGURE 8. The confusion matrix of the CVS diagnostics model classification.

TABLE 4. The classification results of CVS data.

Thus, Table 4 indicates that the use of in silico and in vitro
tests on CVD conditions results in a reliable classification by
the proposed model.

B. EXCITATION OF PCAE BY CRITICAL PARAMETERS
The PCAE in the closed-loop operation produces cyclic CVS
variable signals consistent with the literature. When a critical
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FIGURE 9. Transient response of CVS PVs to externally triggered Emax.

FIGURE 10. Healthy case of the CL-PCAE results.

parameter defined within the latent space is deviated from
its current condition to change the severity level, we observe
that the model outputs, the principal variables, converge to
the new state condition observed in in vitro tests conducted
by the hMCL device. Fig. 9 shows the in vitro data as ref-
erence with H-IV level triggered at 166 s when θ∗

2 = E∗
max

value is changed to the nominal condition of 2.5 ml/mmHg.

The figure demonstrates the output transition of the PCAE
model that is converging to the reference signals after a couple
of cardiac cycles.

We have, then, carried out similar experiments for the
other parameters in different morbidity settings. Fig. 10
depicts the PVs in H-I through H-IV conditions at the steady
state.
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FIGURE 11. Aortic stenosis case of the CL-PCAE results.

FIGURE 12. Systemic resistance change case of the CL-PCAE results.

The aortic stenosis levels, AS-I – AS-IV, are emulated in
the PCAE model by adjusting θ∗

3 = R∗
AO and validated by

hMCL responses. The steady-state cardiac cycle waveforms
for each case are illustrated in Fig. 11.

It noteworthy to mention that only Plv (t) values are
increased that is in accordance with the literature [8]. Besides,
the left ventricular volumewas decreased in timewhilePla (t)

was not changed at all stages. It was considered another
important property for modelling aortic stenosis that is in
consistent with physiological CVS dynamic.

For systemic resistance changes, Fig. 12 demonstrated the
results of CL-PCAE outputs.

The PCAE model in closed loop possessed perfectly
matched results for the whole pressures. The increment on
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TABLE 5. The comparison of estimation of CVS parameters.

the aortic pressure shown in Fig. 12 is also in accordance with
hMCLmeasurements. These responses perfectly matched the
hMCL measurements as well as physiological response of
systemic resistance change [10].

We have encountered eight different studies within our
scope, and we compare our results from the proposed frame-
work on CVS signals estimation to those reported in theirs.
The error signal mean (%) and STD values are listed in
Table 5. Dabiri et al. establishes a machine learning technique
to estimate the real-time left ventricular response using the
finite element methods to train XGboost and Cubist net-
work structure [23]. Their models yield high mean but low
STD in errors in the left ventricular pressure and volume
0.939±0.067% and 0.923±0.050%. Regazzoni et al. worked
on the left ventricular model with electrical and 3D model-
ing techniques to find proper outputs for the pressure and
the volume [35]. The articles focused only on estimation
of the left ventricle end-systolic elastance value [20], [21],
[26] using CNN and DNN models are employed on both
LVAD designs and real patients. On the other hand, Yang
et al. suggested an inverse problem for the seven parameters
of the same model of ours together with Emax and Emin
estimation based on nonlinear optimization assuming using
the systemic arterial pressure [24]. The study given in [25]
focuses only on vascular resistance change Rsys while [22]
extends it to the contractility change and the left ventricular
pressure. Both are built on EKF based estimation of the CVS
parameters using LVAD device-based measurements. The
proposed PCAE model trained on Simaan et al. model results

in very competitive estimations over the critical parameters
as summarized in the table.

IV. DISCUSSION
The presented study employs an autoencoder-based method-
ology, which is integrated into physiological consciousness
framework. This innovative approach enables the mod-
eling not only of pressure-flow dynamics but also the
time-dependent characteristics of CVS, encompassing resis-
tance and capacitance values. Specific CV conditions are
selected, building upon our prior work, wherewe successfully
simulated diseases relevant to the hMCL through stenosis and
stiffness alterations [10]. To assess the method’s accuracy
without in-vivo data, experiments were conducted under con-
ditions well-matched to hMCL capabilities. This narrowing
of the focus is essential for clinical applicability, ensuring
alignment with the range of cardiovascular conditions real-
istically emulated by the present hMCL. The widespread
utility of this algorithm for diverse populations and vari-
ous cardiovascular diseases, as emphasized in the review,
is of paramount importance. Our method was rigorously
trained using in silico data via the autoencoder structure
and subsequently validated with in vitro data. This approach
serves to illustrate that the algorithm’s overall performance
remains robust even when in vitro data is excluded from the
training process. Thus, our objective is to demonstrate that
by effectively learning critical parameters, such as resistance
and capacitance, across a spectrum of cardiovascular dis-
eases, the model can accurately reproduce the cardiovascular
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system’s response across a broad range of clinical
scenarios.

The present study deliberately employs in silico data for
comprehensive training of the proposed method, as high-
lighted in Table 2, with a deliberate exclusion of in vitro
data during the training phase. This decision is made to
rigorously evaluate the algorithm’s performance when tested
with real, in vitro data. In our in vitro investigations, the
existing hMCL system adeptly models stenosis and variable
stiffness values, successfully simulating the Frank-Starling
mechanism [9]. Furthermore, its capacity to accommodate
nonlinear fluid flow characteristics, account for pressure
drops, and adapt to diverse resistance values positions hMCL
to yield results closely aligning with real patient outcomes
in in vitrostudies. Importantly, hMCL’s utilization can effec-
tively simulate a wide spectrum of CV conditions, often
surpassing real tissue simulations in accuracy. Additionally,
investigating mitral and aortic stenosis conditions in actual
patients poses formidable challenges, necessitating invasive
sensor interventions that directly perturb CV hemodynamics,
potentially yielding results that diverge from authentic clini-
cal observations.

The presented methodology offers significant advantages
by enabling the acquisition of diverse cardiovascular data
using a single, efficient autoencoder structure. This approach
not only minimizes the syntactic complexity by employing
fewer neurons but also captures the semantic essence of the
data. By learning the most influential neural structure with
the fewest neurons, it can effectively model cardiovascu-
lar pressure-flow values. Furthermore, the incorporation of
resistances and capacitances directly into the ‘‘latent space’’
enhances the accuracy and performance of the cardiovas-
cular model. This streamlined representation of essential
features yields a highly determinant model for the data. How-
ever, there are limitations, including reduced performance
on learning data features due to the algorithm’s dependence
on the sequential order of time series data, which might not
be optimal for comprehensive cardiovascular data. Future
research will explore variational autoencoder structures and
address challenges related to supervised learning for physio-
logically conscious neurons, aiming to improve the genera-
tion of physiological data within the proposed method.

Creating a controlled experimental environment with vary-
ing resistance and capacitance values to simulate clinical sce-
narios is challenging, as confirmed by previous research [36].
The presented method extensively examines aortic stenosis in
four distinct phases, demonstrating the algorithm’s capabil-
ity to detect even subtle variations. While these conditions
are manageable and reproducible in in vitro studies, iden-
tifying disease levels in experiments involving real tissues
and human subjects remains notably complex [36]. This
challenge extends to medical professionals, as clinical diag-
nosis of different disease levels is not straightforward [31].
Therefore, the direct evaluation of the presented algorithm’s
performance serves as a valuable contribution to the litera-
ture, offering a benchmark for future studies in this field.

Especially in the diagnosis of cardiovascular diseases, the
advantages of the presented algorithm are considered sig-
nificant. Aortic stenosis is a well-studied disease that has a
significant impact on human life, and performing invasive
tests for it is quite challenging. The presented hMCL and
autoencoder algorithm aim to generate clinically accurate
data for this disease, and the PCAE structure presented has
been validated through in vitro studies. Mitral stenosis, on the
other hand, is particularly difficult to study in the literature
because simulating this disease is challenging both in liv-
ing cells and in the laboratory environment. However, with
PCAE, transient time responses and tests related to this dis-
ease can be conducted. The contractility, which is an indicator
of heart stiffness, can be predicted with high precision using
the presented PCAE structure, and new data can be simulated
with high accuracy for other cardiovascular diseases.

The training model representation is very simple for which
it may not handle complex non-linearity. It is observed that
the ‘attention-based autoencoder’ structure is suitable for
the intended tasks, especially for supervised learning [37].
However, making the necessary adjustments to modify the
latent space with supervised learning would require defining
a new cost function. Additionally, the proposed approach for
closed-loop time response can effectively model physiologi-
cal neurons in a simple and efficient manner.

On the other hand, the ‘decision-tree’ autoencoder struc-
ture is rule-based and can be effectively utilized in cardio-
vascular diagnostics [38]. Nevertheless, modifying the latent
space and generating transient time states in the closed-loop
response could be challenging. Therefore, using a variational
autoencoder in future studies would be appropriate.

In order to improve the performance tests of the proposed
method in clinical studies, it is necessary to conduct tests
with non-invasively collected data, particularly testing Emax
and ECG signals in the presented algorithm, and investi-
gating its training performance. Furthermore, the presented
algorithm is fed into the system with a delay to process time-
series signals, which requires improvement in the algorithm
depending on both the sampling frequency and the window
interval. Additionally, while the performance of the presented
framework has been validated through in vitro studies using
data obtained from in silico simulations, it is essential to
incorporate data from in vitro test results into the training
process. However, this approach was avoided to demonstrate
that the performance of the proposed method can be achieved
not only in silico but also in untrained hMCL measurements.

V. CONCLUSION
In this study, a framework is propo8sed for estimating car-
diovascular system (CVS) parameters based on principal
variables derived from cardiovascular (CV) measurements.
The framework utilizes both in silico (computer-simulated)
and in vitro (laboratory) measurements and addresses various
conditions such as aortic and mitral stenosis, left ventricle
(LV) elastance deviation, and systemic resistance changes in
four different severity levels.
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At the core of the framework lies an autoencoder (AE)
type of deep neural network. The AE is designed with a
partially guided latent space, which is influenced by phys-
iological parametric signals. The input to the AE consists
of principal CV signals such as pressures and flow rates,
while physiological consciousness is induced through criti-
cal CVS parameters that cannot be directly measured using
non-invasive methods. These parameters include the aortic
resistance, mitral resistance, systemic resistance, and left
ventricle elastance.

The standard loss function of the AE is modified to enable
specific neurons in the latent space to learn predefined CVS
parameters. Training datasets are generated using in silico
data obtained from a CVS model. To validate the proposed
model, a hybrid mock loop device, constructed in-house,
is used to collect corresponding CVS parameters and vari-
ables through in vitro tests.

The results of the in vitro tests demonstrate that the pro-
posed deep neural network successfully predicts the principal
CV variables and critical parameters with a mean error
below 5.7% across a wide range of normal and abnormal
conditions.

In addition to CVS parameter estimation, a diagnostics
model is developed using only the latent space vector. This
diagnostics model classifies CVS conditions into four sever-
ity levels. The overall F1 score, which measures the model’s
accuracy, for predicting all cardiovascular diseases (CVD) is
reported as 98.55% for all cases studied.

The proposed framework proves to be effective in estimat-
ing CVS parameters and predicting CVS conditions in the
four severity levels examined. The study suggests that the
framework holds promise for extension to other cardiovas-
cular conditions.

In future studies, performance tests of the proposed
algorithmwill be conducted by conditioning on themaximum
elastance value of the left ventricle and the ECG signal which
can noninvasively collected from the body. Particularly, the
generation of time-series-based image content and the estab-
lishment of a variational autoencoder structure, alongwith the
definition of a new cost function, aim to create a simulation
framework using only ECG signals.

We will also add more CVD and expand the model to be
a better assistant to cardiologists for their diagnostics and
treatment strategies. Subsystems in the framework will also
be implemented using transformers and CNNs. Clinical tests
will be conducted to validate our findings.

REFERENCES

[1] World Health Organization. Cardiovascular Diseases (CVDs). who.int.
Accessed: Aug. 11, 2022. [Online]. Available: https://www.who.int/news-
room/fact-sheets/detail/cardiovascular-diseases-(cvds)

[2] S. Romiti, M. Vinciguerra, W. Saade, I. A. Cortajarena, and E. Greco,
‘‘Artificial intelligence (AI) and cardiovascular diseases: An unexpected
alliance,’’ Cardiol. Res. Pract., vol. 2020, pp. 1–8, Jun. 2020, doi:
10.1155/2020/4972346.

[3] J. Haas et al. In Vivo Assay Guidelines (2012). Accessed: Aug. 15, 2022.
http://www.ncbi.nlm.nih.gov/books/NBK92013/

[4] Y. Orime, S. Takatani, K. Tasai, Y. Ohara, K. Naito, K. Mizuguchi,
K. Makinouchi, Y. Matsuda, T. Shimono, J. Glueck, G. P. Noon, and
Y. Nosé, ‘‘In vitro and in vivo validation tests for total artificial heart,’’
Artif. Organs, vol. 18, no. 1, pp. 54–72, Jan. 1994, doi: 10.1111/j.1525-
1594.1994.tb03299.x.

[5] M. A. Simaan, A. Ferreira, S. Chen, J. F. Antaki, and D. G. Galati,
‘‘A dynamical state space representation and performance analysis of a
feedback-controlled rotary left ventricular assist device,’’ IEEE Trans.
Control Syst. Technol., vol. 17, no. 1, pp. 15–28, Jan. 2009, doi:
10.1109/TCST.2008.912123.

[6] S. Schampaert, K. A. M. A. Pennings, M. J. G. van de Molengraft,
N. H. J. Pijls, F. N. van deVosse, andM. C.M. Rutten, ‘‘Amock circulation
model for cardiovascular device evaluation,’’ Physiolog. Meas., vol. 35,
no. 4, pp. 687–702, Mar. 2014, doi: 10.1088/0967-3334/35/4/687.

[7] M. Abdi, A. Karimi, M. Navidbakhsh, G. P. Jahromi, and K. Hassani,
‘‘A lumped parameter mathematical model to analyze the effects of tachy-
cardia and bradycardia on the cardiovascular system,’’ Int. J. Numer.
Model., Electron. Netw., Devices Fields, vol. 28, no. 3, pp. 346–357,
Jul. 2014, doi: 10.1002/jnm.2010.

[8] M. Iscan and A. Yesildirek, ‘‘Novel aortic heart valve model
parameterizing normal and pathological cases: Aortic stenosis and
regurgitation,’’ Trans. Inst. Meas. Control, 2023. [Online]. Available:
https://journals.sagepub.com/doi/abs/10.1177/01423312231163363, doi:
10.1177/01423312231163363.

[9] K. R. Walley, ‘‘Left ventricular function: time-varying elastance and left
ventricular aortic coupling,’’ Crit. Care, vol. 20, no. 1, p. 270, Sep. 2016,
doi: 10.1186/s13054-016-1439-6.

[10] M. Iscan and A. Yesildirek, ‘‘A new cardiovascular mock loop
driven by novel active capacitance in normal and abnormal condi-
tions,’’ Appl. Bionics Biomechanics, Oct. 2023, doi: 10.1155/1970/
2866637.

[11] J. N. Warnock, S. Konduri, Z. He, and A. P. Yoganathan, ‘‘Design
of a sterile organ culture system for the ex vivo study of aortic heart
valves,’’ J. Biomech. Eng., vol. 127, no. 5, pp. 857–861, Oct. 2005, doi:
10.1115/1.1992535.

[12] E. S. Rapp, S. R. Pawar, and R. G. Longoria, ‘‘Hybrid mock
circulatory loop simulation of extreme cardiac events,’’ IEEE
Trans. Biomed. Eng., vol. 69, no. 9, pp. 2883–2892, Sep. 2022, doi:
10.1109/TBME.2022.3156963.

[13] E. Vignali, E. Gasparotti, A. Mariotti, D. Haxhiademi, L. Ait-Ali, and
S. Celi, ‘‘High-versatility left ventricle pump and aortic mock cir-
culatory loop development for patient-specific hemodynamic in vitro
analysis,’’ ASAIO J., vol. 68, no. 10, pp. 1272–1281, Oct. 2022, doi:
10.1097/MAT.0000000000001651.

[14] M. Swathy and K. Saruladha, ‘‘A comparative study of classification and
prediction of cardio-vascular diseases (CVD) using machine learning and
deep learning techniques,’’ ICT Exp., vol. 8, no. 1, pp. 109–116,Mar. 2022,
doi: 10.1016/j.icte.2021.08.021.

[15] R. G. Nadakinamani, A. Reyana, S. Kautish, A. S. Vibith, Y. Gupta,
S. F. Abdelwahab, and A. W. Mohamed, ‘‘Clinical data analysis
for prediction of cardiovascular disease using machine learning tech-
niques,’’ Comput. Intell. Neurosci., vol. 2022, pp. 1–13, Jan. 2022, doi:
10.1155/2022/2973324.

[16] A. Shimazaki, D. Ueda, A. Choppin, A. Yamamoto, T. Honjo,
Y. Shimahara, and Y. Miki, ‘‘Deep learning-based algorithm for
lung cancer detection on chest radiographs using the segmentation
method,’’ Sci. Rep., vol. 12, no. 1, p. 727, Jan. 2022, doi: 10.1038/
s41598-021-04667-w.

[17] S. Sanchez-Martinez, O. Camara, G. Piella, M. Cikes,
M. Á. González-Ballester, M. Miron, A. Vellido, E. Gómez, A. G. Fraser,
and B. Bijnens, ‘‘Machine learning for clinical decision-making:
Challenges and opportunities in cardiovascular imaging,’’ Frontiers
Cardiovascular Med., vol. 8, Jan. 2022, Art. no. 765693, doi:
10.3389/fcvm.2021.765693.

[18] Y. Zhou, Y. He, J. Wu, C. Cui, M. Chen, and B. Sun, ‘‘A method of
parameter estimation for cardiovascular hemodynamics based on deep
learning and its application to personalize a reduced-order model,’’ Int. J.
Numer. Methods Biomed. Eng., vol. 38, no. 1, Jan. 2022, Art. no. e3533,
doi: 10.1002/cnm.3533.

[19] V. Bikia, S. Pagoulatou, B. Trachet, D. Soulis, A. D. Protogerou,
T. G. Papaioannou, and N. Stergiopulos, ‘‘Noninvasive cardiac output and
central systolic pressure from cuff-pressure and pulse wave velocity,’’
IEEE J. Biomed. Health Informat., vol. 24, no. 7, pp. 1968–1981, Jul. 2020,
doi: 10.1109/JBHI.2019.2956604.

VOLUME 11, 2023 111925

http://dx.doi.org/10.1155/2020/4972346
http://dx.doi.org/10.1111/j.1525-1594.1994.tb03299.x
http://dx.doi.org/10.1111/j.1525-1594.1994.tb03299.x
http://dx.doi.org/10.1109/TCST.2008.912123
http://dx.doi.org/10.1088/0967-3334/35/4/687
http://dx.doi.org/10.1002/jnm.2010
http://dx.doi.org/10.1177/01423312231163363
http://dx.doi.org/10.1186/s13054-016-1439-6
http://dx.doi.org/10.1155/1970/2866637
http://dx.doi.org/10.1155/1970/2866637
http://dx.doi.org/10.1115/1.1992535
http://dx.doi.org/10.1109/TBME.2022.3156963
http://dx.doi.org/10.1097/MAT.0000000000001651
http://dx.doi.org/10.1016/j.icte.2021.08.021
http://dx.doi.org/10.1155/2022/2973324
http://dx.doi.org/10.1038/s41598-021-04667-w
http://dx.doi.org/10.1038/s41598-021-04667-w
http://dx.doi.org/10.3389/fcvm.2021.765693
http://dx.doi.org/10.1002/cnm.3533
http://dx.doi.org/10.1109/JBHI.2019.2956604


M. Iscan, A. Yesildirek: Modeling Transient CV Hemodynamics With PCAE

[20] J. Bonnemain, M. Zeller, L. Pegolotti, S. Deparis, and L. Liaudet, ‘‘Deep
neural network to accurately predict left ventricular systolic function under
mechanical assistance,’’ Frontiers Cardiovascular Med., vol. 8, Oct. 2021,
Art. no. 752088, doi: 10.3389/fcvm.2021.752088.

[21] R. Laubscher, J. Van DerMerwe, P. Herbst, and J. Liebenberg, ‘‘Estimation
of simulated left ventricle elastance using lumped parameter modelling and
gradient-based optimization with forward-mode automatic differentiation
based on synthetically generated noninvasive data,’’ J. Biomech. Eng.,
vol. 145, no. 2, Feb. 2023, Art. no. 021008, doi: 10.1115/1.4055565.

[22] S. R. Pawar, E. S. Rapp, J. R. Gohean, and R. G. Longoria, ‘‘Parameter
identification of cardiovascular system model used for left ventricular
assist device algorithms,’’ J. Eng. Sci. Med. Diag. Therapy, vol. 5, no. 1,
Feb. 2022, Art. no. 011006, doi: 10.1115/1.4053065.

[23] Y. Dabiri, A. Van Der Velden, K. L. Sack, J. S. Choy, G. S. Kassab,
and J. M. Guccione, ‘‘Prediction of left ventricular mechanics using
machine learning,’’ Frontiers Phys., vol. 7, p. 117, Sep. 2019, doi:
10.3389/fphy.2019.00117.

[24] X. Yang, J. S. Leandro, T. D. Cordeiro, and A. M. N. Lima, ‘‘An inverse
problem approach for parameter estimation of cardiovascular system mod-
els,’’ in Proc. 43rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC),
Nov. 2021, pp. 5642–5645, doi: 10.1109/EMBC46164.2021.9629603.

[25] E. S. Rapp, S. R. Pawar, J. R. Gohean, E. R. Larson, R. W. Smalling,
and R. G. Longoria, ‘‘Estimation of systemic vascular resistance using
built-in sensing from an implanted left ventricular assist device,’’ J. Eng.
Sci. Med. Diag. Therapy, vol. 2, no. 4, Nov. 2019, Art. no. 041008, doi:
10.1115/1.4045204.

[26] V. Bikia,M. Lazaroska, D. ScherrerMa,M. Zhao, G. Rovas, S. Pagoulatou,
and N. Stergiopulos, ‘‘Estimation of left ventricular end-systolic elas-
tance from brachial pressure waveform via deep learning,’’ Fron-
tiers Bioeng. Biotechnol., vol. 9, Oct. 2021, Art. no. 754003, doi:
10.3389/fbioe.2021.754003.

[27] D. P. Stonko, J. Edwards, H. Abdou, N. N. Elansary, E. Lang, S. G. Savidge,
and J. J. Morrison, ‘‘A technical and data analytic approach to pressure-
volume loops over numerous cardiac cycles,’’ JVS-Vascular Sci., vol. 3,
pp. 73–84, Jan. 2022, doi: 10.1016/j.jvssci.2021.12.003.

[28] B. A. Olshausen and D. J. Field, ‘‘Sparse coding with an overcom-
plete basis set: A strategy employed by V1?’’ Vis. Res., vol. 37, no. 23,
pp. 3311–3325, Dec. 1997, doi: 10.1016/S0042-6989(97)00169-7.

[29] X. Li, L. Yu, D. Chang, Z. Ma, and J. Cao, ‘‘Dual cross-entropy
loss for small-sample fine-grained vehicle classification,’’ IEEE
Trans. Veh. Technol., vol. 68, no. 5, pp. 4204–4212, May 2019, doi:
10.1109/TVT.2019.2895651.

[30] Y. N. V. Reddy, J. P. Murgo, and R. A. Nishimura, ‘‘Complexity of
defining severe ‘stenosis’ from mitral annular calcification,’’ Circulation,
vol. 140, no. 7, pp. 523–525, Aug. 2019, doi: 10.1161/CIRCULATION-
AHA.119.040095.

[31] F. M. Colacino, F. Moscato, F. Piedimonte, G. Danieli, S. Nicosia, and
M. Arabia, ‘‘Amodified elastancemodel to control mock ventricles in real-
time: Numerical and experimental validation,’’ ASAIO J., vol. 54, no. 6,
pp. 563–573, Nov. 2008, doi: 10.1097/MAT.0b013e31818a5c93.

[32] S. D. Gregory, M. Stevens, D. Timms, and M. Pearcy, ‘‘Replication of
the frank-starling response in a mock circulation loop,’’ in Proc. Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2011, pp. 6825–6828, doi:
10.1109/IEMBS.2011.6091683.

[33] B. W. Matthews, ‘‘Comparison of the predicted and observed sec-
ondary structure of T4 phage lysozyme,’’ Biochim. Biophys. Acta-Protein
Struct., vol. 405, no. 2, pp. 442–451, Oct. 1975, doi: 10.1016/0005-
2795(75)90109-9.

[34] M. L. McHugh, ‘‘Interrater reliability: The Kappa statistic,’’ Biochemia
Medica, vol. 22, pp. 276–282, Oct. 2012, doi: 10.11613/BM.2012.031.

[35] F. Regazzoni, M. Salvador, L. Dede’, and A. Quarteroni, ‘‘A machine
learning method for real-time numerical simulations of cardiac elec-
tromechanics,’’ Comput. Methods Appl. Mech. Eng., vol. 393, Apr. 2022,
Art. no. 114825, doi: 10.1016/j.cma.2022.114825.

[36] M. Rocchi, M. Ingram, P. Claus, J. D’hooge, B. Meyns, and L. Fresiello,
‘‘Use of 3D anatomical models in mock circulatory loops for cardiac med-
ical device testing,’’ Artif. Organs, vol. 47, no. 2, pp. 260–272, Feb. 2023,
doi: 10.1111/aor.14433.

[37] N. Aslam, P. K. Rai, andM.H. Kolekar, ‘‘A3N:Attention-based adversarial
autoencoder network for detecting anomalies in video sequence,’’ J. Vis.
Commun. Image Represent., vol. 87, Aug. 2022, Art. no. 103598, doi:
10.1016/j.jvcir.2022.103598.

[38] D. L. Aguilar, M. A. Medina-Pérez, O. Loyola-González, K.-K.-R. Choo,
and E. Bucheli-Susarrey, ‘‘Towards an interpretable autoencoder: A
decision-tree-based autoencoder and its application in anomaly detection,’’
IEEE Trans. Depend. Secure Comput., vol. 20, no. 2, pp. 1048–1059,
Mar. 2023, doi: 10.1109/TDSC.2022.3148331.

MEHMET ISCAN received the B.S. and M.S.
degrees in mechatronic engineering from Yıldız
Technical University, Turkey, in 2013 and 2016,
respectively, where he is currently pursuing the
Ph.D. degree. He is a Research Assistant with
Yıldız Technical University. He is also the
Co-Founder of Phinite Technology Corporation,
a biomedical company developing cardiac test-
ing devices and Holter. His research interests
include mechatronic design, neural networks, and
the detection of cardiac abnormalities.

AYDIN YESILDIREK (Member, IEEE) received
the B.S. degree in electronics engineering from
the Technical University of Istanbul, in 1986, the
M.S. degree in electrical engineering and applied
science from Case Western Reserve University,
Cleveland, OH, USA, in 1992, and the Ph.D.
degree in electrical engineering from The Univer-
sity of Texas at Arlington, Arlington, TX, USA,
in 1994. In 1995, he joined Idaho State Univer-
sity, Pocatello, ID, USA, as a Postdoctoral Fellow.

From 1996 to 1999, he was the Manager of the Research and Development
Department, VGT, Panama City, Panama. In 1999, he joined the Department
of Electrical and Computer Engineering, Gannon University, Erie, PA, USA,
as an Assistant Professor, till 2007. From 2007 to 2014, he was an Asso-
ciate Professor with the Department of Electrical Engineering, American
University of Sharjah, United Arab Emirates. Since 2014, he has been with
the Department of Mechatronics Engineering, Yıldız Technical University,
Istanbul, Turkey. His research interests include autonomous robotics, intel-
ligent control, modeling and analysis of biomedical systems using artificial
intelligence, and deep learning framework.

111926 VOLUME 11, 2023

http://dx.doi.org/10.3389/fcvm.2021.752088
http://dx.doi.org/10.1115/1.4055565
http://dx.doi.org/10.1115/1.4053065
http://dx.doi.org/10.3389/fphy.2019.00117
http://dx.doi.org/10.1109/EMBC46164.2021.9629603
http://dx.doi.org/10.1115/1.4045204
http://dx.doi.org/10.3389/fbioe.2021.754003
http://dx.doi.org/10.1016/j.jvssci.2021.12.003
http://dx.doi.org/10.1016/S0042-6989(97)00169-7
http://dx.doi.org/10.1109/TVT.2019.2895651
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.040095
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.040095
http://dx.doi.org/10.1097/MAT.0b013e31818a5c93
http://dx.doi.org/10.1109/IEMBS.2011.6091683
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.11613/BM.2012.031
http://dx.doi.org/10.1016/j.cma.2022.114825
http://dx.doi.org/10.1111/aor.14433
http://dx.doi.org/10.1016/j.jvcir.2022.103598
http://dx.doi.org/10.1109/TDSC.2022.3148331

