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ABSTRACT A process modelling and simulation theoretical framework of general use for the study of
continuous process industrial systems is introduced. The proposed process modelling methodology is based
on Material Flow Networks and is implemented on a Process Simulation Modelling Tool developed for this
purpose. The tool introduced can also serve the requirements arising for online use of the models as digital
shadows of the physical systems, in the context of digital twinning the process industry. The implemented
models in conjunction with tools from other scientific fields can be used for monitoring, root cause analysis,
performance optimization, limitation and recovery of the behaviour of systems. An application example
of the proposed methodology is provided and useful conclusions arise. Finally, extensions of the proposed
method and potential challenges are discussed.

INDEX TERMS Analytics, continuous process systems, digital twins, industrial systems, Industry 4.0,
Internet of Things, material flow network, optimization, process modelling, simulation.

I. INTRODUCTION
The main target of the current research is to introduce a
formal methodology of general use for the development and
operation of complexmodels of continuous process industrial
units through an analytically defined procedure. Process
modelling and simulation comprise a valuable tool for
studying systems from a variety of areas. The latest advances
on scientific domains such as Industry 4.0, Analytics, Big
Data Management, Internet of Things and Sensors extend
the modelling power and the possible fields of application of
process modelling and simulation in the context of Digital
Twins (DT). In this context the process models are not
considered any more as a passive tool that is exclusively for
what-if analysis but become a valuable part of any system,
which through efficient infrastructures and algorithms can
monitor, mirror the dynamic state of the system (or of certain
components of it) and control its behaviour through the
realization of certain actions.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chaitanya U. Kshirsagar.

The proposed method has been developed in tandem to
the one introduced in [1] that refers to the construction and
operation of dynamic process models of discrete industrial
systems. However, because of the different characteristics and
behaviour in general of continuous process industrial models,
the methodology has been customized with respect to them
and is introduced as a completely independent methodology
in the current work. This broadens the applicability of the pre-
viously proposed method, providing a general, easily adapt-
able framework in the context of Digital twins, for modeling,
monitoring, study and management of industrial systems.

A. CONTRIBUTION
In summary, the most important contribution of the current
work are the following the following:
1. Introduces a generic step-by-step continuous process

modeling and simulation methodology following a
number of well-defined steps.

2. Defines the necessary data sets, their role and
their utilization in the implementation of the above
methodology.

VOLUME 11, 2023


 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

111701

https://orcid.org/0000-0002-4263-9123
https://orcid.org/0000-0001-6294-3811
https://orcid.org/0000-0001-8307-2891


N. Sarantinoudis et al.: Model-Based Simulation Framework for Digital Twins in the Process Industry

FIGURE 1. Publication trend on process modelling and digital twins.

3. Describes the interactions with tools and algorithms
from other fields, such as Analytics and Optimization.

4. Enables the operation of the constructed models not
only offline as most modelling and simulation tools and
methods but also online with the respective physical
system, through the provided Application Programming
Interface (API).

5. Introduces a process modelling and simulation tool
that enables the development of process models with
different levels of detail, their execution and the
calculation of KPIs and output parameter values.

B. STRUCTURE
The rest of the paper is organized as follows: Section II
presents an overview of the main concepts behind process
modelling and simulation, the fundamentals of Digital Twins,
the advanced capabilities arising from the implementation
and operation of process models within the context of DTs
as well as the main principles of Material Flow Networks
(MFNs) which have been adapted in the developed Process
Modelling Simulator. Section III discusses the role of process
modelling and introduces the scope, the assumptions and the
steps composing the proposed process modelling procedure.
Section IV describes the process modelling and simulation
Tool and the corresponding API. Section V displays the
application of the previously presented methodology in
the development, operation and evaluation of models in a
production scenario of a continuous chemical system. Finally,
Section VI concludes the paper and discusses open issues,
future steps and challenges.

II. RELATIVE LITERATURE
A. PROCESS MODELLING AND SIMULATION
Advances in fields like Internet of Things (IoT), Cyber-
Physical Systems (CPS), Industry 4.0, Big-Data analytics,
and hardware (especially sensors), have enabled the applica-
tion of DT paradigm in a number of fields and for a variety
of purposes. Among these fields, process modelling and
simulation have received increased interest from the research
community within the concept of Digital Twins.

In Figure 1 the number of publications per year (trend)
for articles found under the query ‘‘Digital Twins’’ AND

‘‘Process Modelling OR Simulation’’ from the Scopus
database, is presented. This bar-chart shows a high increase
in the number of manuscripts, especially after 2019 (252
publications) until 2022 (1.041 publications) where the
maximum number of relative to the query manuscripts is
met. The same trend continues in 2023, where there are
already 686 publications although there are 4 more months
left. Between the years 2019 and 2022 the number of
query results are almost doubled per year while in the
year 2023 this increase is almost 40%. This illustrates the
increased interest of several researchers for Digital Twins and
Process modelling and Simulation.

Process models are popular tools for improving the
understanding of a system and of facts, events, and behaviors
taking place in it and also for testing the effects of changes
and disturbances from applying alternative strategies and
corrective actions in its operation and efficiency. For this
reason, representation of system characteristics is attempted,
tested and validated while the detection of not obvious
mechanisms that govern its behavior and performance
comprises one major challenge. Some of the most popular
application fields that process modelling and simulation
can play an active role, include smart industries, resource
efficiency optimization, predictivemaintenance, supply chain
optimization as well as anomaly detection. Further applica-
tions, challenges, categorizations and details on the specific
topic can be found in survey papers [2], [3], [4].

System modelling and efficiency optimization first of all
has to do with the characteristics that will be studied as well
as with the metrics that will be used for its performance
evaluation. A model has to be realistic without having
unnecessary complexity, and that’s why only critical variables
that govern its behavior are defined and studied. Three
components enable the above particularly the model, the
simulator and the experimental frame.

A model is a quantitative expression of system’s static
characteristics and dynamic parameters that is necessary in
order to calculate results comparable to real world data.
Typically, a model consists of a set of interacting entities
involved in its operation whose behavior is limited to a (finite
or not) set of states in which the physical system can be driven
through the appearance of system’s internal and/or external,
scheduled and/or random, controllable and/or uncontrollable
events.

Simulators are agents that imitate the system and entities
response and operation from the continuous update of the
defined critical variables.

The experimental frame describes the specification of the
conditions and state under which the system is observed.
During scenario simulation, system-wide as well as local
(between process units) model flows are calculated. Simu-
lation is performed for understanding the behaviour of the
system, for testing the effects of parameter values changes or
of changes in event sequences, for testing possible limitations
in the operations of the system and finally for aiding decision
making through alternative strategies evaluation.
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This work is the first attempt, according to the author’s
knowledge, to introduce a generic step by step methodology
for building and operating a process model of a realistic
continuous system in the context of Digital Twins. An ana-
lytical methodology as well as the necessary input data are
defined and the application of the produced process models
online with the real system, far beyond the traditional process
modelling and simulation scopes is enabled, in order to
monitor and dynamically manage the behavior of a system
and evaluate its performance.

In the literature there is a limited number of studies
regarding process modelling and simulation of realistic
continuous systems in the context of Digital Twins. The
majority of these methods are application specific (e.g. [5]
that refers to a digital twin of a continuous direct compression
line for solid drug product and process design) or focus on
subjects considerably different from the ones presented in
the current work (such as application of machine learning
methods, process planning, performance monitoring, failure
detection etc). Some representative such works are presented
in this section.

In [6] authors study the literature related to the implemen-
tation challenges of Digital Twins in apparel manufacturing
industries. Then they introduce a discrete evet-based method-
ology for implementation of such DTs in a multi-stage
sequential production procedure applied to the case of a
shirt factory. The proposed method is rather non-detailed
and the input, output types are not defined explicitly,
while KPIs considered are limited. In [7] authors introduce
a multidimensional modeling framework for machining
processes (dimensions have to do with different models
used in several stages of the machining products lifecy-
cle), to improve processing performance. This method is
considerably different from the approach proposed in the
current work as it is mainly applied to machining processes
with completely different characteristics from the ones of
the processes considered here. In [8] authors propose a
semi-automated methodology to generate digital twins for
process plants using available P&ID engineering documents.
They mainly focus on the construction of the model using a
number of software tools and not on it’s application online
with the physical system.

B. DIGITAL TWINS
Probably the first operational Digital twin can be identified
in NASA’s Apollo program where mirrored systems were
used to monitor the behaviour of unreachable objects and
find solutions to problems they faced using tools from the
field of simulation and analysis. The term Digital Twins
(DT) was introduced in 1997 at [9] for the production of 3D
digital models of civil engineering designs and the way these
overcome drawbacks inherent to the conventional design
process. However, real attention was given in digital twins on
2002 by Michael Grieves, during an industrial presentation
at University of Michigan Executive Course on Product

Lifecycle Management [10]. DTs are also closely related and
share many common features with the rather early introduced
Cyber Physical Systems (CPS), that have been described as
multidisciplinary systems used to conduct feedback control
on widely distributed embedded computing systems by the
combination of computation, communication and control
technologies [11].
DTs have become extremely popular the last 3-4 years

with a large volume of publications on this field and rather
less practical applications. According to one of the most
explanatory definitions for DTs met in literature ‘‘a DT is
a comprehensive software representation of an individual
Physical Object’’. It includes the properties, conditions, and
behaviour(s) of the real-life object through models and data.
A DT is a set of realistic models that can simulate an
object’s behaviour in the deployed environment. The DT
represents and reflects its physical twin and remains its virtual
counterpart across the object’s entire lifecycle [12]. Survey on
definitions, characteristics, applications, design implications,
open issues and challenges of digital twins can be found
in [13]. In [14] authors conduct a bibliometric study on
the 100 most cited articles in digital twin domain in smart
manufacturing in order to detect the main research directions,
limitations and challenges concerning digital twins in the
examined field. DT applications can be met in a variety
of fields including Manufacturing, Aviation, Energy, Smart
Cities, Industry, Telecommunications, Buildings, Healthcare,
Vessels, Asset management, Lifecycle management, Traffic
management, Project management, Education and study of
human behaviour and its interaction with the environment.
A survey on the application of Digital Twins in 13 different
industrial sectors is presented in [15] while in [16] the authors
studied the scholarly literature of digital twin research using
a scientometrix approach.

The main field of interest of the current research concerns
applications of Digital Twins in process industries where
the applications are still limited. In [17] the authors study
relative literature in an attempt to detect the barriers and
the enablers of the implementation of DTs in process
industry as well as the relationships between them. In [18]
and [19] a semi-automatic methodology for generating a
steady state digital twin of a brownfield plant is proposed
and validated through a water process plant case study
while in [20] the authors demonstrate the development and
application of a DT for process simulation and production
scheduling of a food processing industry. Finally, [21]
presents an overview of different aspects of the current
status of DT application in stages of Pharmaceutical and
Biopharmaceutical Manufacturing.

C. PROCESS MODELLING AND SIMULATION WITHIN THE
CONCEPT OF DIGITAL TWINS
Process models comprise a popular tool for engineering sys-
tem analysis, design, and control development, as they enable
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virtual experiments that provide realistic results for evalua-
tion when physical experimentation is not applicable [22].

The advanced capabilities arising from Industry 4.0,
Sensors and Internet of Things extend the usability of
the process models that now can be used online with the
modelled physical system as part of a digital twin. In this
case the current state of the system can continually be
updated with incoming data from the operating environment
(through sensors or data feeds) to monitor and mirror the
current status and evaluate its performance. Through the
projection of the current state of the system, a process
model can be efficient in predicting the upcoming behaviour
of a physical system in conjunction with tools from other
fields including big data management, analytics, artificial
intelligence and optimization techniques in quasi real time.
This operational extension combined with the advanced
capabilities of sensors and actuators create an interactive
bidirectional relationship between process models and the
physical system, as they become a tool for modifying systems
future behaviour [23]. According to [24] regarding DT
process models, three categories are met in literature and in
particular, (a) creation of DTs, (b) synchronization between
physical and digital assets, and (c) operationalization of the
DT. In [8] authors introduce a methodology and implement
the necessary tools and software for extracting required
process information, for generating a steady state simulation
model and creating a digital twin for a paper process system.
From the analysis provided, it becomes evident why process
models in the context of DTs are a crucial factor and a key
trend in realization of intelligent industrial system process
management [25].

D. MATERIAL FLOW NETWORKS
Industrial processes can be distinguished in two general
categories; discrete and continuous. Continuous industrial
processes do not have stationary behaviour, are time-
varying, display non-linear and dynamic properties and are
functioning at diverse operating points. These characteristics
are taken into account during system design, monitoring and
control. Since such processes have a wide range of operating
conditions, it is very important to consider data models and
exploit specific features from all available measurements
[26]. Thus, modelling of continuous systems, has been
proven quite complicated and in the past sometimes process
modelling was often regarded as ‘‘more art than science’’
or ‘‘more art than engineering’’ [27]. The accumulated
experience and knowledge from the various system models
developed and used has been insightful to provide a set of
rules that helps engineers and researchers develop process
models of continuous systems.In order to create a process
model that will successfully serve its intended purpose, one
has to fully understand the modelling goal(s) as well as the
effects of those goals on the process model together with the
required elements of the model, i.e. the model equations and
any starting and terminating conditions.

In order to represent and interpret the material and energy
flows in a particular process industry, it makes sense to
base such analysis on business accounting methods. Material
Flow Networks approach can be considered as an accounting
system, in which instead of financial flows, material and
energy flows are considered [28] and has been initially
developed at the University of Hamburg [29]. Material
flow models have been applied in industrial material flow
management, for structured data assessment and visualization
of optimization potentials [30]. This approach requires the
inclusion of energy andmaterial stocks in order to be possible
to track the material and energy flows and stocks within a
company or between different companies within a value chain
[31], [32].

MFNs is a graphical modelling notation based on the
Petri-Net (PN) formalism (which is summarized in [33])
that describes the material flow of a single or a selection
of multiple products or components within plants [34].
A material flow network, for a given time period, can be
implemented by adding all used process units and connecting
all pairs of these, between which, raw or semi processed
materials are transferred [Forecasting Changes in Material
Flow Networks with Stochastic Block Models]. The main
structural elements (building blocks) of a PN are places,
transitions and connecting arcs. Analogy of these elements
to MFNs is implemented by considering that:

• The locations where material and energy transforma-
tions are taking place are equivalent to the transitions
on a PN.

• Storage locations and connections without material
transformation are equivalent to the PN places.

• The material and energy flows are equivalent to the arcs
connecting places to transitions and transitions to places
in the PN.

III. PROPOSED METHODOLOGY
In this part of the manuscript the framework of process
modeling and simulation is described and then the respective
general use methodology is introduced. Initially the applica-
tion of the methodology for model building and operation is
presented and its interactions (through data exchange) with
tools from other scientific fields are defined. In addition, the
types and the exact categories of the necessary input data as
well as the outcomes from the scenario simulations using the
implemented process models are defined. The main target of
this part is to explain the prerequisites, the steps that should
be followed for the construction of the process model and the
outputs arising from its simulation online with the real system
and in relation with tools from other fields that also operate
in real time and in parallel to the system.

A. DESCRIPTION OF PROCESS MODELLING AND
SIMULATION ROLE
Process Simulation and Modelling (PSM) denotes a generic
field with all related methods, algorithms, mechanisms,
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services and tools, integrated into an overall approach.
According to the proposed approach, PSM interconnects
and interacts with external Analytics, Optimisation, Machine
Learning and other tools in order to manage the current
states and the desired behaviour of the cyber and the physical
system under a certain scenario. Figure 2 outlines the data
and information exchange between the physical system and
its digital shadow as well as the data transformations
and actions performed in a DT enabling actions from the
cyber to the physical system. In particular, the specified
data are transferred from the physical system to the data
management module of the digital shadow. In this, data are
cleansed, stored, classified according to specifications and
then appropriately selected, combined and formatted. The
cognition procedure that follows, utilizes techniques and
algorithms from the fields of Analytics, Process Modelling
& Simulation and Optimization in order among others
to define the strategy that should be followed, produce
schedules, calculate Key Performance Indicators (KPIs),
make predictions, define the values of specific parameters
and for reasoning purposes. The calculated outcomes are
utilized directly from the Digital Shadow and indirectly from
the physical system in the form of corrective actions and
supporting information streams.

The interactions between PSM and Analytics refer to the
estimation of KPIs for assessing (a) the performance of
the current system (or process-by-process), either at regular
intervals or upon request, and/or (b) the performance of a
simulated scenario. In addition analytics provide forecasted
data streams to be simulated and approach the characteristics
(durations and appearances) especially of uncontrollable and
unpredictable events using statistical and AI tools. Upon
an anomaly is detected, PSM can either verify or refine
(or both) this inference running a scenario regarding the
current state of the system in isolation from the digital
shadow, in order to evaluate what-if scenarios. Such scenarios
may refer to (i) partially modified data streams starting
from system’s current state, (ii) in the past to retrace the
system’s behavioural history, or (iii) in the future to calculate
results, predict outcomes and evaluate alternative actions and
strategies. In the case of optimization service, there is a
repeated interchange of data, where PSMproduces alternative
scenarios, provides them to optimization for evaluation and
according to the results may receive feedback for further
scenario creation. The most important cognition related
roles of process models are to operate as Dynamic Digital
Shadows in parallel with the physical system, to support
AI inference, to help efficiency evaluation, to represent
interacting entities and to manage the systemic knowledge
taking into consideration the data, the states of the interacting
entities and their behaviour [35].

B. CONTINUOUS PROCESS MODELLING AND SCENARIO
DEFINITION METHODOLOGY
Physical and/or chemical processes are mainly taking place in
a continuous industrial system. Modelling of such a system

FIGURE 2. Physical system - digital shadow communication and services
interoperation.

can be considered in different scales, from a whole process
plant and its environment, or limited to a specific part of
the plant, or even a specific operating unit or equipment.
Hence, the inputs, outputs, the physio-chemical processes
taking place in it and the boundaries of the system have
to be clear and concise. The most popular way to model
continuous process systems is by the use of a flowsheet,
since information regarding the operating units and their
internal connections and interactions are usually available
beforehand.

In order to create efficient and useful models a step-by-
step modelling and simulation approach is introduced. The
development of generic modelling frameworks is common
in literature and is applicable to a variety of systems
with partially common characteristics that share a common
number of features and operations. Development of generic
frameworks enables the reuse of the developed models (espe-
cially when modular models of system entities have been
developed), composition of the developedmodels following a
well-defined procedure in order to model and study complex
systems, easiness of simulation of the developed models and
definition and calculation of a number of local or global KPIs
through simulation [36].
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An example of generally developed simulation frameworks
includes [36], where a framework using Component-based
Model Driven Approach is used to promote rapid devel-
opment and effective reuse of developed models. In [37],
authors introduce agent-based modeling framework for
developing agent-based simulationmodels of energy business
ecosystems and apply the proposed framework to demon-
strate how an ecosystem with several actors and objects can
be translated into an agent-based simulation model. Finally,
in [6] authors introduce a methodology for applying Digital
Twin (DT) technology in apparel manufacturing plants
following certain steps, with primary goal the conduction
of dynamic simulations to reduce bottleneck operations.
Generally, in apparel industries, line balancing is crucial for
maximizing efficiency and reducing labor costs.

Modelling is inherently an iterative process, and some
or all of those steps may be repeated in order to resolve
problems or incorporate potential changes and alternatives.
Assuming that the problems features and parameters have
been defined in detail (physical process, modelling goal(s)
and validation criteria) the guidelines are elaborated in
a structured way depicted in the flowchart introduced in
Figure 3. These instructions when followed can guide the
interested stakeholder to create a flexible, measurable and
efficient process model of a continuous industrial system, that
can be used online with a physical system or offline for what-
if analysis, root cause analysis and comparative evaluation
of alternative designs or decision making strategies. In the
second case, step 8 of the introduced methodology is not
mandatory. The main steps of this methodology and the
procedures performed in each step are the following:
1. Define the System: During system definition, a refine-

ment of the described system as well as the modelling
goal(s) takes place. Additionally, inputs and outputs
of the model, hierarchy, spatial distribution, range and
accuracy and time characteristics are solidified.

2. Identify controlling factors and mechanisms: The
physical/chemical process being modelled is identified
and studied in relation to the modelling goal(s). Some
indicative controlling factors in process modelling are
chemical reactions, mass diffusion, heat conduction,
heat transfer and material flow.

3. Evaluate data: Usually models of industrial process
systems are a combination of first-principles and data-
driven models, so process data or estimated values are
required. These data need to be cleansed, organized and
evaluated in order to be meaningful.

4. Develop the model: The models are based either on
first-principles, corresponding to conservation balances
(e.g. heat and mass balances), chemical reactions, etc.
corresponding to the physical process being modelled or
on historical data. Ideally the combination of historical
data and some principal equations create the most
accurate models, which are called hybrid models.

5. Select solution methodology: The procedure to solve
the mathematical models need to be established and

FIGURE 3. Model building and operation procedure.

implemented carefully in order to avoid high complexity
problems and to lead towards the simplest and fastest
solution possible.

6. Verify model: At this point the model needs to be
verified that it is behaving as intended and has been
implemented correctly.

7. Validate model: When the model is ready it’s time to
validate it against reality. The most common ways to
validate a model are experimental validation, compar-
ison between model and physical process, comparison
between models solving a common problem or even
direct comparison with process data.

8. Utilize associate tools and algorithms output data: At
this stage addition of extra information and definition of
additional parameters’ values in order tof define more
realistic scenarios takes place. Such input data, mainly
comprise of output results from associate tools and
algorithms (processed data from real-time Analytics,
Optimization, Machine Learning).

In order to implement the above described process
modelling methodology, 3 main data sets are required:
(a) System static data (structural)
Initially, the structure of the model has to be defined.
The main target is to represent the entities from which
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the physical system is composed as well as their physical
connections and interactions and to define the channels
for the exchange of resources and information between
them. These data are static and not updated frequently (this
can happen when machines are added or removed from
the system). The most common categories of such data,
with respect to their role, include (but are not limited to)
the following: i) Industrial system structure data. These
include the available resources of the physical system,
possible categories (families) and their capacities. Physi-
cal connections (permanent or product specific) between
resources are also necessary in order to construct the structure
and to define the type of the system under study (e.g.,
production line, job shop, continuous flow process production
system, and continuous flow assembly production system)
as the simulation algorithm makes use of this characteristic.
To obtain these types of information, flow charts and
non-structured data can be used as well as knowledge graphs
that provide a collection of interlinked descriptions of the
entities of the industrial system. ii) Product-related static
data. Products belong to families with similar or partially
common characteristics (setup durations, tools and resources
used, specifications and physical or chemical characteristics,
etc.). Also, setup times and types (e.g. sequence dependent,
family dependent etc.) and ideal production times of all
possible products in each processing unit must be defined.
Finally, if ancillary equipment is considered, data concerning
its use should be provided (for example, speeds and transfer
capacities of cranes for moving parts between resources
and buffers). iii) Constraints regarding the use of specific
subsets of resources for the performance of a subset of
jobs. In this category also, priorities between products must
be recorded and constraints related to flexibility between
production stages, maximum batch sizes, unit operational
limits, resource sharing, resource management and control
policies followed, etc.
(b) System dynamic data (quantitative parameters)
Quantitative parameters are necessary to represent a specific
dynamic situation in the system and define the initial state
of the scenario(s) that will be evaluated through simulation.
Such dynamic data types comprise the following: i) Industrial
system dynamic data that refer to the current states of the
resources (if machines are operational or under maintenance),
current values of system parameters (temperatures, pressures,
etc.), current types of processes performed in each machine
(as setup times can be sequence-dependent) and machine
availability because of scheduled maintenance activities in
the considered time horizon. In addition, if certain resources
operate with efficiencies lower than the ideal ones (e.g.,
for safety or energy consumption reasons), this has to be
taken into account in order to define the realistic values of
working speeds and process durations. ii) Set of orders under
process. This is the most important type of dynamic data as
this would be used as input from the optimisation service
to define the schedule that will be then simulated (in fact,
this is the definition of the specific problem under study

every time as the first stage is static and is not repeated
generally). Production order set represents the customers’
requirements (external or internal according to market needs
forecasting) and refers to the types and quantities of products
that have to be produced as well as to their due dates.
iii) Initial raw materials, in-process products, products, tools
and other material inventories. This refers to the initial levels
of internal buffers of the system as well as in process products
in the processing units and is used to define some additional
operational constraints that have to be taken into account to
improve the system’s efficiency, as resource idleness may
increase in other cases. In addition, raw materials quality is
taken into account as specific parameters of the industrial
system’s operation have to be specified according to this
(for example, in a chemical plant the quality of the raw
materials affects operational parameters such as temperatures
and pressures).
(c) Associate tools and algorithms output data
The third stage refers to adding extra information and
defining the values of additional parameters to the model
whose initial state has been defined through associate tools
and algorithms. They are necessary to describe the scenario(s)
under study and make them even more realistic. The main
types of such data are: i) Optimisation output. In the case of
Continuous process industries based on historical data from
units, models are created, and their behaviour is described.
Process modelling and Simulation service produces a set
of alternative operational scenarios with a given step for
each operating condition. These scenarios are then transferred
to the optimisation module that utilises them to solve
the corresponding on-specs recovery problem. Then the
alternative scenarios are evaluated, and the dominant one
is selected for simulation in order to define the production
strategy. Matter of optimal planning also may be the
scheduled preventive maintenance activities in the equipment
used in the industrial system. ii)Non-scheduled maintenance
activities (machine breakdowns) from analytics. Analytics
can provide data concerning the appearance of non-scheduled
machine breakdowns as well as the duration of their repair
in the time horizon of the scenario. Analytics and machine
learning models typically use historical data to detect patterns
and predict future outcomes when they receive a company’s
data.

IV. PROCESS SIMULATION MODELLING TOOL
The Process Simulation and Modelling Tool (PSM) has been
developed to address modelling and simulation requirements
in the process industry, as an extension of the tool initially
introduced in [38] and [39]. It has been designed according
to the needs and the features of the introduced methodology
in order to facilitate its application in realistic continuous
industrial systems. PSM Tool enables the parametric defini-
tion ofmodels of any complexity, the graphical representation
with different detail levels, the bidirectional exchange of
data between Process Modelling and Simulation and tools
from other fields and the calculation and real time graphical
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FIGURE 4. PSM tool interface and splash screen.

visualization of the variable values. In addition, the developed
tool has already been used by our research team to analyze
networks dependencies and assess the system’s risk with
dependency risk graphs in order to build a security-aware
framework for industrial processes [40].
PSM Tool operation is based on the principles of MFN,

a domain used to model material and energy flows in
production chains, that enables the calculation of estimations
regarding associated economical or environmental factors
for example, based on the resources consumed or the
corresponding emissions. Model entities are organised into
a Hierarchical Inheritance Registry that provides prototype
reconfigurable building blocks for building any industrial
system model. A PSM model describes the procedure of
transforming resources, such as rawmaterials, energy or other
inputs into outputs with given specifications. This flow of the
aforementioned material characterizes such a system. PSM
mainly utilizes two different types of vertices; processes and
places:

• Processes correspond to PN transitions. Various materi-
als (input) are converted into new or modified materials
(output). Through this processes manage to link material
consumption to production.

• Places can be interpreted as storage for resources within
the network and can be interpreted as input nodes
(sources towards processes), output nodes (targets of
processes) and junctions (connecting processes).

Processes and places are connected with links, which
represent material flows from a place to a process or

vice-versa and can be grouped into stages, in order to consider
a bounded part of the model as an individual unit. This is
equivalent to modeling capabilities of Hierarchical Petri nets.

The PSM tool (splash screen shown at Figure 4) is devel-
oped as a distributed application, including a desktop and a
web application. The desktop application is implemented in
the .NET framework using C#. Its core functionalities are
(a) the design of the model, following a graphical approach,
by drawing the elements on a canvas; (b) specification of
material and energy flows to and from processes as well as
interrelations between input and output; (c) calculation of
the flows system-wide as well as between process units; (d)
processing units and overall system KPIs calculation; and (e)
result presentation and reporting not only in tabular format
but also in other common formats for further processing.

The desktop application communicates and interacts
with the web application back-end through an Application
Programming Interface (API) for uploading and processing
industry models and scenarios with alternative parameters
to the web application. The web application exposes func-
tionality through the API that allows users and/or systems to
simulate, monitor in real-time, and modify the operation of a
process model on demand. More importantly, it transforms
the process model into an active component that can
bidirectionally interact with the physical systems. It achieves
that by allowing various parameters to be configurable on the
process level based on the initial modelling.

The actual value of the PSM API is illustrated by
presenting the life-cycle of a model in Figure 5. Initially,
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FIGURE 5. Lifecycle of a model.

the model has to be developed with the PSM desk-
top application. It is then registered within the platform
providing the representation of the model as produced
by the PSM desktop app. The next step is to grab an
instance at the specific time frame important for the
specification assessment or optimisation effort using the
CreateInstance() function. The API provides the flexibil-
ity to set parameter values that dynamically affect the
process by using SetParameter()/SetParameters(). When
the values are set we can call Calculate()/CalculateUnit()
(depending if we are looking for a specific unit or the
whole model values) to run the simulation and then call
GetParameter()/GetParameters() to read those calculated
values. With these results we are able to calculate KPIs or
objective functions and of course depending if the results are
satisfactory or not we can repeat the calculations altering the
parameter values. When we are done with our calculations
regarding the specific instance we can call RemoveInstace()
to discard it. In case the registered model needs to be updated
we can call the UpdateModel() function however that is not
going to update any instances already created before the
update but only the model itself. Finally, when we have
completed every simulation and experimentation and we
don’t require the model anymore we can callRemoveModel()
and completely remove the model from the system marking
the end of the life-cycle in discussion.

V. CASE STUDY
A. LPG PURIFICATION PLANT OVERVIEW
The case study presented studies an oil refinery, a represen-
tative example of a continuous process industry. Modeling
and Simulation of oil refineries receives increased interest
in literature, mainly targeting in the increase of refinery
productivity and reduction of resources usage such as energy.
Typical such works are [41] where authors use Matlab
and Aspen to develop a simulation and optimization model
and [42] where the hydrogen unit in a domestic refinery

TABLE 1. LPG product specifications.

based on the mass and energy balance equations at steady
state condition is used to calculate the optimal operational
conditions of the unit. The majority of published works
refer to specific installations (and do not propose a general
framework) and make use of well-established commercial
software tools or first principle models, of limited flexibility
for integration with digital technologies and data exchange.

The refinery under study produces various petroleum
products such as gasoline, diesel, naphtha and Liquefied
Petroleum Gas (LPG). Generally, a refinery is composed
of multiple units, each one serving a specific role in the
production process (e.g., production of LPG, purification,
storage). This use case focuses on the LPG purification,
i.e., on the various processes that have to be applied to
turn crude LPG to refined LPG in order that meets specific
market quality criteria. LPG is a mixture of hydrocarbon
gases, mostly propane (C3H8) and butane (C4H10) with
various other hydrocarbons usually also present in small
concentrations. By the end of the production process, various
impurities remain in the crude product. Such impurities
render the product unsuitable for the market and have to be
removed in order to adhere to the standards and regulations of
the petroleummarket. These specs are summarized in Table 1.
During the purification process, LPG passes through various
steps of refining and uses additional organic compounds such
as diethylamine (DEA) to withhold unwanted substances.

B. MODEL DEVELOPMENT
For the development of this LPG purification system process
model, the units and the processes taking place have to be
identified. Initially we have to identify the sources of the LPG
streams being studied:
1. Atmospheric or Crude Distillation Unit (CDU)
2. Hydrocracker (HYC)
3. Fluid Catalytic Cracking (FCC)
4. Delayed Coker Unit (DCU)
5. Maximum Quality Diesel (MQD)
6. Platformer
The basic components used in the model development are

presented in Figure 6. Entities used in the tool have been
adapted to resemble well established chemical engineering
symbols in order to facilitate the easier use of the tool from the
process engineers and other stakeholders. In particular, debu-
tanizer/deethanizer columns remove C2 and C5 impurities
from the LPG streams. Tanks are used in different parts of the
refinery to represent storage of products that have received a
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FIGURE 6. Basic components of the model.

number of processes. DEA units remove Sulphur from LPG
using diethylamine organic compounds to retain H2S from
the LPG. This amine is deteriorating and loses its absorption
capabilities over time, while it can be regenerated and reused
for the refinery processes with the help of steam. Input and
Ouptut entities are used to introduce and remove resources
to/from the process model, while junction block enables
the sum of multiple flows in a single one. The entities are
interconnected through links, represented as arrows, which
refer to material and energy flows between them.

PSM Tool provides the opportunity to set parameters
for specific processes or for the whole model. Typical
such parameters include flowrates, control parameters of
the process units (e.g. temperature, pressure), time horizon
of the simulation, quantities of the used resources, energy
consumption and primary (products) or secondary outputs
(emissions, byproducts).

The modelling of the processes taking place in the
refinery has been implemented in four levels of detail,
each one with additional details compared to the previous.
Those four levels have been developed not only for easier
comprehension of the processes taking place but also because
different services (optimisation, analytics, simulation) using
these process models require different levels of abstraction,
as certain subsets of parameters provide adequately accurate
results. In Figure 7 those four levels are presented through
the dashboard of the PSM Tool. In each model level the
number of entities considered as well as their interactions
are presented in greater detail. Figure 8 summarizes the
characteristics of the different model levels, describing in
detail the main entities added separately in each one of the
extension models (not grouped as an universal entity).

C. SIMULATION AND RESULTS
In order to demonstrate the functionality of the PSMTool and
the applicability of the proposed methodology, we consider a
representative example focusing on the LPG stream FlowA
and the processes taking place in Debutanizer A (removal of
C5) and Deethanizer A (removal ofC2), as shown in Figure 9,
part of Level 2model introduced earlier. The specific example
does not refer to the whole process of the LPG purification,
since the scope here is to present the applicability of the

developed methodology and the outcomes but to a certain
part of the process. The application example summarizes the
overall functionality of the PSMTool and can be extended for
process modelling of complex systems without restrictions.

Stream FlowA is carrying LPG fed to Debutanizer A
of the refinery. According to the assumptions adopted and
the information provided by the process engineers, the
quality of FlowA is uncontrollable, can not be affected
from any actions and is considered static, although the
quantity is known. Debutanizer A and Deethanizer A units
are installed sequentially and the output of the first unit is
the input of the second. The process taking place in these
units is controlled by three variables: temperature, pressure
and reboiler flow. The parameter values are continuously
monitored using appropriate sensors (in all process units),
and the received output quality characteristics are compared
to the set specifications in order to evaluate system state and
if corrective actions should be taken. Sulphur Absorption 1a
unit is responsible for removal of S from the LPG and its
control variables are temperature and pressure. In Figure 10
a snip of Debutanizer A and Deethanizer A control variables
values is visualized, covering a 6 hour period. The variables
do not follow any specific patterns and are continuously
adjusted either automatically, through MPC controllers or
by the process engineering team. The implemented process
models can be an additional tool to support process engineers
to the decision making procedure.
FlowA stream is set to have a flowrate of LPG at 11.42

m3/h, C2 a concentration of 2.07 % m3/m3, C5 a concentration
of 5.65 % m3/m3 and S 83.12 mg/kg. These values are mean
values resulting from the real time measurement on the input
of Debutanizer A, and are crucial since C2, C5 and S are
the contaminants that have to be reduced in order to have
the LPG on-specs. The process parameters have been set at
10.82 kg/cm2 for pressure, 60.51 ◦C for temperature and 5.54
m3/hr for the reboiler flow. Similarly, these values represent
mean values from the recorded data provided. The impurities
on the input stream of FlowA and the process parameters of
Debutanizer A are presented in Figure 11.a and 11.b.

Having set the inputs and the process control values, the
simulation can now take place. It must be noted here that
PSM Tool offers three different ways to define how the
calculations will take place. The first one is to define ratios
that will calculate the output based on an input; the second is
to create a script in C# and the third is to use API endpoints
to integrate machine learning models. In this example, the
third one has been used integrating the models created by the
project partner responsible for their implementation. These
are hybrid models created with the historical data provided by
the refinery with the purpose to predicted the concentration
of C2, C5 and S in the output of a process unit according to
the control parameters, i.e. temperature, pressure and reboiler
flow. More details on the used machine learning models can
be found in [43] and [44].

By performing a simulation, in order to evaluate a current
scenario with specific process parameters, the aforemen-
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FIGURE 7. Visualization of the different modelling levels.

FIGURE 8. Modelling levels characteristics.

tioned models are called through the API and the results of
each unit are calculated and presented through the tool with
Debutanizer A output visualized in Figure 12.a, Deethanizer

FIGURE 9. Focus area of the example.

A in Figure 12.b and Sulphur Absorption 1a in 12.c.
Studying these results we can identify the processes taking
place in the aforementioned LPG refinement process, where
Debuatnizer A reduces C5, Deethanizer A reduces C2 and
Sulphhur Absorption 1a reduces S.

PSM tool produces a variety of tables that capture the
evolution of the values of parameters referring to features of
systems’ entities. These data can be exported for use from
associated tools and algorithms but can be also accessed
through an API endpoint in order to allow the seamless
integration with associated services, such as optimization and
analytics.

Another use of the proposed methodology concerns the
definition of multiple alternative scenarios required for the
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FIGURE 10. Recording of Debutanizer A and Deethanizer A control
variable values for a six hour period.

optimization services. A set of alternative scenarios with
different values of pressure, temperature and reboiler flow
are produced and fed to the optimization service. Then,
optimization evaluates them and selects the optimal (or
near-optimal) based on predefined evaluation criteria (e.g.
least amount of energy consumed). The optimal (or near-
optimal) scenario is then validated through simulation, KPIs
are calculated and results are provide to decision makers. The
scenario creation process has been integrated in the PSMTool
described earlier and runs continuous simulations based on
the alternative parameters provided. Two output files in .json
format are created, one that contains the parameters for each
scenario and one with the simulation results. In Figure 13
the scenario creation tab can be seen where the user selects

FIGURE 11. PSM tool input parameters values and initial assumptions.

FIGURE 12. PSM tool calculated results through simulation.

FIGURE 13. PSM tool scenario creation screen.

the parameters that wants to be included in the alternative
scenarios, the range between the minimum and the maximum
parameter value as well as the number of produced scenarios.

VI. CONCLUSION
In the current research, a process modelling and simulation
theoretical framework for continuous industrial systems has
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been proposed. The proposed framework is generic, well
defined and allows a graphical representation, with different
levels of detail of systems, or system entities, simulation,
product specification and state monitoring. In the context
of the proposed methodology, a Process Simulation and
Modelling Tool based on Material Flow Networks has
been developed and verified for monitoring, evaluation and
interaction among entities purposes. The proposed method is
considerably distinguishable compared to previous research
since the constructed models not only have the typical offline
use but can also be used in the context of Digital Twins
online with the physical system. The implemented models
in conjunction with tools from other fields can be used
for monitoring, root cause analysis, limitation, performance
optimization and recovery of the behaviour of the system.

In the upcoming steps of our research more complicated
cases of real systems will be studied analytically and
under different operating conditions. Such a study would
evaluate and quantify, using crucial KPIs, the behaviour of
a system as determined from the interaction with its digital
twin in comparison to its current state. There still exist
challenges for extending specific features of the proposed
method, such as data management and decision making in
interaction with tools from the areas of Analytics, Machine
Learning, Multicriteria Decision Making and Optimization.
Possible extensions and variations regarding ways results are
calculated, manipulated and visualized in the PSM Tool will
be further developed.
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