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ABSTRACT Aiming at the problems of small target and low recognition accuracy of high-speed railway
contact network hanging chord defects, this paper proposes a target detection algorithm for hanging chord
defects based on YOLOv5. To enhance the original YOLOv5 algorithm, the MobielNetv3 module was
used as the efficient and lightweight backbone feature extraction network. Depth-separable convolution
was adopted instead of standard convolution, reducing the number of network parameters by 2 × 106 and
increasing detection speed by 23%. Introducing BiFPN feature pyramid structure with fusion of different
feature layers in neck network improves detection accuracy by 0.4%. Adding CBAM attention mechanism at
the prediction end improves the feature extraction ability of the model for small target images, which further
improves the detection accuracy by 0.5%. The loss function CIoU was improved to Focal EIoU in order to
solve the problems of unbalanced sample datasets and vanishing IoU gradients during the training process.
The experimental results exhibit that the improved algorithm achieves an average accuracy of 98.5% on the
dataset, a 39% enchancment in model detection speed and a 28% reduction in model parameters, verifying
that the algorithm has the advantages of high recognition accuracy and fast detection speed. It can effectively
solve the technical difficulties in the detection of defects in the existing contact network suspension chords,
and provides a new way of thinking for intelligent railway inspection.

INDEX TERMS YOLOv5, lightweight network, image detection, railway, deep learning.

I. INTRODUCTION
In the electrified railway industry, the pantograph chord is
an important part of the high-speed railway contact network
system, mainly serving as a suspension and current-carrying
function [1]. However, during railway operation, the complex
mechanical and electrical interaction between the contact
lines in the electrical traction network and the pantographs on
the railway vehicles inevitably leads to potential and difficult
to detect defects such as loose strands and broken strands in
the suspension strings, thus posing a threat to the safety of
high-speed railways [2], [30]. In the past, manual inspections
were inefficient and time-consuming, while traditional image
processing methods were based on matching templates [3],
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which were not robust enough to meet the inspection require-
ments due to the varying images captured. It is therefore
particularly important to propose an intelligent and efficient
algorithm for the detection of hanging string defects.

In recent years, domestic and international research insti-
tutes and enterprises have achieved fruitful results in railway
contact network inspection [33]. Currently, target detection
algorithms based on hanging thread defects can be divided
into two main categories. One class is based on traditional
image processing and machine learning algorithms, which
can be specifically divided into feature matching methods
and statistical pattern methods. The other category is based
on deep learning algorithms, and the core idea is to automat-
ically extract and represent the features of the data through
a multi-level neural network model. Compared to traditional
algorithms, it is more adaptable and flexible to the needs
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of different tasks and less susceptible to interference from
environmental factors, enabling continuous training and con-
venient parameter adjustment. Representative network mod-
els include target detection algorithms such as SSD, YOLO,
SPP-Net and Faster R-CNN [4], [5], [6]. Han et al. [7]
proposed a target detection method based on an improved
CNN model, which achieved component identification for
16 types of substation equipment based on the difference of
regional RTDs in the equipment. Zhang et al. [8] improved
the detection accuracy of insulators in the image based on
the proportion of the faulty area on the insulator string to the
whole image and by introducing the feature pyramid network
into the YOLOv3 model. Lei et al. [9] proposed a deep
convolutional neural network approach based on the Faster
R-CNN algorithm to locate bird nests, which achieved intel-
ligent fault detection on high-voltage lines. Wang et al. [10]
accomplished the task of diagnosing the location of defects
in transmission line images by comparing different models of
VGG16, VGG19, ResNet50 and ResNet101 with multi-scale
training and horizontal mirroring of training samples.

Although some good results have been achieved with the
above methods, the large size of the models, the high number
ofmodel parameters and the slow speed ofmodel detection do
not meet the needs of actual field workers very well. In order
to solve the above problems, this paper proposes a method
to improve YOLOv5s for the detection of contact network
suspension string defects, the innovation points of the method
mainly include:
(1) Replacement of the YOLOv5 backbone network with

the MobileNetv3 network to reduce the parameters of
the network and increase the speed of detection.

(2) The introduction of BiFPN feature pyramid networks in
the neck section to achieve bi-directional fusion of top-
down and bottom-up deep and shallow feature maps,
fusing more features through the flow of feature infor-
mation from the same layer without incurring excessive
computational costs.

(3) The addition of the CBAM attention mechanism on
the prediction side allows the model to focus more
on important feature information and suppress minor
feature information.

(4) Replacing the CIoU border regression loss function
with Focal-EIou, which not only solves the problem of
sample imbalance but also speeds up convergence.

II. YOLOv5 ALGORITHM PRINCIPLE
The network structure of YOLOv5s [11], [12] algorithm is
shown in Figure 1, which consists of four main components:
input, backbone, neck and prediction.

(1) Inputs: The YOLOv5s algorithm uses mosaic data
enhancement operations on the input images to enrich
the background for target detection. It also uses adap-
tive anchor frame calculation with adaptive image
scaling to reduce computational complexity during
training.

(2) Backbone network: The backbone feature extraction
network uses CSPDarknet53 for the initial extraction
of feature images. Three feature maps of sizes (80, 80,
256), (40, 40, 512), and (20, 20, 1024) can be obtained
for later classification and regression prediction. The
Focus slicing operation is introduced to take a value
every other pixel before the image enters the backbone,
stacking the four independent feature layers obtained,
at which point the information in the width dimension
is converted to the channel dimension and the input
channel is expanded by four times, and then the feature
extraction is carried out, which can effectively reduce
the calculation of parameters and memory usage.

(3) Neck network: The FPN+PAN structure is used as a
feature fusion network in the neck, which improves
detection accuracy by carrying information about target
features of different sizes.

(4) Prediction side: GIoU [13] was chosen as the bounding
box loss function on the prediction side, andNMSmax-
imum value suppression was used to solve the problem
of redundant generated boxes.

FIGURE 1. The original YOLOv5 network structure.

III. IMPROVEMENT OF THE YOLOv5 NETWORK
ARCHITECTURE DESIGN
A. IMPROVEMENTS OF THE BACKBONE NETWORK
MobileNet network is a lightweight CNN proposed by
Google in 2017, whose main contribution is to replace ordi-
nary convolution with depth-separable convolution, which
significantly reduces the model parameters while ensuring
accuracy [14], [32]. Depth-separable convolution requires
separate convolution of each channel with different convolu-
tion kernels, and then upscaling and downscaling by point-
by-point convolution to obtain the corresponding feature
maps. The difference between depth-separable convolution
and standard convolution is shown in Figure 2.
Assume that the input image resolution is of size DK ×

DK × DK , and that the output feature size remains the same
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FIGURE 2. Comparision between conventional convolution and depth separable convolution.

after passing through a convolution kernel of size DF × DF
with a step size of 1 and a number of channels N. Then
the ratio of computational effort between the depth-separable
convolution and the standard convolution is
DK × DK ×M × DF +M × N × DF × DF

DK × DK ×M × N × DF × DF
=

1
N

+
1

D2
K

(1)

When the convolution kernel size DF is 3, it is known that
the depth-separable computation is reduced to approximately
1
8 −

1
9 of the original standard convolution, which can greatly

reduce the computational cost of the model and improve the
detection speed.

In order to solve the problem of convolutional kernel
failure in the deep convolutional part of the network model
that tends to occur during training, the MobileNetv2 net-
work [15] introduces an inverse residual structure based on
MobileNetv1, as shown in Figure 3.
The feature map is first up-dimensioned by 1×1 point-by-

point convolution, then extracted by 3 × 3 deep convolution,
and finally down-dimensioned by 1 × 1 point-by-point con-
volution, presenting a structure with a large middle and small
ends. And in the bottleneck layer, the linear activation func-
tion ReLU6 is used instead of the traditional ReLU function.
This provides greater robustness while avoiding the loss of
feature information.

The biggest highlight of MobileNetv3 is the inclusion of
the SE module, which consists of two parts, Squeeze and
Excitation [16], [17], as shown in Figure 4. This module
performs global average pooling on the input feature maps to
obtain the output vectors. In this process, two fully connected
layers are set up to reduce the number of channels and lower
the number of parameters by setting different numbers of
neurons.

The SE module can assign a weighting relationship to each
input channel according to its importance, so that it focuses
more on the key information in the image while ignoring
irrelevant information.

FIGURE 3. Residual structure and Inverse Residual structure.

FIGURE 4. Structure of the SE module.

YOLOv5 is a regression-based single-stage target detec-
tion algorithm that can classify targets while detecting
them [28], [29]. This paper describes the replacement of
the YOLOv5 network’s original CSPDarknet53 network
with MobileNetv3 structure. The replacement leads to a
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FIGURE 5. FPN, FAN and BiFPN network structure.

FIGURE 6. Structure diagram of CBAM attention module.

23% improvement in the model’s computation rate and a
0.7% increase in detection accuracy, due to the efficient
feature extraction technique and low parameter count of
MobileNetv3.

B. IMPROVEMENTS OF THE NECK NETWORK
The input images need to be processed by the neck network
after feature extraction by the YOLOv5s backbone network
and input to the prediction side, while the original YOLOv5s
feature fusion uses the FPN+PAN network structure as the
neck network [18], as shown in Figure 5(a), (b). The PANet
network structure [19] is a bottom-up fusion mechanism that
can convey feature maps with strong localization feature
information at the bottom, but relatively weak semantic fea-
ture information; the FPN network structure is a top-down
fusion mechanism that can convey structure maps with strong
semantic feature information at the top, but weak localiza-
tion feature information. Although the original neck network

can achieve the fusion of localisation feature information
and semantic feature information through bidirectional fea-
ture fusion, the two parts use a direct summation opera-
tion, which may lead to important feature information being
ignored.

To solve the above problems, this algorithm adds the more
powerful BiFPN [20] module to the neck part of YOLOv5
to improve the accuracy, robustness and computational effi-
ciency of target detection, making the model more powerful
and efficient. As shown in Figure 5(c), the main improvement
points compared to the traditional PANet network structure
are the following three aspects:
(1) To simplify the network structure, BiFPN removes

intermediate nodes with only one input edge from the
original characteristic pyramid network.

(2) To fuse more feature information without incurring
more computational cost, BiFPN adds a feature fusion
path between input and output nodes at the same level.
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(3) The BiFPN structure adds extra weight to each input
feature map, allowing the network to gradually learn
the importance of each input feature during the training
process, and to achieve a fusion of higher-level features
by stacking them multiple times.

C. IMPROVEMENTS OF THE PREDICTION HEAD
In order to refine the feature maps extracted by the model and
improve the classification effect of the model, the algorithm
in this paper introduces the CBAM attention module in the
prediction head network [21]. The model’s detection accu-
racy improved by 0.5% by weighting different parts of the
input data and multiplying them with corresponding feature
maps.

The CBAM attention module is shown in Figure 6, which
mainly includes the channel attention module and the spa-
tial attention module. First, the input feature image is fed
into the channel attention module, and the n-dimensional
feature vector is obtained after the maximum pooling and
average pooling operations, and then the weight coeffi-
cients are obtained after processing by the fully connected
layer and sigmoid function. Then, the results obtained in
the previous step are fed into the spatial attention mod-
ule, and after the same operation, the obtained vectors are
stacked by connection. Finally, the spatial attention Ms is
generated by the output of the convolution and sigmoid
operation.

The CBAM attention module process equation is{
F ′

= Mc(F) ⊗ F
F ′′

= MS (F ′) ⊗ F ′
(2)

D. IMPROVEMENTS OF THE LOSS FUNCTION
YOLOv5 uses CIoU Loss (Complete Intersection over Union
Loss) as the loss function, although it takes into account
the overlap area, centroid distance, and width-height of the
bounding box regression. However, the ν in its formula indi-
cates the difference in width and height, rather than the true
difference between width and height respectively and the
confidence level, which may lead to slow convergence and
inaccurate regression. To address this problem, this paper
improves the CIoU loss by introducing the Focal EIoU loss
as a loss function [31], which not only solves the sample
imbalance problem in the bounding box regression task, but
also makes the newly generated loss function capable of
obtaining more accurate prediction frames and more precise
target detection results. As a result of this, there was a 1.3%
increase in accuracy. The formula for CIoU Loss is shown
in (3): where ωgt, hgt , bgt , ω, h and b present the width, height
and centre point of the real frame and the predicted frame
respectively;ωc, hc epresents the width, height and Euclidean
distance of the smallest outer rectangle, ρ represents b
and bgt .

LCIoU = 1 − IoU +
ρ2(b, bgt )

(ωc)2 + (hc)2
+ αν (3)

where

α =
ν

(1 − IoU ) + ν
(4)

ν =
4
π2 (arctan θ

ωgt

hgt
− arctan θ

ω

h
)2 (5)

The Focal EIoU loss function is shown in (6), with IoU
representing the cross-merge ratio, LIoU , Lasp and Ldis repre-
senting the IoU loss, the width-height loss and the distance
loss respectively, and γ being a hyperparameter controlling
the arc of the curve.

LFocalEIoU = IoUγ LEIoU (6)

where

LEIoU = LIoU + Ldis + Lasp

= 1 − IoU +
ρ2(b, bgt )
(ωc)2

+
ρ2(ω, ωgt )

(wc)2
+

ρ2(h, hgt )
(hc)2

(7)

E. OVERALL IMPROVEMENT IDEAS
The improved YOLOv5 network structure is shown in
Figure 7, and the overall improvement steps are as follows:

a) The lightweight MobileNetv3 network structure model
is used as the backbone feature extraction network,
and the standard convolution in the network model is
replaced with a depth-separable convolution, and the
SE attention mechanism is introduced on the basis of
the inverse residual structure, so that its feature extrac-
tion capability is further enhanced.

b) By introducing the BiFPN module in the Neck part
instead of the original FPN and PAN structure, the
model can better capture the target information of dif-
ferent scales during the training process and improve
the detection accuracy. At the same time, the propaga-
tion path of the features can be dynamically adjusted to
improve the robustness of the model.

c) By adding a CBAM module to each of the three
branches on the prediction side of YOLOv5, the impor-
tance of each channel in the feature map can be adap-
tively learned and the detailed features of the target can
be enhanced. And a large performance improvement is
achieved without adding too much extra computational
overhead.

d) Improving the border regression loss function CIoU to
Focal EIoU reduces the width and height difference
between the target and anchor frames, while speeding
up convergence and improving localisation.

IV. EXPERIMENTAL SETTINGS
A. INTRODUCTION TO THE DATASET
The dataset for this paper is derived from field shots taken
by inspection drones(M300RTK) along the railway line, most
of which are samples of normal hanging chords. In order
to increase the diversity of image samples and alleviate the
data imbalance problem, in this paper, the faulty hanging
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FIGURE 7. Improved YOLOv5s network structure.

chord can be augmented by 17 times of the data set through
the data augmentation algorithm by rotating the chord by
90 degrees/180 degrees, flipping it, blurring it, changing the
luminance, increasing the noise, and combining the two by
two with each other, and other operations. The hanging string
categories are divided into three categories: normal, loose
strands and broken strands, and some images of the data set
are shown in Figure 8.

FIGURE 8. Dataset images.

The final hanging string dataset has 2589 images,
1263 normal samples, 639 loose strand samples and

687 broken strand samples. And 60%were randomly selected
as the training set, 20% as the validation set and 20% as the
test set, the specific quantities are shown in Table 1.

TABLE 1. Distribution of the number of dataset categories.

B. EXPERIMENTAL ENVIRONMENT
To have an objective and fair evaluation of the improved
algorithm proposed in this paper, all the experiments were
conducted in the same experimental environment. The exper-
imental environment uses Window10 operating system,
CPU with Inter(R) Core (TM)i5-7500@3.40GHz, GPU with
NVIDIA GeForce RTX 2070, size 8GB. the CUDA version
is 12.0, Pytorch version is 1.9.0, Python version is 3.8.3.

C. EVALUATION INDICATORS
In order to evaluate the target detection effect objectively and
fairly, this paper selects precision rate, recall rate, mAP@0.5,
mAP@0.5:0.95, FPS (Frames Per Second), and number of
parameters as evaluation indexes. Precision and recall were
calculated by confusion matrix Table 2.
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TABLE 2. Confusion matrix.

The precision rate is the proportion of true positive cases
in the sample with positive prediction results, calculated as
in (8) as:

Precision =
TP

TP+ FP
(8)

where TP indicates that the correct category is predicted to
be the correct category and FP indicates that the incorrect
category is predicted to be the correct category. AP is the area
enclosed by the P-R curve and the coordinate axis, which can
reflect the detection effect of the target model. When IOU is
set to 0.5, the expression formula of mAP@0.5 is as follows:

mAP@0.5 =

K∑
i=1

APi

K
(9)

where APi denotes the average precision of target detection
in category i and K denotes the category.

V. ANALYSIS OF EXPERIMENTAL RESULTS
A. ANALYSIS OF ABLATION EXPERIMENT
In order to verify the accuracy and superiority of this algo-
rithm, the YOLOv5 algorithm as well as the algorithm pro-
posed in this paper are compared and verified experimentally
under the same experimental conditions, respectively. The
ablation experiment table is shown in Table 3, where ‘‘✓’’
indicates that the strategy is used and ‘‘✕’’ indicates that the
strategy is not used. The training process are set Batchesize
is 32, the number of iterations is 150 epochs, and the initial
learning rate is 0.0001. The evaluation indexes are P, R,
mAP@0.5, mAP@0.5:0.95, and the comparison graph of
each evaluation index is shown in Figure 9-12.

FIGURE 9. Precision comparision chart.

From the ablation experimental data of each model in
Table 3, it can be seen that the original YOLOv5 model
evaluation metrics P, R, mAP@0.5, and mAP@0.5:0.95 have

FIGURE 10. Recall cmparision chart.

FIGURE 11. mAP@0.5 comparision chart.

FIGURE 12. mAP@0.5:0.95 comparision chart.

values of 97.2%, 88.6%, 93.7%, and 77.5%, respectively,
in the training of the dangling string dataset. Replacing the
model backbone with the MobileNetv3 module resulted in
a reduction in the amount of parameters of the model by
2 × 106, while the values of the evaluation metrics increased
by 0.7%, 1.8%, 1.1%, and 1.3%, respectively. The introduc-
tion of BiFPN feature pyramid in the neck accelerates the
fusion of feature information in the same layer of images.
It makes the evaluation index of mAP0.5:0.95 improve by
2.1% while ensuring the precision rate and recall rate remain
basically unchanged. The addition of the CBAM attention
mechanism on the prediction side significantly improves the
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TABLE 3. Ablation experiment.

FIGURE 13. Comparision between original YOLOv5s and improved YOLOv5s.

model’s ability to extract complex features such as image
details. As a result, the values of the evaluation indicators
increased by 0.5 per cent, 0.7 per cent, 1.8 per cent and
1.2 per cent, respectively. Changing the loss function to Focal
EIoU further improved the quality of the sample dataset,
resulting in an increase in the evaluation metrics by 0.4%,
1.3%, 1.2%, and 3.2%, respectively. The trend analysis of
the data curves before and after the improvement shows that
the accuracy rate of the improved model gradually stabilised
and remained unchanged at the 50th training epoch. From
the recall and mAP@0.5 evaluation metrics, the algorithm
proposed in this paper can be smoothed faster. Therefore, the
accuracy improvement of this paper’s algorithm in detecting
and recognising targets in complex scenes shows that the
improvement of CBAM attention mechanism, BiFPN struc-
ture and MobileNet network reduced-parameter structure is
very effective.

B. COMPARISON OF TEST RESULTS
Figure 13 shows a comparison of some of the detected images
during the experiment. From the observation in Figure 13(b),

it can be seen that the original YOLOv5 suffers from a
serious leakage problem in the multi-target situation, and the
accuracy and number of detections are poorly effective for
small targets as well as complex background environment
interference. Comparing Figures 13(b) and 13(c), it can be
seen that the original YOLOv5 model had two missed tar-
gets, whereas the improved YOLOv5 not only detected the
missed dangling string targets well, but also the accuracy of
each target was greatly improved. The experimental results
show that the improved algorithmic model has stronger anti-
interference and robustness.

C. COMPARISON WITH RELATED METHODS
To further verify the superiority of the detection efficiency
and classification accuracy of the algorithm in this paper,
the algorithm in this paper is compared with the mainstream
target detection algorithms SSD, YOLOv4, YOLOv4-tiny,
YOLOv5s, YOLOX-S, IN-YOLO, LFF-YOLO and AED-
YOLOv5 models in the current stage of experiments [24],
[25], [26], [34]. The same dataset is used in the experiment,
and the same experimental parameters, hardware conditions
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TABLE 4. Comparision of detection performance of different algorithms.

and software environment are set. The experimental results
are shown in Table 4.

Table 4 illustrates that the algorithm proposed in this
study has significantly fewer parameters, only 5.06 × 106,
as compared to the SSD andYOLOv4 algorithms, which have
23.7×106 and 63.9× 106 parameters, respectively. It is note-
worthy that, despite having only half the number of param-
eters, the proposed algorithm outperforms the YOLOX-S
algorithm by enhancing evaluation indexes by 0.8 percent,
2.3 percent, 2.5 percent, and 2.8 percent for different param-
eters. Compared with the current lightweight YOLOv4-tiny
algorithm, the model detection accuracy is improved by 1.4%
with a reduction in the number of parameters. In order to
further illustrate that the model proposed in this paper is
better than other models for detection, it is again compared
with the LFF-YOLO and AED-YOLOv5 algorithms, respec-
tively. The comparison of experimental data reveals that
although the accuracy of our model is only 0.3% lower than
that of the LFF-YOLOmodel, ourmodel has one-i-fifth fewer
parameters. Although the number of parameters of the AED-
YOLOv5 model is almost the same as in this paper, the
evaluation indexes of the algorithm in this paper are higher
than it by 0.3%, 0.5%, 0.4%, 0.5% respectively. Therefore,
combining the accuracy and the number of parameters, the
algorithm in this paper is more suitable to be deployed for the
task of identifying defects in contact network hanging chord
lines.

VI. CONCLUSION
1) Aiming at the current problems of long cycle time, low
efficiency and insufficient robustness and generalisation abil-
ity of traditional image processing in manual inspection,
this proposes a model with YOLOv5 target algorithm model
as the basic framework and MobileNetv3 lightweight mod-
ule fused into the model according to the characteristics of
the over-hanging chord faults, which effectively reduces the
parameters of the model and improves the speed of computa-
tion while guaranteeing the accuracy of the positioning. Also,
by introducing the BiFPN feature pyramid structure in the
neck, adding the CBAM attention mechanism, and changing

the loss function to Focal EIoU at the prediction end, the abil-
ity of extracting feature maps is improved, and the problem of
imbalance between positive and negative samples is solved.
Finally, the superiority of the improved algorithm is verified
on this dataset, and the values of the evaluation indices are all
improved, which can meet the field requirements of detection
accuracy and detection speed.

2) To demonstrate the progress and superiority of the algo-
rithm, and in comparison with current mainstream algorith-
mic models, it is shown that the algorithm has some value
in practical applications. However, there are still some short-
comings in this model, and the next step is to further optimise
the model’s algorithm to improve recognition accuracy, while
further reducing memory consumption and recognition time,
so that it can be better applied to more mobile devices.
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