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ABSTRACT High accuracy in text classification can be achieved by simultaneously learning multiple
sources of information, such as sequence and word. In this study, we propose a novel learning framework
for text classification, called Word-unit Broad Learning System (BLS). The Word-unit BLS utilises a flat
neural network known as BLS and offers three key advantages. First, it provides higher accuracy and shorter
training time compared to popular machine learning methods, allowing for the simultaneous learning of
sequence information and word importance. Second, we incorporate a multi-layer perceptron with attention
aggregation in the feature-mapped layer, along with position encoding, to capture the latent relationship
between each word and the contextual information in a global context. Lastly, we introduce a novel approach
to enhance word representation by employing sememes in the enhancement node layer, thereby improving
the feature distribution of each word in the vector space. The effectiveness of the proposed framework
was evaluated by conducting experiments on four datasets covering various types of text classifications.
The results demonstrate that Word-unit BLS achieves 8.26% higher accuracy than Naive Bayes while
requiring 1

/
33 of the training time. Furthermore, when compared with traditional BLS models, Word-unit

BLS outperforms in learning the sequence information. The effectiveness of sememe enhancement in word
representation is also demonstrated, particularly in the case of large-scale datasets.

INDEX TERMS Broad learning system, natural language processing, neural network, sememe, sequences,
simultaneous learning, text classification.

I. INTRODUCTION
Text classification is crucial component of Natural Language
Processing (NLP) and finds applications in various down-
stream tasks, including information retrieval [1], sentiment
analysis [2], and spam detection [3]. The ability of a model
to effectively extract relevant information from the context
[4], [5], [6] is a key factor contributing to the success of
text classification. Several techniques have been proposed to
enhance the performance of word/text representation, such as
Word2Vec [7], GloVe [8], FastText [9], and Transformer [5].
Additionally, researchers have integrated lexical knowledge
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bases [10], [11], [12] into models for feature extraction in
NLP tasks, thereby reducing feature dimensions and improv-
ing downstream task accuracy [13].

Currently, the state-of-the-art (SOTA) approach for text
representation is the extraction of content information using
Bidirectional Encoder Representation from Transformers
(BERT) [14], a pretrained language model with a deep
bidirectional transformer [5] architecture that captures rela-
tionships between phrases and words. It can be fine-tuned
for specific tasks and has demonstrated high accuracy
across a range of NLP tasks. However, applying BERT
poses challenges due to the large number of parameters
and the need for significant computing resources, especially
for researchers with limited access to high-performance
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computing resources [15]. To address these issues,
Sanh et al. developed a knowledge distillation approach
that transfers the knowledge acquired by a large BERT
model to a smaller model, ensuring comparable perfor-
mance while reducing the computational cost and memory
requirement [16]. Another approach is RoBERTa [17],
which introduces a training procedure that iterates on
BERT’s pretraining. It incorporates dynamic masking,
FULL-SENTENCES without next sentence prediction loss,
large mini-batches, and a larger byte-level byte-pair encod-
ing to reduce the memory requirement and achieve faster
inference time. However, it is important to note that deep
learning models, due to their large number of parameters and
computational complexity, present challenges. Training and
optimising these models require substantial amounts of data
and computational resources [18].

Recently, Broad Learning System (BLS), a flattened feed-
forward neural network, has gained considerable attention
owing to its compact network structure. In the original BLS
approach [19], inputs are converted into feature nodes within
the feature-mapped layer, with weights and biases of these
feature nodes randomly generated. The network structure is
expanded in the enhancement node layer, and weights and
biases for these feature nodes are also randomly generated.
Ridge regression of the pseudoinverse is then employed to
estimate the connecting weights from the feature-mapped
layer and enhancement node layer to the output layer. BLS
can effectively handle multiple classification or regression
tasks with low generalisation errors and minimal computing
resource consumption [20], [21]. However, BLS assumes
independent inputs [22], utilising the entire data matrix X as
input without considering the latent correlations between fea-
tures. For example, in the input, ‘‘I love Zhuhai because of its
pleasant climate,’’ the phrase ‘‘I love Zhuhai’’ is contextually
dependent on ‘‘its (Zhuhai’s) pleasant climate.’’ Thus, ‘‘I love
Zhuhai’’ and ‘‘its (Zhuhai’s) pleasant climate’’ are relevant
rather than independent. Consequently, BLS does not perform
well on tasks involving continuous input features [22], [23].
Several advancements have been proposed to enhance the

feature selection schemes in BLS, e.g. Tree-based BLS [24],
Multi-Attn BLS [25], and self-paced BLS [26]. There are
two main strategies for improving the information extrac-
tion capability of the BLS: 1) data augmentation prior to
transferring the input data as mapped features; 2) renovat-
ing the structure/learning scheme within the feature-mapped
layer. In [22], two approaches were introduced to enhance
sequential modelling performance in text classification tasks
in the feature-mapped layer: recurrent broad learning system
(R-BLS), which is an RNN (recurrent neural network)-
like network, and a gated broad learning system (G-BLS),
which is an LSTM (long short-term memory)-like network.
These approaches replace the randomly generated feature
nodes of the original BLS with different recurrent archi-
tectures. They optimise the parameters of the constructed
recurrent structure and perform ridge regression in each
iteration. In [23], variational attention BLS (VABLS) was

proposed. VABLS incorporates a variational form of the
expectation-maximisation attention mechanism to represent
the sequential information by adding an auxiliary mapped
feature within the feature-mapped layer. VABLS introduces
the attention mechanism into BLS after position encoding by
using a non-iterative structure, providing advantages in terms
of fitting, calculation, and flexibility. However, improving
the performance of BLS remains challenging, particularly in
NLP scenarios with limited data [22], [27], such as short text
tasks and question answering tasks.

Considering this, we propose a framework for NLP tasks
based on BLS at the word-unit level, a.k.aWord-unit BLS.
This framework comprehensively reorganises the feature
representation in a language context containing sequential
information while retaining the efficiency of the feature-
mapped layer and enhancement node layer to minimise
computational resource requirements and ensure fast process-
ing. We incorporate a multi-layer perceptron (MLP) with
attention aggregation to extract the contextual information
and introduce a novel enhancement scheme for learning the
word importance using sememes derived from HowNet. The
contributions of our study are as follows:

1) We propose a novel framework called Word-unit
BLS that enhances the model’s understanding of text
by incorporating linguistic theory and improving the
learning scheme of features in the feature-mapped
layer and enhancement node layer of the original BLS
Hence, Word-unit BLS proves to be more effective for
NLP tasks, as it boosts performance while minimizing
computational resource requirements.

2) We constructed a model named MLP with attention
aggregation, capable of effectively extracting both con-
text and sequence information after position encoding.
This model employs the attention mechanism to cap-
ture the underlying relationship between each word and
the contextual information in a global context.

3) We incorporated HowNet into BLS to enhance the
word representation performance of theWord-unit BLS
framework. By incorporating sememes, we enhanced
the feature distribution of each word in the vector space
through the utilisation of an external knowledge base
for the language. To the best of our knowledge, this is
the first attempt at improving the learning strategy by
generating the enhancement nodes of BLS.

4) We evaluated the performance of Word-unit BLS
on four real-world datasets—THUCNews, Chi-
nese_news, ChnSentiCorp_htl, and apple-twitter-
sentiment. We assessed the framework’s effectiveness
in text classification and sentiment analysis tasks,
considering accuracy and training time as the primary
performance metrics.

The rest of this paper is organised as follows. In Section I,
we briefly introduce the techniques utilised in this work,
including BLS, MLP [28], and HowNet [10]. Section I-B
presents the Word-unit BLS framework for NLP tasks.
Section II describes the dataset setup, experimental setup,
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FIGURE 1. Structure of broad learning system (BLS).

and experimental results. It presents the results of the com-
parison experiments and ablation experiments. Section III
discusses the key results of the study and its limitations.
Finally, Section III-B presents the conclusions.

RELATEDWORK

A. BROAD LEARNING SYSTEM

Zp = f
(
Xαzp + βzp

)
(1)

Hp = g
(
Zpαhp + βhp

)
(2)

Y = [Z1, . . . ,ZK |H1, . . . ,Hk ]W (3)

W = A+Y (4)

A+ =
(
ATA

)−1
AT ,A = [Z1, . . . ,ZK |H1, . . . ,Hk ] (5)

BLS, a flat feedforward neural network proposed in [19],
extracts data features using randomly generated feature nodes
and enhancement nodes. The weights of the model are
obtained by utilising a pseudoinverse solution exclusively in
the output layer [29], [30], [31]. This characteristic enhances
the efficiency and effectiveness of the BLS. When the model
is initially too simplistic to adequately fit the data or target
function, BLS leverages the mathematical properties of the
pseudoinverse solutions to incrementally increase the fea-
ture nodes, enhancement nodes, and even the input data.
Incremental learning in BLS can be achieved with mini-
mal computational effort, without recomputing the network
output weights from scratch. By optimising the parameters
of ridge regression, the model’s generalisation performance
can be enhanced. In summary, BLS can effectively fit any
function, given an appropriate width and parameter config-
uration [32]. An overview of the original BLS structure is
shown in Fig. 1.

1) CONSTRUCTION OF FEATURE-MAPPED LAYER IN BLS
Consider N training data

{
x i, yi

}
, i = 1 to N , where x i ∈

R1×D represents the ith training sample with the correspond-
ing target output yi. In the matrix form, X =

[
x i
]
∈ RN×D

is the input matrix and Y =
[
yi
]
∈ RN×m is the output

matrix, where D is the dimension of the input vector x i and
m is the number of class labels. For k features, Zp, mapped
from X , where p = 1 to k , each Zp has lz hidden nodes
and can be represented as (1), where k and lz are hyper
parameters and f is an activation function, such as a sigmoid.
αzp ∈ RD×lz and βzp ∈ RN×lz are the random weights and
biases under the standard normal cumulative distribution for
the input X , respectively. Therefore, each Zp is obtained with
the dimension of N × lz.

2) CONSTRUCTION OF ENHANCEMENT NODE LAYER IN BLS
As in the case of the feature-mappedlayer, the enhancement
nodes Hp with lh hidden nodes, p = 1 · · · k , are obtained
using (2), where g is an activation function, which is the same
as f . αhp ∈ Rlz×lh and βhp ∈ RN×lh are randomly generated
weights and biases for the mapped features Zp. Hence, Hp is
obtained with the dimension ofN×lh. Then, the output nodes
Y can be represented as a wide or broad structure in (3).

3) CALCULATION OF CONNECTING WEIGHT IN BLS
Following [19], the connecting weight for this BLS structure
is shown in (4), which can be computed by applying ridge
regression approximation and pseudoinverse, as shown in (5).
Moreover, three incremental learning algorithms of BLS

are also applied to the feature nodes, enhancement nodes, and
new incoming inputs, as in [19].

B. ATTENTION MECHANISM

attention_scorei = V T tanh (w1xi + w2Q+ b) (6)

attention_weight i = softmax (attention_scorei) (7)

context_vector =
n∑
i=1

xi · attention_weight i (8)

The attention mechanism is an approach used to enhance the
performance of models when processing sequential data in
language modelling tasks. It enables the model to selectively
focus on specific parts of the input by generating a context
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FIGURE 2. Structure of HowNet. Concept of HowNet (top) and example of HowNet (bottom).

vector. This context vector captures the information contained
in an entire sentence by assigning different weights to the
word vectors and summing them. The attention mechanism
has been applied to various tasks, e.g. text classification [33],
machine translation [34], and speech recognition [35]. Its
implementation has consistently demonstrated improvements
in the accuracy and efficiency of models handling sequential
data, enabling them to better capture the relevant information
within the underlying structure of the data.

Given a sentence X = (x1, x2, x3, · · · , xn) ∈ RD, where
n represents the number of words in the entire sentence, each
xi, i ∈ n is concatenated to a matrix form X ; D represents the
dimension vector of the word, which is converted into a vector
space through the use ofword embedding techniques. LetQ ∈
RD be a vector that represents a particular context of the sen-
tence generated by a reliable model, where D represents the
dimension of the vector, which is the same as that of the word.
The attention score for each attribution xi is calculated using
the dot product with its weight by employing an activation
function tanh (·), as shown in (6), where w1, w2, V are learn-
able weight matrices and b is a learnable bias. The softmax (·)

function is utilized to transform a vector of real values into
a probability distribution that is contextually relevant. This
distribution ensures that the values range between 0 and 1 and
sum up to 1. In our approach, this function s applied to the
attention scores, resulting in a probability distribution over
the words as depicted in (7). Finally, the output/context vector
is computed by taking the weighted sum of all n initially
assigned vectors, as illustrated in (8).

The additive attention mechanism is typically used in
conjunction with an MLP. There are several other popular

attention mechanisms widely used in NLP, e.g. dot product
attention [36] and self-attention [5]. In [23], Hu et al. com-
bines the expectation-maximisation attention network [37]
with BLS for enhancing series feature extraction, which uses
iteration, instead of the BP algorithm, to determine the atten-
tion values.

C. HOWNET
HowNet [10] is recognised as one of the most extensive
lexical knowledge bases currently available. It annotates each
concept in Chinese with one or more relevant sememes.
HowNet consists of 2,000 sememes, which are used to anno-
tate over 200,000 senses of English and Chinese words. This
resource has been widely employed in various NLP tasks, e.g.
word similarity computation [38] and sentiment analysis [39].
HowNet serves as a knowledge representation system

based on ontology, providing a comprehensive understand-
ing of the relationships between concepts. It incorporates an
ontological view of the world through a hierarchical structure
consisting of four top-level categories. At the core of HowNet
lies a set of sememes, which are themost fundamental seman-
tic units that cannot be further decomposed. These sememes
are derived bottom-up from approximately 6,000 Chinese
characters. The hierarchy of over 2,000 sememes ensures that
all concepts can be expressed using combinations of existing
Chinese characters. This bottom-up approach guarantees the
stability and robustness of the sememe set, as demonstrated
through successful verification of over 65,000 concepts. The
structure and example of HowNet are shown in Fig. 2.
HowNet was implemented in OpenHowNet API [40], which
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FIGURE 3. Enhanced Word-unit BLS with attention and sememes.

provides the core data and a convenient data access API for
HowNet.

II. METHODOLOGY
In this section, I) we propose a novel framework—Word-unit
BLS—which enables simultaneous learning of both sequence
information andword importance; 2) we incorporate theMLP
model with attention aggregation to capture the latent rela-
tionship between each word and its contextual information in
global views; 3) we propose a novel approach for improving
the word representation by adopting sememes. An overview
of the structure of the enhanced BLS with sememes is shown
in Fig. 3.

A. WORD-UNIT BLS FRAMEWORK
Inspired by [22], we recognise that NLP tasks typically
involve both sequence and word information. In this study,
we considered that sentence sequence information encom-
passes the original text sequence as well as its contextual
information. In the original BLS shown in Fig. 1, the feature-
mapped layer is employed to extract the sentence features
(a.k.a learning the sequence information), and the enhance-
ment node layer to learn the word information (a.k.a learning
the word importance).

1) LEARNING SEQUENCE INFORMATION
To enhance the learning of the sentence information, we reor-
ganise the feature-mapped layer of the original BLS structure
by utilising a contextual matrix in the MLP model with

attention aggregation instead of randomly generated matri-
ces. The learning of the sequence information is then divided
into two parts, text sequence and context sequence. These
parts are represented as Ztextn and Zcontext , respectively, which
are matrices that combine the feature vectors of the sequence
information.

a: TEXT SEQUENCE
Consider K training data

{
x i, yi

}
, i = 1 · · ·K , in the

dataset X , where x i =
(
x i1, x

i
2, · · · , x

i
n
)
denotes the training

data and n is the number of words, and yi =
(
yi1, y

i
2, · · · , y

i
m
)

denotes the target label, where m indicates the number of
classes. In the original BLS, each mapped feature matrix Zp
is required to be independent of all other mapped features.
Under this independence, each mapped feature Zp can be
learned using a random set of weights αzp and bias βzp over
the entire input matrix X , whereas the sequence information
of the text data cannot be learned [22]. We focus on the
representation vector of each word in the stage of learning
the text sequence. Therefore, each x i, which contains N
attributes, is split into N word elements, and each of them,
x ip ∈ x i, p = 1 · · ·N , is converted into a feature vector
under Skip-gram [22]. Then, we assign N words x ip to an
entire feature vector x i ∈ RN×hD , which contains the entire
information of the sentence, where hD is the dimension of the
hidden nodes. The input matrix X is represented as

X =
[
x1, x2, · · · , xk

]
. (9)
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FIGURE 4. Structure of multi-layer perceptron with attention mechanism.

Moreover, the dimension of X is represented as K ×N . Xk is
reflected in the Ztextk matrix inherited from the original BLS
according to (10).

Ztextk = f
(
Xkα

z
k + βzk

)
, (10)

where f (·) is the sigmoid activation function [19]. Both the
weights αhk and bias βhk are randomly generated as well.
In addition, the dimension of the text sequence matrix Ztext
is the same as that of the input matrix Xinput , which is K ×N .

b: CONTEXT SEQUENCE
In this section, we describe the improvement of the original
BLS by incorporating a node Zcontext in the feature-mapped
layer. This node is a matrix that captures the latent contextual
information required for learning the context sequence to
help the BLS to understand the relationship between the text
and context information without a recurrent structure in the
network. Therefore, we constructed a contextual sequence
representation model with an attention mechanism to capture
the global contextual information in the learning sequence
information. The structure of the MLP with attention mecha-
nism is shown in Fig. 4.

Moreover, inspired by the transformer model in [5],
we employed position encoding to capture the relative posi-
tion of each word in the sequence. This enables the model
to differentiate between words that share the same embed-
ding but occur at different positions within the sequence.
Subsequently, the sentence is input into anMLP that incorpo-
rates an attention aggregation mechanism. The model assigns
weights to each word in the sequence based on its relevance
to the overall context. This capability allows the model to
effectively capture the abstract dependencies and relation-
ships among different parts of a sentence, thus generating
an interpretable matrix instead of a random one. Importantly,

this matrix is non-iterative during theWord-unit BLS training
process, which further reduces the computing resource con-
sumption and enhances the procession of model training and
construction.

Given the word embeddings x(k)
n as input, where k rep-

resents the k th word and n represents the nth sentence in
the entire dataset, which are generated using Skip-gram, the
embeddings are processed using position encoding, as shown
in (11) and (12).

Position_encoding(position,2i) = sin

(
position

10000 2i
dmodel

)
,

(11)

Position_encoding(position,2i+1) = cos

(
position

10000 2i
dmodel

)
,

(12)

where i represents the ith value in the embedding, and dmodel
represents the dimension for positional encoding, which is the
dimension output from Skip-gram. After the position encod-
ing step, the embeddings are fed into the MLP with attention
mechanism. The input embeddings are first processed by a
linear layer to reduce their dimensionality, followed by a
non-linear activation function, as shown in (13).

al = sigmoid
(
wlal−1 + bl

)
, (13)

where sigmoid (·) is the activation function, and a is the out-
put of the l th layer neural network. The attention mechanism
then calculates the relevance between the target word and
each of the other words in the sequence. The relevance scores
are used to weigh the context words before summing them
to form a context vector. This context vector is combined
with the target word’s embedding to form the final output
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FIGURE 5. Structure of enhanced word importance with sememes.

of the attention mechanism, as shown in (6), (7), and (8) in
Section I.B.

To train the MLP, we employed the MSE loss function,
as shown in (14).

L =
1
2n

∑∥∥ŷ− y∥∥2 , (14)

where ŷ represents the predicted output, and y represents the
ground truth label. To optimise the initialised parameter, the
BP algorithm was adopted, which calculates the gradients of
the loss function (for calculating the difference between the
estimated value and true value for a given instance of data1)
with respect to themodel’s parameters, as shown in (15), (16),
and (17).

δl =

((
wl+1

)T
δl
)
⊙ al

′

, (15)

d

dwlj
L = al−1δ

l
j, (16)

d

dblj
L = δlj , (17)

where δl represents the error term of the l th layer,
(
wl+1

)T
is the transpose of the weight of the (l + 1)T layer, and⊙

denotes the elementwise multiplication. The deactivation
function of al is calculated as shown in (18).

al
′

=

(
wlal−1 + bl

)
×

(
1−

(
wlal−1 + bl

))
(18)

1https://en.wikipedia.org/wiki/Loss_function

The mapped feature node ZcontextϵRN×D is constructed as

Zcontext =
[
ŷ1, ŷ2, · · · , ŷN

]
. (19)

The pseudocode of the contextual representation model is
presented below.

2) LEARNING WORD IMPORTANCE
In the original BLS, the enhancement nodes are computed
based on the mapped features Z1 · · · Zk . However, as we
learn the sequence information within the feature-mapped
layer, we discover that word importance is also crucial in
NLP tasks, as reported in our previous studies [41], [42],
where we observed significant performance improvements
in understanding short texts with sparsity and polysemy by
utilising knowledge-based feature extension methods and
feature fusion algorithms, respectively. Hence, in this study,
we attempted to incorporate the sememes information from
HowNet to improve the representation in word importance
learning in BLS. We illustrate our approach in Fig. 5.
The Word-unit BLS takes the word embeddings XnϵRN×D

as the input. The matrix Xn is expressed as

Xk =
[
x(k)
1 , x(k)

2 , · · · , x(k)
N

]
, (20)

where N is the number of sentences in the entire dataset, D
is the dimension of the word embedding, k represents the k th

word in the sentence, and n represents the attribute xk from the
nth sentence. We define the original word as the target word
(Word, layer one) in HowNet, and the sememe enhancement
algorithm looks up the sense and sememe embeddings for the
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Multi-Layer Perceptron With Attention Aggregation
Input: The attribution xn of matrix form X .
Output: The Zcontext matrix.
Multi-layer Perceptron with Attention Aggregation

1. initialise hidden_dimension,learning_rate, n_epoch,
h1, b1, h2, b2, attention_weight , context_vector , and
Zcontext .

Position encoding
1. calculate position encoding using eq.11&eq.12.

Training
1. for epoch = 1, epoch ≤ n_epoch do

# forward pass
2. calculate h1, attention_weightkn, attention_scorekn,

context_vector , h2 using eq.13, eq.6, eq.7, eq.8, and
eq.13, respectively.

3. calculate validated sequence information utilising
LSTM.

4. calculate loss between h2 and validated sequence infor-
mation using eq.15.
# backward pass

5. calculate dh2 , db2 , dcontext_vector, dattention_weight, dh1 , db1
# parameter update

6. h1, b1, h2, b2, attention_weight ,context_vector update
with gradient descent.

7. end for
Contextual information extraction

1. h1, b1, h2, b2, attention_weight,
contextualinformation← train

2. initialise Multi-layer Perceptron with Attention
Aggregation← h1, b1, h2, b2, attentionweight ,
contextualinformation

3. calculate ŷ usingMulti-layer Perceptron with Attention
Aggregation

4. for sentence = 1, sentence ≤ numsentence do
5. Zcontext ← ŷ
6. end for

target word. The enhancement vector e(n)k , where the descrip-
tion of k and n are the same as that for x(n)

k , is calculated
using the average aggregation method in Senseunits, which is
a mediator in the aggregation process, as shown in (21). Fur-
thermore, alternative aggregation strategies, Attention over
Context and Attention over Target, were proposed in [43].

e(n)k =
1

Sense

∑
j∈Sense

∑
i∈Sememe

sememe(j)i , (21)

where i represents the ith sememe in the set of Sememe
searched for the target word, j represents the jth sense in the set
of Sense searched for the target word. Finally, the enhanced
word x(n)

k is formed by combining the original word vector
x(n)
k and enhancement vector e(n)k , as shown in (22), where
the sememe information is utilised to construct the latent

correlations between the words.

x(n)
k = x(n)

k

⊕
e(n)k (22)

The enhancement node HkϵRK×D is concatenated with
K numbers xk . In Word-unit BLS, the importance of each
word is captured by the weight Wh, which connects the
enhancement nodes Hk to the output nodes Y . Each k th word
matrix in the entire dataset Xk can be converted into the
enhancement node Hk using (23).

Hk = g
(
Xkαhk + βhk

)
, (23)

where g is a tanh (•) activation function, and αhk ∈ Rlz×lh and
βhk ∈ RN×lh are randomly generated weights and biases, as in
the original BLS. Hence,Hk also has the dimension ofK×N .
The pseudocode of the sememe enhancement algorithm is

presented below.

Sememe Enhancement
Input: The words and word embeddingof each word.
Output: The sememe enhancement matrix.
Sememe enhancement

1. initialise senseandsememe.
Look up sense and sememe embeddings

1. for word = 1,word ≤ Sentence do
2. for sense = 1, sense ≤ word do
3. look up sencewordi
4. sense← sencewordi
5. for sememe = 1, sememe ≤ sense do
6. look up sememesensei
7. sememe← sememesensei
8. end for
9. end for
10. end for
Sememe enhancement

1. for k = 1, k ≤ maxSentence do
2. calculate ek using eq.21
3. enhance xk with sememe aggravation ek using eq.23
4. Hk ← xk
5. end for

3) CONNECTING WEIGHTS
Following [19], W Z and WH respectively represent the
sequence information and word importance in natural lan-
guage tasks. The connecting weight W is then the concate-
nation of W Z and WH , where W = [W Z

|WH ]. As in the
original BLS, W Z and WH are not computed separately, but
W = [W Z

|WH ] is directly calculated as the pseudoinverse
of [Ztext1,Ztext2, . . . ,ZtextnZcontext |H1, . . . ,Hk ] using ridge
regression approximation as in [19]. This allows the sequence
information and word importance to be learned simultane-
ously, resulting in a more effective determination of the final
classification result. The connecting weight W is obtained as
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shown in (24).

W = A+Y ,A+ =
(
ATA

)−1
AT , (24)

where

A = [Ztext1,Ztext2, . . . ,Ztextn,Zcontext |H1,H2, . . . ,Hk ].

(25)

The connecting weights can be calculated by substitut-
ing (24) into (25). The pseudocode for the general BLS
scheme is illustrated below.

Word-unit BLS Framework
Input: The raw data of natural language.
Output: The connecting weightW .
learning sequence information
Representation of text sequence

1. initialise X and Ztext
2. randomly generate the weights αzp and bias βzp
3. for k = 1, k ≤ K do
4. x i← Skipgram

(
xki
)

5. End
6. Ztext ← eq.10

Representation of context sequence
1. initialise Zcontext
2. do Multi-layer Perceptron with Attention Aggregation

learning word importance
1. initialise Xp and Hp
2. randomly generate the weights αzp and bias βzp
3. do Sememe Enhancement
4. for p = 1, p ≤ P do
5. Hp = g

(
Xpαhp + βhp

)
6. End

Calculate connecting weightW

W =
(
[Ztext1,Ztextn,Zcontext |H1, . . .]T

·[Ztext1,Ztextn,Zcontext |H1, . . .]T
)−1

· [Ztext1,Ztextn,Zcontext |H1, . . .]TY

III. EXPERIMENTS
This section outlines the experiments conducted in our study.
We used three main datasets in the experiment, as explained
later, and evaluated the performance of Word-unit BLS by
comparing it with those of Naive Bayes, Support Vector
Machine (SVM), and LSTM. Furthermore, we performed a
sensitivity analysis and an ablation study to gain additional
insights into the performance of the model.

A. EXPERIMENTAL SETUPS
To represent the words in the zhwiki (version. 20230301)
dataset in the vector space, we followed these steps:

1) We utilized the regular expressions library (re) to remove
punctuation. In the Chinese datasets (using OpenCC,2

jieba3), we converted the text to Chinese Simplified using
OpenCC and jieba. Additionally, words with a mincount < 3
were replaced with < unk >. 2) For the implementation of
Skip-gram, we used gensim.4 We manually configured the
mincount to 3, the training epoch to 300, the and embed-
ding size to 50, 100, and 200. The remaining parameters in
Skip-gram were set to their default values.

We designed different MLP architectures to accommodate
various embedding sizes. For each embedding dimension,
we designed the network architecture as presented in Table 1.
During the training process of the MLP, the stochastic gradi-
ent descent strategywas employedwith 0.01 learning rate and
300 training epochs as usual [36]. Additionally, we generated
the sequence (the values) validated using LSTM,which is one
of themost popularmodels in sequence learning. In this study,
the LSTM was configured with a single layer consisting of
200 hidden nodes. We used a learning rate of 0.01 and trained
the model for 300 epochs, as described in [22].

TABLE 1. Multi-layer perceptron architecture design.

The performance was evaluated on four datasets pertaining
to the real world in text classification tasks by using the
metrics of accuracy and training time. Except the comparison
experiments involving the learning sequence information,
which had an embedding dimension of 50, all other experi-
mental results were obtained using an embedding size of 100.
All the experiments were conducted using Python (version.
3.10.0) on a device equipped with an AMD Ryzen 7 5800H
CPU with 16 GB RAM.

B. DATASETS
In the experiments, the following four real-world datasets
were used to evaluate the performance of our model: THUC-
News, Chinese_news, ChnSentiCorp_htl, and apple-twitter-
sentiment. The THUCNews5 and Chinese_news6 datasets
were used to evaluate the performance of Word-unit BLS for
different text lengths and data scales in the topic categori-
sation task, respectively. In addition, the ChnSentiCorp_htl
and apple-twitter-sentiment datasets were applied to eval-
uate the performance of our framework in the sentimental
analysis task. Specifically, the apple-twitter-sentiment dataset
was employed to compare the performance of learning the
sequence information between the model in [22] and our

2https://github.com/BYVoid/OpenCC
3https://github.com/fxsjy/jieba
4https://radimrehurek.com/gensim/models/word2vec.htm
5Text length: Long; Data scale: Large
6Text length: Short; Data scale: Small
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TABLE 2. Datasets.

model. A brief overview of these datasets can be found
in Table 2. To create training, validation, and testing sets,
we allocated the data manually using a ratio of 7:1:2.
THUCNews is a large-scale Chinese news dataset com-

prising data collected from various websites and covering
10 distinct categories including #Sports, #Finance, #Real
Estate, #Home Furnishing, #Education, #Technology, #Fash-
ion, #Current Affairs, #Games, and #Entertainment. The
dataset comprises 65,000 samples, with an average of
6,500 samples per category. For each category, 5,000 assigned
to training, 500 to validation, and 1,000 to testing.
Chinese_news is a large-scale dataset comprising Chinese

news sourced fromChina Central Television. It is divided into
three categories: #long news with 11,534 samples, #domestic
short news with 6,186 samples, and #international short news
with 3,018 samples.
ChnSentiCorp_htlis a small-scale dataset designed for sen-

timent analysis and focuses on hotel reviews. The dataset
classifies the comments into two categories—#Positive with
5,322 samples and #Negative with 2,444 samples.
apple-twitter-sentimentis a small-scale dataset for senti-

ment analysis, comprising tweets related to Apple. It cat-
egorises the comments into three groups: #Positive with
686 samples, #Neutral with 801 samples, and #Negative with
143 samples.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) COMPARISON RESULTS
The accuracy (accuracy±standard deviation) and training
time of the various approaches are shown for each dataset
in Table 3. The results reveal that Word-unit BLS surpassed
the baseline by margins of 8.26%, 4.25%, and 7.79% for the
THUCNews, Chinese_news, and ChnSentiCorp_htldatasets,
respectively, in terms of accuracy. This superior performance
is attributed to the combined use of sequence information
learning and word importance learning. Firstly, the extrac-
tion of contextual information by an MLP, coupled with
attention aggregation after position encoding, enhances the
performance of sequence information learning in the feature-
mapped layer. Then, the sememe enhancement proposed for
learning the word importance at the enhancement node layer
for word representation, facilitated by the incorporation of
a linguistic lexicon, further boosts the effectiveness of the
proposed approach.

Furthermore, Word-unit BLS demonstrated significantly
shorter training time, specifically 1/33, 1/6, and 1/6 of
the time required for baseline (Naive Bayes) with the

TABLE 3. Experimental results.

THUCNews, Chinese_news, and ChnSentiCorp_htldatasets,
respectively. The primary reason for this reduction in training
time is the computation of the connecting weights using
the pseudoinverse and ridge regression methods, as shown
in (24) and (25) [19], [22], which is also performed for
the original BLS. The position-add employed in sememe
enhancement also contributes to the reduced computational
demand, which maintains the same dimensionality without
extending the training time. Furthermore, the incorporation
of contextual information nodes based on an MLP does not
appreciably increase the training duration. Therefore, Word-
unit BLS exhibits superior performance when compared with
the conventional machine learning methodologies in terms of
both effectiveness and efficiency, particularly for large-scale
datasets.

2) LEARNING SEQUENCE INFORMATION
To evaluate the performance of Word-unit BLS in learning
the sequence information, we conducted comparative and
sensitivity experiments on the apple-twitter-sentimentdataset.
Firstly, we compared the performance of Word-unit BLS
with those of R-BLS and G-BLS, which are considered
the most efficient models for sequence information learning
in NLP tasks based on BLS. In this experiment, we used
an embedding dimension of 50 as in [22], and selected
LSTM as the baseline model, which is considered the most
efficient and popularmethod in sequence learning. The exper-
imental results shown in Table 4 indicate that Word-unit

TABLE 4. Experimental results of learning sequence information.
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FIGURE 6. Accuracy and time consumption for different embedding dimensions.

BLS achieved an average accuracy of 72.84% on the apple-
twitter-sentiment dataset, which is a 6.03% improvement over
that of LSTM. Furthermore, Word-unit BLS outperformed
R-BLS and G-BLS by 5.50% and 5.08%, respectively.
These results suggest that Word-unit BLS has excellent
performance in learning the sequence information, and the
proposed method based on sequence extraction and contex-
tual information is an effective BLS at the feature-mapped
layer.

Moreover, we designed sensitivity experiments to evalu-
ate the effect of varying the embedding dimension on the
test accuracy and training time. Specifically, the embedding
dimension was set to 50, 100, and 200. The experimental
results are illustrated in Fig. 6. For the embedding dimensions
of 50, 100, and 200, the Word-unit BLS model achieved
average accuracies of 72.84%, 73.90%, and 74.84%, with
training times of 0.13 s, 0.17 s, and 0.54 s, respectively.
Increasing the embedding dimension improved the accuracy
but extended the training time. Obviously, both accuracy
and training time tended to increase with the embedding
dimension. The growth in accuracy appeared to be lin-
ear, and the results displayed stability at the embedding
dimension of 100 when compared with those at the other
dimensions. Simultaneously, the training time exhibited only
a minor increase when the embedding dimension transi-
tioned from 50 to 100, followed by a significant increase
thereafter.

3) LEARNING WORD IMPORTANCE
To demonstrate the influence of sememe enhancement on
learning the word importance, we conducted an ablation
study on three datasets—THUCNews, Chinese_news, and
ChnSentiCorp_htl. The experimental results are shown in
Fig. 7. The corresponding accuracies with sememe enhance-
ment were 96.32%, 92.66%, and 90.53% in testing, which
indicated improvements of 2.68%, 3.74%, and 1.27%, respec-
tively, when compared with the accuracy obtained with the
original model (non-sememe enhancement: 93.64%, 88.92%,
89.26%, respectively). It is clear that sememe enhance-
ment significantly impacts text classification across all
datasets, particularly those of a large scale. However, sememe
enhancement yielded 1.27% improvement for ChnSenti-
Corp_htl. This result can be explained by information
redundancy [13], which occurs due to the augmented sememe
information in word representation. As a result, the improve-
ment for a relatively smaller dataset was not significant.

Furthermore, we present the relationship between infor-
mation gain and construction time of Word-unit BLS in
Fig. 8, providing valuable insights for incorporating sememe
enhancement in downstream tasks. To analyze this rela-
tionship, we manually segmented each sentence in the
THUCNews dataset into sentences comprising 5, 10, 30,
and 100 words. Subsequently, we measured the information
gain and time consumption for each scale. The experimental
results are shown in Fig. 8. The delta gains of the information
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FIGURE 7. Results of ablation study of sememe enhancement.

gain were 1.59%, 2.30%, 1.67%, and 1.38%, respectively,
indicating a process of rapid increase followed by a subse-
quent decline. In order words, the performance under sememe
enhancement exhibits a sharp rise before gradually stabilising
over time. Simultaneously, time consumption increases with
the expansion of the data scale. Therefore, a balance between
performance and time consumptionmust be attained in down-
stream tasks. This result further elucidates why sememe
enhancement proves more effective on larger datasets.

IV. DISCUSSION
In this study, we successfully constructed a novel framework,
Word-unit Broad Learning System, a.k.a Word-unit BLS,
which is capable of understanding natural language based on
the theory that a language is composed of sequence and word
information. The framework aims to enhance the represen-
tation of both sequence and word information in NLP tasks.
In this study, we applied this framework to various NLP tasks.

A. KEY FINDING
The key contribution of Word-unit BLS lies in its ability
to improve the representation of sequence information by
combining text information with context information. This
integration enables Word-unit BLS to capture more detailed
information from the input data, leading to enhanced accu-
racy and reduced computing time for sequence understand-
ing in the feature-mappedlayer of the BLS. Additionally,

Word-unit BLS enhances word representation performance
by leveraging sememes in the enhancement node layer.
Sememes are obtained from HowNet, an external language
knowledge base that encompasses concepts and relation-
ships in Chinese. By incorporating sememes into the word
representation process, Word-unit BLS can capture more
fine-grained semantic information, thus offering potential
benefits across various NLP tasks.

Our experiments demonstrated the performance of the pro-
posed framework in terms of effectiveness and efficiency.
The training time of the proposed framework was 1

/
33 of

that of Naive Bayes (baseline) whereas the accuracy was
improved by 8.26% for the THUCNews dataset. Furthermore,
we explored the performance of sequence information learn-
ing and word importance learning by conducting ablation
studies that considered various factors that may affect the per-
formance. Although we merely evaluated the performance of
Word-unit BLS for text classification and sentiment analysis
tasks, the methodology can be applied to various NLP tasks,
e.g. machine translation and information extraction [44].

B. LIMITATIONS
The limitations of this study include the reliance on HowNet
to extract sememes for enhancing the word representation in
the enhancement node layer. This reliance raises concerns
about the availability, quality, and coverage of the knowledge
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FIGURE 8. Information gain and time consumption with sememe enhancement.

base. By excluding the influence of the external knowledge
language base, the analysis becomes incomplete or biased,
potentially affecting the evaluation of the performance and
reliability of Word-unit BLS. Additionally, the limited scope
of the language knowledge base restricts its performance
and practical applicability. However, manual construction of
external knowledge bases is challenging due to the potential
consumption of excessive resources. To address these issues,
we suggest integrating multiple external language knowledge
bases to expand the scale of data and translating the existing
datasets into other languages to incorporate additional lin-
guistic contexts beyond Chinese.

Moreover, we did not incorporate multi-features such as
phonetics information (another type of sequence information)
[41] or graph technology to extract latent entity relationships
containing auxiliary knowledge [45].Moreover, a foreseeable
challenge in integrating multi-features into Word-unit BLS is
the substantial increase in training time. One potential solu-
tion to this challenge is the Zhu method [46], which reduces
computational complexity by utilizing the inverse Cholesky
factor of the Hermitian matrix during pseudoinverse compu-
tation and factor updates. Despite the limitations of the study,
this paper introduced a novel framework that integrates BLS
with linguistic theory. However, additional research is needed
to explore language understanding through the combination
of multi-features.

V. CONCLUSION
In this paper, we proposed the Word-unit BLS framework
for text classification and sentiment analysis, enabling simul-
taneous learning of multiple types of information at the
word level, including sequential information andword impor-
tance. The main contributions of this study are as follows:
1) Achieving higher accuracy and shorter training time
with the Word-unit BLS framework by enabling simultane-
ous learning of sequence information and word importance.
2) Introducing a non-iterative context matrix constructed
using an MLP with an attention mechanism into the BLS.
3) Employing a novel approach to improve word represen-
tation by incorporating sememe information while learning
word importance. We conducted several experiments that
demonstrated the superior performance of Word-unit BLS
compared with conventional machine learning methodolo-
gies in terms of the accuracy and training time when
compared. Furthermore, when compared with R-BLS and
G-BLS (the SOTA methods in learning sequential infor-
mation based on BLS), Word-unit BLS exhibited superior
sequence learning performance without increasing the train-
ing time. However, when applying sememe enhancement to
small datasets in downstream tasks, there is a possibility of
information redundancy.

Overall, Word-unit BLS demonstrates excellent per-
formance in terms of both effectiveness and efficiency.
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Experimental results demonstrated its potential in various
NLP tasks, showcasing its excellent performance in natural
language understanding. While the sememe enhancement
algorithm significantly improves accuracy, it does lead to
high computational time for large-scale data, particularly
long sentences. In future research, further investigation will
be conducted to reduce the construction time of the algorithm.
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