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ABSTRACT The efficacy of credit risk assessment models is pivotal to the risk management capacity of
financial institutions. Traditional credit risk models often suffer from inadequate predictive accuracy due
to overlooked feature combinations and weak supervisory signals. Addressing these limitations, we present
a novel approach for credit default prediction that integrates feature interactions and contrastive learning.
Specifically, we introduce second-order interactions atop standard linear models to achieve low-order feature
interplay. Concurrently, the integration of deep neural networks and attention mechanisms facilitates the
learning of concealed high-order features, thus enhancing the model’s non-linear modeling capabilities and
illuminating latent feature associations. Further, to ameliorate the issues of noise and diminished supervisory
signals, we embed slight noise in feature embeddings for data augmentation and construct contrastive views,
ultimately refining feature quality. To attest to the effectiveness of our approach, we conducted experiments
on two real-world datasets, benchmarking against eight predictive methods including LR, XGBoost, and
FiBiNET. The results unequivocally demonstrate the superior performance of our method across various
metrics, underscoring its promise and excellence in the realm of credit risk assessment.

INDEX TERMS Credit appraisal, second-order crossover, attention mechanisms, deep neural networks,
contrastive learning.

I. INTRODUCTION
Credit lending, with its distinctive and convenient financing
approach, has emerged as one of the predominant channels
for financing [1]. However, the intrinsic default risks asso-
ciated with credit loans can significantly impede the growth
of financial platforms. Establishing an effective credit loan
prediction model is of paramount importance for both indi-
vidual consumers and the evolutionary trajectory of financial
platforms.

Credit loan prediction is a financial task that utilizesmathe-
matical models and historical credit data to forecast whether
borrowers are likely to fail in repaying their loans on time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

Borrowers are typically categorized into two groups: those
who default and those who do not. Currently, common credit
loan prediction methods fall into two categories: Credit loan
prediction techniques can be bifurcated into methods based
on machine learning [2], [3], [4], [5], [6], [7] [8], [9] and
those rooted in deep learning [11], [12], [13], [14]. While
both categories have demonstrated commendable predictive
outcomes, practical lending operations necessitate manual
extraction of latent relationships between attributes, limiting
the ability to generalize combination features not present in
the original dataset [15].

In recent years, numerous researchers have delved into
feature-generation techniques. For instance, the Factoriza-
tion Machines series of models [16], [17], [18], [19], [20],
by factorizing the relationships between features, captures the
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interaction information among features, and can effectively
improve the prediction accuracy of the model. However,
these methods do not consider the issue of integrating both
low-order and high-order feature importance at the same
time. Furthermore, most of these interaction models are
applied in domains such as ecommerce, and are seldom used
for predicting credit defaults. Additionally, many deep learn-
ing prediction efforts, such as DeepFM [19], FiBiNet [20],
etc., emphasize designing advanced frameworks to simulate
complex feature interactions and mine hidden association
rules. In these methods, the issues of noise in the data
and weak supervised signals are overlooked, neglecting the
importance of high-order feature interaction representation
learning, leading to subpar model prediction accuracy.

Based on the above analysis, to address the issues in
traditional credit assessment models, such as neglecting
the importance of low-order and high-order interactions in
feature importance, and poor prediction accuracy due to
weak supervised signals, this paper proposes a credit default
prediction method that integrates feature interaction and con-
trastive learning (FI-CL). Specifically, the initial embedding
of raw features is performed via an Embedding layer, and
pairwise crossing is employed to generate second-order fea-
ture combinations, facilitating low-order feature interaction.
Concurrently, a Deep Neural Network (DNN) is applied
to the features of the Embedding layer to decipher the
profound latent relations associated with high-order feature
interactions, thereby mining behavior patterns correlating
user features with loan delinquency outcomes. Subsequently,
an attention network is utilized to adaptively discern the
significance of both low and high-order feature interactions.
Ultimately, we incorporate Contrastive Learning (CL) [21],
[22] to mitigate noise encapsulated in latent features, enhanc-
ing the quality of feature representation. This is further
augmented by leveraging multi-task learning to bolster super-
visory information.

The principal contributions of this study are multifaceted
and can be summarized as follows:

• We have proposed a FI-CL credit default prediction
method, which not only relies on the FI feature inter-
action technique to uncover deep hidden relationships
among features, but also enhances the representation
quality of the original features through the CL method.

• We introduced a new feature interaction approach (FI)
that integrates second-order feature interaction, DNN,
and the attention mechanism. This enables the model to
adaptively learn the weights of both low-order and high-
order combined features, uncover hidden associative
rules among features, and enhance themodel’s nonlinear
modeling capability.

• By integrating subtle noise into the original features,
we have augmented their robustness. Furthermore,
through contrastive learning, we enforced consistency
across dual views, aiming to mitigate noise-related
challenges and attenuate the issues arising from weak
supervision.

• Empirical evaluations underscore the superiority of the
FI-CL approach. When benchmarked against prominent
existing methods, it manifests an improvement of 1-3%
in AUC performance, 1-7% in KS, and 2-4% in G-mean
values.

The rest of the paper is arranged as follows. Related works
are summarized in section II. The proposed method is shown
in section III. We introduce the experimental settings and
analyze the results in sections IV and V. The conclusion is
drawn in section VI.

II. RELATED WORK
From a technical perspective, this paper reviews the current
mainstream methods for credit default prediction, which are
methods based on machine learning and those based on deep
learning. Given the inability of existing default prediction
methods to generalize combination features not present in the
original features, this study also outlines methods based on
feature generation.

A. CREDIT DEFAULT PREDICTION METHOD BASED ON
MACHINE LEARNING
Credit default prediction methods based on machine learn-
ing offer data-driven solutions by automatically learning and
recognizing complex non-linear patterns from vast amounts
of data, aiding in the accurate and timely assessment of
borrowers’ default risks. Traditional machine learning mod-
els are relatively simple and easy to implement. Techniques
like Logistic Regression (LR) [2], Support Vector Machine
(SVM) [3], and Decision Tree (DT) [4] using individual
classifiers have been proven effective in credit-related clas-
sification prediction tasks.

However, singular classification models possess issues like
lower prediction accuracy and poor robustness. Therefore,
scholars have adopted methods such as ensemble learn-
ing [8] and multi-model fusion [9]. By leveraging techniques
like voting, weighted averaging, and stacking, they blend
results from various models to achieve enhanced predictive
performance. Yet, these methods require multiple different
classifiers, leading to an increase in model complexity and
computational costs.

B. CREDIT DEFAULT PREDICTION METHOD BASED ON
DEEP LEARNING
With the gradual rise of deep learning technology, deep learn-
ing has been widely applied in various fields [10]. Credit
loan default prediction tasks are one typical application.
Compared to default prediction models based on machine
learning, credit default prediction methods based on deep
learning can capture complex data relationships, providing a
deep model framework for high-precision default risk assess-
ment, and achieving significant breakthroughs in prediction
accuracy and speed.

Brenes et al. [11] investigated the discriminative capa-
bility of the Multi-Layer Perceptron (MLP) in the context
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of bankruptcy prediction. After parameter optimization, the
proposed MLP exhibited outstanding performance. Guo [12]
analyzed traditional financial risks and information technol-
ogy risks on P2P lending platforms and introduced a loan risk
assessment algorithm based on the BP neural network. Exper-
iments indicated that this method could effectively reduce
investor risks. Nguyen et al. [13] utilized auto-encoders
(AE) and Long Short-Term Memory networks (LSTM) to
construct models, addressing issues in traditional fraud detec-
tion methods, such as the need for manual rule definition
and the difficulty in handling complex fraudulent behaviors.
Experiments showed that deep learning methods performed
excellently. He [14] introduced the Bidirectional Recurrent
Neural Network (BRNN) for the problem of customer credit
default prediction and integrated the LR, Extreme Gradi-
ent Boosting (XGB), and BRNN methods. Predictive results
were obtained by assigning weights. Although deep learn-
ing models have achieved satisfactory results in the credit
field, actual loan operations still require manual extraction
of implicit relationships between attributes, and cannot gen-
eralize interaction terms that are not present in the original
features.

C. PREDICTION METHOD BASED ON FEATURE
GENERATION
Prediction methods based on feature generation innovatively
construct or transform original data features, extracting more
valuable information, thereby enhancing the model’s expres-
sive power and prediction accuracy. Rendle [16] introduced
the Factorization Machine (FM) model, which learns the
relationships between features through second-order inter-
actions. These interactions can generalize to unobserved
feature combinations, thereby eliminating the need for man-
ual feature relationship discovery. Juan et al. [17] proposed
the Field-aware Factorization Machine (FFM) model, which
incorporates domain information of features. Compared to
FM, FFM has a more potent capability in modeling fea-
ture interactions but introduces additional computational
complexity and parameter size, resulting in a higher time
complexity during model training. Xiao et al. [18] proposed
the Attentional Factorization Machine (AFM) model, which
incorporates attention mechanisms into the FM model to
dynamically adjust the importance of feature interactions,
enhancing the modeling capability for key feature interac-
tions. However, like FM, AFM only considers second-order
feature interactions and neglects deeper high-order hidden
feature relationships.

Subsequently, models emerged that leverage DNN to learn
complex feature interactions. For instance, Guo et al. [19]
combined the strengths of FM and DNN. They integrated
DNN to learn high-order feature interactions while retain-
ing the FM model’s second-order interaction capabilities.
With the nonlinear fitting capability of DNN, the model
extracts more intricate feature interaction patterns, enhanc-
ing the model’s expressiveness and prediction accuracy.
Huang et al. [20], building on the FM model, introduced the

FiBiNET model. It utilizes the SENET mechanism to adap-
tively learn the importance of features and effectively learns
feature interactions through a bilinear function. However, due
to learning at a finer granularity of features, the model’s time
complexity significantly increases.

III. METHODOLOGY
The core processing modules of the proposed method
(FI-CL) include the Feature Interaction module (FI) and the
Contrastive Learning module (CL), as illustrated in Figure 1.
Specifically, the FI module can adaptively mine valid associ-
ation rules present in both low-order and high-order feature
interactions. The CL module learns the consistency between
feature views, thereby enhancing feature quality. More pre-
cisely, firstly, raw features are passed through an embedding
layer, mapping them to a lower-dimensional space, yielding
their corresponding dense Embedding vectors, facilitating
computation and learning by the model. Subsequently, the
features from this Embedding serve as input for both the FI
and CL modules, thoroughly extracting interactive informa-
tion from the features and enhancing their quality. Lastly, the
model is optimized using a multi-task joint cross-entropy loss
function and a contrastive loss function.

A. FI MODULE
The FI module consists of a second-order cross layer, a Deep
layer, and an attention network layer, as shown in Figure 1(a).
The second-order cross layer pairs up original features for
combination to capture low-order feature information. The
Deep layer learns high-order feature information between
different features using a DNN. The attention network layer
adaptively combines the importance of original features,
low-order features, and high-order features, enhancing the
model’s nonlinear modeling capability and subsequently
extracting deeper implicit information.

1) SECOND-ORDER CROSS LAYER
The second-order cross is used to fit interactions between
features by implementing pairwise combinations of the orig-
inal features, obtaining low-order cross terms to describe
the associations between features. In this paper, polynomial
combinations are utilized to learn first-order features and
second-order combined features, capturing the interactions
between them. That is, on top of the general linear model,
we consider the relationships between features and learn
combined features not present in the original set through the
form of inner products of latent vectors. This approach boasts
strong generalization capabilities, as shown in the following
formula:

E2CN =

n−1∑
i=1

n∑
j=i+1

< vi, vj >xixj +
n∑
i=1

wixi + b (1)

In the above, n denotes the number of features in the sample,
xi represents the i -th feature, b and wi respectively represent
the bias term and theweight, and< vi,vj > denotes theweight
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FIGURE 1. The overall framework of FI-CL. FI-CL consists of (a) the FI module and (b) the CL model. The FI
module uses a second-order interaction layer to learn low-order feature interactions and a Deep layer to
learn high-order feature interactions. By incorporating attention mechanisms, it achieves adaptive learning of
both low-order and high-order feature interactions. The CL model enhances representation quality through
data augmentation.

of the second-order cross feature, which is used to learn
combined features, enhancing the linear modeling capability
of the model.

To reduce the computational load of < vi,vj > and
decrease time complexity, we leverage the properties of diag-
onal matrices to simplify the second-order cross term in
formula (1), leading to the following expression:

n∑
i=1

n∑
j=i+1

< vi, vj >xixj

=
1
2

∗ k∑
f=1


(

n∑
i=1

vif xi

)2

−

n∑
i=1

v2if x
2
i

 (2)

2) DEEP LAYER
The second-order cross layer adeptly captures both primary
(first-order) and secondary (second-order) feature informa-
tion. However, they fall short when it comes to discerning
higher-order features, such as ternary (third-order) interac-
tions. Inspired by the paradigm presented in the Wide &
Deep model [23], we deftly amalgamate linear modeling
with deep learning approaches. By incorporating a DNN into
the deep layer, we achieve an end-to-end learning mech-
anism, enabling the model to handle both low-order and
high-order feature combinations simultaneously. As shown in
Figure 1(a), the output of the embedding layer serves as the
input to the Deep layer, that is:

a(0) = E = [e1, e2, . . . , ei, . . . , eN ] (3)

where N denotes the number of original discrete feature
domains, ei ϵ Rk represents the embedding of the i-th feature,
and k is the embedding dimension. The process of inputting
a(0) into the Deep layer is as follows:

a(l+1)
= σ

(
W (l)a(l)

+ b(l)
)

(4)

where σ denotes the Relu activation function, l is the depth
of the layer,W (l) represents the weights of the l-th layer, a(l)

is the output of the l-th layer, and b(l) is the bias term of the
l-th layer. Lastly, the outputs from each layer are fed into the
Sigmoid function to obtain the output of the Deep layer as:

EDeep = Sigmoid(W h+1ah + bh+1) (5)

where h represents the number of hidden layers in the Deep
layer.

3) ATTENTION NETWORK LAYER
Both the second-order interaction layer and the Deep layer
engage in feature interactions by utilizing fixed vector values
in conjunctionwith other features. However, it’s paramount to
note that in real-world scenarios, the contribution of diverse
features to the final predictive outcome can vary significantly.
Neglecting to distinguish these features during training might
potentially compromise the model’s predictive capabilities
and training efficiency. Consequently, we’ve incorporated
an attention mechanism, enabling the model to adaptively
learn the weights of various feature interactions and their
combinations. This is instrumental in augmenting themodel’s
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predictive performance and interpretability. The attention net-
work function introduces weights between features during
the feature crossing process. The calculation process is as
follows:

EAtt = W T
n∑
i=1

n∑
j=i+1

αij
(
vi ⊙ vj

)
xixj +

n∑
i=1

wixi + b (6)

where W represents the weight matrix, ⊙ represents the
element-wise product, which multiplies each element of two
vectors of the same dimensionality, and αij is the attention
score, which serves as the weight coefficient of the com-
bination feature and represents the contribution of different
combination features to the final prediction. αij is obtained
by normalizing α′

ij through the softmax function, as shown in
the following equation:

αij =
exp

(
α′
ij
)

∑
(i,j)∈RX exp

(
α′
ij

) (7)

Here, α′
ij is obtained by adding the output of the attention

network’s hidden layer and the weight vector, with the ReLU
activation function applied, as shown below:

α′
ij = hTReLU (W (vi ⊙ vj)xixj + b) (8)

B. CL MODULE
Contrastive learning operates as an unsupervised learning
paradigm, circumventing the reliance on labeled data intrinsic
to supervised learning, and emphasizing intrinsic data fea-
tures. To address issues of poor feature representation quality,
we employ the CL approach, as illustrated in Figure 1(b). The
CLmodule encompasses data augmentation and a contrastive
loss function. Inspired by the XSimGCL methodology [22],
we introduce subtle noise to the features of the Embedding
layer as an initial interference to the original characteris-
tics, followed by the application of an MLP for enhanced
feature representation. Subsequently, a comparison between
the augmented features and those of the Embedding layer
is executed, aiming to mitigate feature noise and alleviate
the shortcomings of weak supervision, thereby enhancing the
overall feature representation quality.

1) DATA AUGMENTATION
CL enhances the model performance by implementing biased
data augmentation. In this paper, we introduced noise that
follows a uniform distribution into the features of the Embed-
ding layer, leading to subtle feature interference. The features
are further enhanced using an MLP. Given a feature xi and its
representation exi in a d-dimensional embedding space, with
exi ϵ Rd , the augmented data representation for exi is denoted
as e′xi, as illustrated in the following equation:

e′xi = exi + nxi (9)

Herein, nxi = X ⊙ sign(exi) represents the noise added
stochastically, where ||nxi|| = ε is a relatively small constant

(typically, ε < 0.3), and X is a function of the normal distribu-
tion. The e′xi constructed using nxi retains most of the original
features while introducing some variations.

Compared to the traditional CL approach, which uti-
lizes dropout techniques in embeddings and consequently
sacrifices some features, the data-augmented embedding
introduces noise that maintains feature uniformity, without
any feature loss. However, the features from data augmen-
tation are of higher dimensionality and sparsity. For models
with a large volume of data, this might adversely impact train-
ing stability. As such, multi-layer MLP projection functions
are employed to reduce the feature dimensions, as elaborated
below:

Fzi = σ (wzi + b) (10)

wherein, Ede represents the augmented feature, and e′

xi is the
representation for the i -th data augmentation.

2) CONTRASTIVE LOSS
Contrastive loss functions are used to minimize the distance
between samples of the same class, making similar samples
more clustered in the feature space and pushing dissimi-
lar samples farther apart [24]. This allows the model to
adaptively adjust the uniformity of learning representations,
enhancing generalization performance. In this paper, we uti-
lize the InfoNCE loss function [25] to minimize the distance
between the original feature embeddings in the Embedding
layer:

Linfonce = − log
exp

(
Z ′

iT · Zi/τ
)

∑
i∈B

exp
(
Z ′

iT · Zj/τ
) (11)

where Z ′

iT represents the feature embedding after data aug-
mentation, Zi denotes the original feature embedding, Z ′

iT ·Zi
signifies the similarity between positive samples, Z ′

iT ·Zj rep-
resents the similarity between a positive sample and a
negative sample, τ is the temperature that controls the
model’s ability to differentiate negative samples, and B ϵ (0,
k) is the batch size.

C. MODEL PREDICTION AND MULTI-TASK TRAINING
To effectively carry out credit prediction, we concatenate the
second-order cross layer, Deep layer, the attention network
layer of the FI module, and the data-enhanced output of the
CL module, and use the activation function sigmoid to obtain
the prediction result:

ŷ = sigmoid
(
E2CN ||EAtt ||EDeep||Ede

)
(12)

Herein, the symbol || denotes the concatenation pro-
cedure. Furthermore, our methodology incorporates the
cross-entropy loss function [25] to determine the associated
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loss, as articulated in the subsequent equation:

LBCE = −
1
n

n∑
i=1

[
yi ∗ logp (yi) + (1 − yi)∗ log (1 − p (yi))

]
(13)

Here, yi denotes the true value, and p(yi) represents the pre-
dicted value.

To integrate the contrastive loss function into the prediction
task and optimize the model, we adopted a multi-task training
approach, amalgamating both the cross-entropy loss function
and the contrastive loss function. The comprehensive loss
function is formalized as follows:

L = LBCE + λLInfoNCE (14)

where λ is the hyperparameter that controls the strength of
the contrastive loss.

IV. EXPERIMENTAL DESIGN
To validate the performance of the FI-CL model, in this
section, we first introduce the sources of the datasets uti-
lized in this study along with basic data preprocessing steps.
Following this, we outline the experimental environment and
model parameter settings, as well as the evaluation met-
rics. Lastly, we present the baselines used for performance
assessment.

A. DATA SOURCES AND PROCESSING
To gauge the predictive efficacy of the FI-CLmethod, we con-
ducted experiments on two authentic datasets. The first
dataset, denoted as Dataset A1, stems from a loan default
prediction dataset released on the Tianchi platform. This
dataset encompasses 800,000 records, each containing 47 pri-
mal features. The second dataset, referred to as Dataset B2,
constitutes data from the Lending Club platform pertaining to
the borrower’s data for the first quarter of 2018. It comprises
107,866 individual samples, each endowed with 145 original
features. A comprehensive overview of the datasets is delin-
eated in Table 1.

TABLE 1. Descriptive analyses of the two utilized datasets in this paper.

Prior to model instantiation, an intricate analysis of the
raw data was undertaken to refine it to a standardized high-
quality format. The data preprocessing adopted in this study

1https://tianchi.aliyun.com/competition/entrance/531830/information
2https://www.lendingclub.com/statistics/additional-statistics

was multistep in nature, encompassing a myriad of tech-
niques. Notably, these included feature binning (utilizing
quantile-based binning), feature engineering (resulting in
the derivation of 19 business features), and feature selec-
tion (employing a combined methodology of Information
Value (IV), variance analysis, Pearson correlation coefficient,
and Gini coefficient importance assessment from Random
Forests. As a result, the refined Dataset A for training
comprised 32 features, whereas Dataset B encompassed
59 features). Numerical encoding and Synthetic Minor-
ity Over-sampling Technique (SMOTE) [26] were further
applied.

B. EXPERIMENTAL ENVIRONMENT
The experimental infrastructure utilized in this study con-
sisted of an Intel(R) Xeon(R) Gold 6154 processor, NVIDIA
TITAN V 24G graphics card, and 128G of memory. The
software environment was structured around the CentOS 7
operating system, the deep learning framework PyTorch, and
Python 3.7 as the programming language.

For this study, the partitioning of the dataset was con-
figured with an 80% training and 20% testing split. Model
optimization was entrusted to the Adam optimizer [27], with
a batch size stipulated at 32 and the iteration epoch set at 100.
Comprehensive details of other salient parameter configura-
tions are presented in Table 2.

TABLE 2. Parameter settings in FI-CL.

C. EVALUATION INDICATORS
In this study, the predictive efficacy of the model was ascer-
tained via four evaluation metrics: AUC (Area Under the
ROC Curve), ACC (Accuracy), KS (Kolmogorov-Smirnov)
value, and G-mean. All these metrics are derived from the
confusion matrix.

The AUC is among the most frequently employed perfor-
mance evaluation metrics for classification tasks. The ROC
curve is plotted with the False Positive Rate (FPR) on the
x-axis and the True Positive Rate (TPR) on the y-axis. The
formulations for FPR and TPR are delineated as follows:

FPR =
FP

TN + FP
(15)

TPR = Sensitivity = Recall =
TP

TP+ FN
(16)
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Within this context, TP stands for True Positives, TN for True
Negatives, FP for False Positives, and FN for False Negatives.
A larger AUC is indicative of the superior predictive capabil-
ity of the model. Notably, an AUC value below 0.5 signifies a
performance inferior to random classification, rendering the
model devoid of practical merit.

The ACC delineates the proportion of correctly classi-
fied samples to the total number of samples. It remains a
commonly utilized metric in classification tasks. However,
it’s crucial to note that, for datasets characterized by a pro-
nounced class imbalance, the accuracy might not reflect a
genuine representation of the model’s efficacy. In such sce-
narios, accuracy can be misleadingly high. The formulation
for ACC is presented as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(17)

The KS statistic serves as a valuable metric for assessing
model discrimination and is frequently deployed in the realm
of financial risk control. Analogous to the ROC curve, the
KS curve plots both TPR and FPR on the y-axis, with the
selected threshold forming the x-axis. The formulation for the
KS statistic is articulated as follows:

KS = max (TPR− FPR) (18)

A larger KS value signifies a heightened discriminatory
capacity of the predictive model. Notably, when the KS value
exceeds 0.4, it is indicative of the model possessing robust
discriminative prowess.

The G-Mean stands as an aggregate evaluation method
constructed from sensitivity and specificity. It is commonly
employed as an analytical metric for classification problems
dealing with imbalanced datasets. The G-Mean is computed
as given in Equation (19), with sensitivity and specificity
defined respectively in Equations (16) and (20).

G− mean =
√
Sensitivity∗Specificity (19)

Specificity = TNR =
TN

TN + FP
(20)

D. BASELINES
For performance assessment, FI-CL was juxtaposed with
a spectrum of baseline methodologies: standalone machine
learning approaches (LR [2], SVM [3], DT [4]), ensemble
algorithms (RF [5], GBDT [6], XGB [7]), and advanced deep
learningmodels (MLP [11] and FiBiNET [19]). This compre-
hensive comparison serves to underscore the robustness and
efficacy of FI-CL.

LR [2]: LR stands as one of the most ubiquitously
employed linear models in industrial applications. Serving
as a supervised learning algorithm, it predicts continuous
variables by fitting an optimal linear relation. Though facile
in its comprehension and operationalization, LR’s inherent
limitation lies in its inability to capture intricate nonlinear
relationships.

SVM [3]: SVM prioritizes maximizing the classification
margin by identifying the optimal boundary (specifically,

the maximal margin hyperplane) between two classes. SVM
is adept at managing nonlinearities and high-dimensional
spaces, yet its sensitivity to large datasets and parameter
tuning is evident.

DT [4]: DT derives target values via a succession of
feature-based queries. DT conveniently elucidates feature
relationships and decision pathways. However, its propensity
for overfitting and sensitivity to noise remain drawbacks.

RF [5]: Random Forests (RF) typify an ensemble learning
methodology, comprising multiple decision trees. Aggregat-
ing predictions from individual trees—either by voting or
averaging—RF enhances predictive precision and robustness.
Notably, its overfitting tendency surfaces in instances with
significant noise.

GBDT [6]: Gradient Boosted Decision Trees (GBDT)
represent an ensemble approach where decision trees are
incrementally added and adjusted to minimize a given loss
function, optimizing model performance. Their adeptness
with imbalanced datasets is noteworthy. Yet, they demand
extensive training durations, a potential overfitting issue, and
meticulous parameter tuning.

XGB [7]: XGB embodies an optimized gradient boosting
algorithm, architected for amplified speed and performance.
Its inclusion of regularization terms mitigates overfitting,
rendering the model more robust. Nevertheless, compared to
other ensemble techniques, it requires a more intricate tuning
process.

MLP [11]: MLP signifies a feed-forward artificial neural
network, consisting of three or more layers: an input layer,
one or several hidden layers, and an output layer. It’s adept at
discerning intricate nonlinear relationships, though its train-
ing might be time-intensive.

FiBiNET [19]: FiBiNET integrates and blends factorized
networks, merging linear regression and factor decomposi-
tion models at the feature interaction level. This versatile
model adeptly captures intricate inter-feature interactions,
albeit at the cost of increased computational intricacy.

V. EXPERIMENTAL FINDINGS AND DISCUSSION
In this section, we embarked on a comprehensive series of
experiments to address the following research questions:

RQ1: How does the performance of our model compare to
existing classic methods for credit default prediction?

RQ2: Which component is most pivotal in the FI-CL
method?

RQ3: How do various parameter configurations within the
FI-CL method influence the predictive performance of the
model?

RQ4: How to validate the robustness of the FI-CLmethod?

A. COMPARISON OF EXPERIMENTAL RESULTS (RQ1)
In Table 3, we delineate the evaluation outcomes for all base-
line methods across two datasets, employing metrics such as
AUC, ACC, KS, and G-mean.

By comparing the performance of Dataset A and
Dataset B in Table 3, we noticed that Dataset B generally
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TABLE 3. Overall performance comparison. The best results among all methods are highlighted in bold, with the optimal values from the comparative
models underlined. The column is denoted as %Improv. illustrates the percentage improvement of our proposed AFCC method over the best-performing
benchmark model Higher values of AUC, ACC, KS, and G-mean denote superior predictive performance of the model.

demonstrates higher predictive performance. This difference
can be attributed to the divergences in the collection scope
and environment of the two datasets. Firstly, we observed
that Dataset B comprises a larger number of original features,
totaling 145 compared to the 47 found in Dataset A. This
not only avails a more comprehensive set of information
for guiding feature selection but also enables a finer-grained
analysis, potentially resulting in the inclusion of more useful
features in the final model. Secondly, the BANI (Brittle,
Anxious, Nonlinear, and Incomprehensible) environmental
factors might have affected the data collection and feature
selection process. In this scenario, the more comprehensive
set of features in Dataset Bmay allow it to bemore adaptive to
the influences of the BANI environment, thereby improving
its predictive performance.

Drawing insights from Table 3, it becomes manifest that
our proposed method outperforms linear base models such
as LR and SVM. Specifically, on Dataset A, we observed
AUC enhancements of 12.64% and 5.07% respectively when
compared with LR and SVM. In contrast, for Dataset B, these
augmentations were even more pronounced, registering at
44.11% and 26.32% respectively. Such findings underscore
the imperative nature of bolstering a model’s capacity for
nonlinear modeling. This is particularly salient for datasets
with marked imbalances, akin to Dataset B, where reliance
solely on linear classifiers results in suboptimal predictive
outcomes.

Relative to the decision tree-based methods—namely DT,
RF, GBDT, and XGB—our approach exhibits distinct advan-
tages. When juxtaposed with the solitary decision tree
method, DT, we register AUC elevations of 4.71% and
17.25% across the two datasets. In contrast, against the
ensemble learning techniques, which utilizemultiple decision
trees—RF, GBDT, and XGB—our method manifests AUC
enhancements ranging from 2.21% to 4.09% and from 1.18%
to 4.83% on the datasets, respectively. These observations
elucidate the efficacy of our methodology in discerning latent
feature combinations, adaptively learning both low and high-
order weights, and thereby refining representation quality.

When benchmarked against the deep learning models,
specifically MLP and FiBiNet, our approach evidences

a palpable enhancement in AUC by margins of 2.54%-
2.55% and 2.1%-9.29%, respectively. Such results affirm the
contention that the integration of high-order feature weight
learning coupled with contrastive learning indeed augments
the predictive prowess of the model.

In summation, the empirical outcomes of our proposed
approach consistently outshine those of the referenced clas-
sical methodologies. When set against the most efficacious
among these eight canonical methods, FI-CL demonstrates
improvements on Dataset A in AUC, ACC, KS, and G-mean
by 2.21%, 0.45%, 1.2%, and 3.45% respectively, thereby
underscoring the merits of factoring in feature combinations
and data augmentation to bolster model predictive capacity.
For Dataset B, there’s an uptick in AUC, KS, and G-mean by
1.18%, 6.97%, and 2.97% respectively. However, it is worth
noting the underwhelming ACC metric performance in this
dataset. This diminished performance can be attributed to the
pronounced data imbalance inherent in Dataset B. The data
sampling employed a rudimentary SMOTE oversampling
technique without crafting a sampling strategy tailored to the
dataset’s unique features, culminating in a vacillating ACC
metric performance.

B. ABLATION EXPERIMENTS (RQ2)
To rigorously gauge the salient contributions of the attention
network, DNN, and CL, we executed a series of ablation stud-
ies. Specifically, we delineated six distinct configurations:

• w/o Att-dnn-cl: A scenario wherein the attention net-
work, DNN, and CL are concurrently abrogated, relegat-
ing the model to rely solely on the second-order feature
interactions for predictions.

• w/o Att-cl: The model is divested of the attention mech-
anism and CL, leaving it to discern both low and
high-order combinatory scores.

• w/o dnn-cl: With the DNN and CL omitted, the model
introduces the attention mechanism to the second-order
interactions.

• w/o cl: Eliminating only the CL component, the model
incorporates both the attention network and DNN over
the second-order interactions.
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TABLE 4. Ablation analysis. The best results are shown in bold.

• w/o den-cl: In this variant, we forsake the dense vector
treatment, compelling the holistic model to utilize the
low-order linear interactions for CL.

• w/o spar-cl: By eschewing the sparse vector processing,
the model in its entirety hinges on high-order nonlinear
interactions for CL.

The detailed outcomes of these ablation experiments are
presented in Table 4.

Insights gleaned from Table 4 underscore a conspicu-
ous performance deterioration when CL is expunged. This
is attributable to the presence of model noise, attenuated
supervisory signals, and sub-optimal feature representa-
tion quality. Further, the omission of either the DNN or
attention mechanism culminates in a decline in model effi-
cacy. This accentuates the prowess of DNN in discerning
deep-rooted high-order feature interplay, while the attention
mechanism adeptly mines salient low and high-order fea-
ture weights. Abrogating either the sparse or dense vector
segments precipitates performance reduction, suggesting that
a comprehensive consideration of all feature vectors in CL
outperforms partial vector contemplation. Moreover, leverag-
ing high-order nonlinear interactions for CL holds a marked
advantage over the employment of low-order linear interac-
tions. In summation, each facet of our proposed methodology
is paramount. Stripping any singular component invariably
results in diminished performance.

C. HYPERPARAMETRIC ANALYSIS (RQ3)
To enhance the reliability of the results obtained from the
FI-CL method, this section thoroughly analyzes the hyper-
parameters involved, including: (1) the number of hidden
neurons in the attention network denoted by att-layer, (2) the
dropout parameter within the DNN, (3) the noise addition
parameter ε in the CL model, (4) the temperature hyper-
parameter τ within the InfoNCE loss function, and (5) the
loss weight λ in multitask training. Experimental outcomes
are employed to individually demonstrate the influence of
these parameters on themodel, with detailed analysis for each
parameter as follows.

1) THE IMPACT OF THE NUMBER OF HIDDEN LAYER
NEURONS (ATT-LAYER) IN THE ATTENTION NETWORK
ON THE MODEL
In attention networks, fewer neurons in the hidden layermight
limit the model’s expressive capacity, preventing it from

FIGURE 2. Effect of att-layer in attention network on FI-CL.

capturing complex features and relationships. Conversely,
having too many neurons can increase the model’s capacity
but might also lead to overfitting. An appropriate number of
neurons in the hidden layer can help the model learn richer
feature representations during training, enhancing its fitting
and generalization capabilities. To investigate the impact of
att-layer on the model, we adjusted the value of att-layer
from {2, 4, 8, 16, 32}. For a fair comparison, other settings
were kept constant. Figure 2 displays the effects of differ-
ent att-layer values on the AUC of the FI-CL method on
Dataset A and Dataset B.

As shown in Figure 2, for Dataset A, the AUC perfor-
mance of FI-CL is optimal when the att-layer in the attention
network is set to 4. The reason behind this is that the
training features for this dataset are limited, making the atten-
tion network’s neuron parameters less sensitive to changes.
A smaller att-layer value is already sufficient. For Dataset
B, the best AUC performance of FI-CL occurs when the
att-layer is set to 8. This is because this dataset has more
training features. Although the dataset is smaller in size,
the interaction between features is more complex. Increas-
ing the dimensionality of the attention vector can better
capture the intricate relationships between features, leading
to improved performance. However, continuously increasing
this value would result in increased model complexity and
computational resource demands.

2) THE INFLUENCE OF DROPOUT PARAMETERS IN DNN ON
THE MODEL
Using dropout in DNN can effectively enhance the model’s
generalization capability, robustness, and learning capacity.
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TABLE 5. Effect of noise parameter ε on the performance of FI-CL method. The best results are shown in bold.

By discarding a portion of the hidden nodes from the net-
work, it can reduce the complexity of the neural network,
effectively suppressing the overfitting phenomenon, and alle-
viating the impact of gradient vanishing, thereby improving
the performance of the model. To investigate the influence
of the dropout parameter on the model, we adjusted its value
from {0.01, 0.5, 1}. For a fair comparison, all other settings
were kept constant. Figure 3 displays the effects of different
dropout values on the performance of the FI-CL method on
Dataset A and Dataset B.

From the results in Figure 3, it can be observed that the
model performs best on both datasets when the value of
dropout is set at 0.5. With a dropout value of 0.01, it implies
that each neuron has a very low probability (1%) of being
discarded. As a result, most neurons are retained, leading
the model’s learning to be non-specific and causing poor
performance. When the dropout value is set to 1, it signifies
that all neurons are discarded during training, rendering the
network incapable of learning any effective features. This
lack of learning ability consequently results in extremely poor
model performance.

FIGURE 3. The influence of dropout parameters on the model in DNN.

3) THE EFFECT OF ADDING THE NOISE PARAMETER ε IN CL
TO THE MODEL
To investigate the optimal value of randomly adding noise in
CL, ε was adjusted from the set {0, 0.05, 0.1, 0.15, 0.2}. For a
fair comparison, all other configurations were kept constant.
Table 5 displays the impact of ε on the performance of the
FI-CL method on Dataset A and Dataset B.

In Table 5, the model achieves optimal performance on
Dataset A and Dataset B when selecting 0.15 and 0.1, respec-
tively. Upon examination, when ε is set to 0, meaning no
noise is added, there is a noticeable decline in performance.
The model’s performance also deteriorates when the noise is
too minimal (ε = 0.05) or excessively high (ε = 0.2). This
confirms that introducing an appropriate amount of noise

can even out the data distribution, which is conducive to
enhancing model performance.

4) INFLUENCE OF HYPERPARAMETER TEMPERATURE τ ON
THE MODEL IN INFONCE LOSS FUNCTION
To further investigate the hyperparameter temperature τ in
the InfoNCE loss function (as in Equation 11) of this chapter,
we adjusted τ from the set {0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4}. For a fair comparison, all other configurations were kept
constant. Figure 4 illustrates the effects of τ on the AUC of
the FI-CL method on Dataset A and Dataset B.

FIGURE 4. The effect of hyperparameter temperature τ on FI-CL.

In the InfoNCE loss function, the value of the temperature
parameter τ influences the training process of the model by
adjusting the output distribution of the activation function.
Figure 4(a) indicates that in Dataset A, the model performs
best when the temperature is set to 0.2. This suggests that for
Dataset A, a temperature parameter of 0.2 can sharpen the dis-
tribution of the activation function’s output, making it easier
for the model to differentiate between similar sample pairs
and dissimilar ones. Figure 4(b) shows that for Dataset B,
the overall model performance peaks when the temperature
is 0.4. This implies that during the oversampling process for
Dataset B, a substantial imbalance ratio introduced a consid-
erable amount of noise. A temperature parameter of 0.4 can
mitigate the influence of noise and uncertainties on themodel,
enhancing its robustness.

5) EFFECT OF LOSS WEIGHT ON THE MODEL IN MULTI-TASK
TRAINING
In a bid to fathom the repercussions of the loss of weight
in multi-task training (denoted as λ in Equation 12) on
the FI-CL modus operandi, we varied λ across a spectrum
of values: {1, 0.1, 0.01, 0.001, 0.0001, 0}. Ensuring rigor-
ous experimental consistency, all auxiliary parameters were
anchored. Figure 5 provides a nuanced depiction of how these

VOLUME 11, 2023 111953



L. Zhang et al.: Incorporating Feature Interactions and Contrastive Learning for Credit Prediction

FIGURE 5. The effect of weight parameter λ on FI-CL.

FIGURE 6. The effect of hyperparameter temperature τ on FI-CL.

λ variations influence the AUC of the FI-CL method across
the dichotomy of Dataset A and Dataset B.

During multi-task training endeavors, striking a harmo-
nious balance between disparate task outcomes is pivotal to
obviate the overshadowing of the FI module’s efficacy by the
CLmodule’s performance. As elucidated in Figure 5, an opti-
mum performance nexus is achieved across both datasets
when λ is configured at 0.01. This observation accentuates
the notion that in the FI-CL framework, an excessively domi-
nant or diminutive weight assigned to the contrastive module
can deleteriously impinge on the model’s over-arching pre-
dictive prowess.

D. PLACEBO TEST EXPERIMENT (RQ4)
To further understand the robustness and performance sta-
bility of the FI-CL model when faced with false data,
we conducted a placebo test experiment using the test set
of Dataset A. Specifically, we generated 10%, 30%, 50%,
and 80% false test data for three features in the test dataset:
‘‘annualIncome’’(Annual income), ‘‘dti’’ (debt-to-income
ratio), and ‘‘close_Acc’’ (the total amount of remaining credit
in the borrower’s credit profile). We mixed the real test data
with the generated false test data and conducted multiple
experiments on datasets with different proportions of false
data. To ensure a fair comparison, other settings were kept
unchanged. Figure 6 shows the impact of different propor-
tions of false data on the performance of the FI-CL model on
Dataset A.

From the results of the placebo test experiment in Figure 6,
it can be observed that the performance indicators of the

FI-CL model on Dataset A vary only slightly across different
false data proportions. Specifically, when the proportion of
false data is 10%, the model’s performance is very close
to its performance without any false data. This indicates
that the model exhibits some robustness against minor false
information, effectively handling the influence of noisy data.
This is of significance for real-world applicationswhere small
amounts of false information might exist. As the false data
proportion gradually increases to 30% and 50%, the model’s
performance does experience a slight drop, but the difference
is not substantial. This suggests that the model can, to a
certain extent, handle moderate levels of false information
and still maintain a relatively stable performance level. Even
when the proportion of false data reaches as high as 80%,
the performance degradation of the model remains relatively
limited. Although there’s a decline in performance, the model
still retains a degree of predictive capability. In summary,
the FI-CL model demonstrates a relatively stable perfor-
mance across varying false data proportions, showcasing its
robustness.

VI. CONCLUSION
We propose a credit prediction method that integrates feature
interaction and contrastive learning. By introducingDNN and
attentionmechanisms, we aim to improve the issue of neglect-
ing feature importance during second-order interactions and
the non-linear combination problem of deep high-order fea-
tures. In terms of feature representation learning, contrastive
learning is used to enhance the quality and generalization
of feature representations. Comparative experiments with
other classical methods demonstrate that the FI-CL method
improves AUC performance by 1-3%, KS by 1-7%, and
G-mean by 2-4%. This confirms that our model can improve
credit prediction performance.

In this study, we employed simple SMOTE sampling,
resulting in unstable ACC performance of the model. In the
future, we plan to consider improving various sampling tech-
niques and establish the optimal sampling method for the best
results across different threshold ranges of imbalance ratios.
Additionally, this paper only explores the impact of DNN
on credit default predictions. Moving forward, we can sub-
stitute DNN with a residual network to effectively construct
deeper neural networks leveraging the unique propagation
characteristics of residual networks. Lastly, to delve deeper
into determining the influence of the BANI environment on
the model, we contemplate incorporating a more extensive
set of macroeconomic indicators, such as inflation rates,
and examining time-related factors (for instance, economic
cycles, seasonal variations, etc.) to analyze their effects on
loan predictions.
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