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ABSTRACT BERT (Bidirectional Encoder Representations fromTransformers) uses an encoder architecture
with an attention mechanism to construct a transformer-based neural network. In this study, we develop a
Chinese word-level BERT to learn contextual language representations and propose a transformer fusion
framework for Chinese sentiment intensity prediction in the valence-arousal dimensions. Experimental
results on the Chinese EmoBank indicate that our transformer-based fusion model outperforms other neural-
network-based, regression-based and lexicon-based methods, reflecting the effectiveness of integrating
semantic representations in different degrees of linguistic granularity. Our proposed transformer fusion
framework is also simple and easy to fine-tune over different downstream tasks.

INDEX TERMS Transformer fusion, Chinese word-level BERT, pre-trained language models, dimensional
sentiment analysis, affective computing.

I. INTRODUCTION
Sentiment analysis involving the use of natural language
processing and computational linguistics to automatically
identify affective information from texts has emerged as a
leading technique for emotional AI applications [1], [2], [3],
[4], [5], [6]. Representation of affective states is an essential
issue in sentiment analysis and can be generally divided into
category-based and dimension-based approaches. Category-
based approaches represent affective states as several prede-
fined discrete classes, such as positive, negative and neutral.
Dimension-based approaches represent affective states as
continuous numerical values, called intensity, in multiple
dimensions to provide more fine-grained emotional informa-
tion [7], [8], [9].

Figure 1 shows the two-dimensional valence-arousal (VA)
space. Valence expresses the degree of pleasant and unpleas-
ant (i.e., positive and negative) feelings, while arousal
expresses the degree of excitement and calmness. Based on
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this representation, any affective expression can be mapped
into the VA coordinate plane as a point by recognizing
their valence-arousal ratings. For example, an affective word
‘‘ ’’ (priceless), with human-annotatedVA ratings 6.2 and
4.8 in the Chinese EmoBank corpus [9], is located in the
low-arousal and high-valence quadrant. A single sentence
‘‘ ’’ (It’s a priceless treasure from
somewhere) contains this affective word as a modifier to
express an object with high value, with respective VA ratings
of 7.5 and 6.5. A multi-word phrase ‘‘ ’’ (extremely
painful) has a degree adverb to modify the affective word
to express a negative-arousal and high-arousal feeling (with
VA ratings of 1.65 and 7.993). The multi-sentence text
‘‘ ’’ (physical and
mental pains that are unbearable and medically incurable)
contains multiple affective words to reflect negative compli-
cated perceptions (valence 2.889 and arousal 4.286).

In general, sentiment intensity prediction methods can be
summarized into four types: lexicon-based [4], [10], [11],
[12], [13], [14], [15], [16], regression-based [17], [18], [19],
[20], [21], [22], neural-network-based [23], [24], [25], [26],
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FIGURE 1. Two-Dimensional valence-arousal space. Based on this
representation, any affective expression can be mapped into the VA
coordinate plane as a point by recognizing their valence-arousal ratings.

[27], [28], [29], [30], [31], [32], [33], and transformer-based
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43]. The
lexicon-based approaches provide baseline results for refer-
ence, while transformer-based models have usually achieved
promising results in the valence-arousal dimensions [9].
Recently, BERT-like neural networks have provided state-of-
the-art results in a wide variety of natural language processing
tasks. BERT (Bidirectional Encoder Representations from
Transformers) [44] uses an encoder architecture with an
attention mechanism to construct a transformer-based neural
network consisting of twomain steps: 1) pre-training inwhich
model is trained on unlabeled data over different pre-training
tasks; and 2) fine-tuning where the BERT model is first ini-
tialized with the pre-trained parameters and then fine-tuned
using data from the downstream tasks. Following the pre-
training/fine-tuning fashions, several pre-trained language
models (PLM) have been publicly released for parameter
fine-tuning over different downstream tasks [45].

However, existing Chinese PLMs were mainly trained
on character-based sequences due to two main limitations.
The first limitation is the need for word segmentation
preprocessing due to a lack of delimiters between Chi-
nese characters, and incorrectly segmenting word bound-
aries will cause error propagation, affecting the language
representation in different contexts [46]. Nevertheless,
word semantics can be exploited to enrich the char-
acter representation of Chinese PLM [47]. Taking the
sentence ‘‘ ’’ (I am
very touched every time when I read articles related
to the Van Gogh brothers) from the Chinese EmoBank
corpus [9] as an example, this sentence can be cor-
rectly segmented as (every)‘‘ (time) (read) (Van
Gogh) (brothers) (related) (pronounced as De)

(articles) (then) (very) (touched)’’. After word
segmentation [48], we can find the affective word ‘‘ ’’
(touched) is modified by a degree adverb ‘‘ ’’ (very) to

express a positive-valence and high-arousal feelings. This is a
helpful clue to predict the sentiment intensity of this sentence
with VA ratings of 7.0 and 6.75. The second limitation is the
need for huge pre-training data sets. Because Chinese words
usually contain multiple characters, more data is needed to
sufficiently reflect contexts for training a word-level Chi-
nese PLM. For example, the above-mentioned sentence has
17 tokens in terms of characters, but only 11 tokens in terms
of words. This shows the need for greater amounts of data
to train a word-level Chinese PLM as opposed to character-
level.

Recently, fusion-based methods have been used for cat-
egorical sentiment analysis [49], [50], [51] to classify
sentiments as predefined discrete classes on multimedia or
multimodal targets. To our best knowledge, there is no
transformer-based fusion model for dimensional sentiment
analysis to identify the intensity in continuous numerical
values, especially for Chinese texts. We are thus motivated
to develop a Chinese word-level BERT to address the above
limitations for latent language representations and propose a
transformer fusion framework based on different linguistic
granularities for Chinese sentiment intensity prediction in
the valence-arousal dimensions. The main contributions are
summarized as follows:

(1) We develop a Chinese word-level BERT for contextual
language representation.

We use the NCTU word segmentation tool [48] to process
collected text corpora, with a total of 2.8 billion words.
We pre-train a Chinese word-level BERT model () [44] over
the same Masked Language Model (MLM) task based on
a dynamic masking strategy [52]. We plan to release our
word-level BERT as a pre-trained language model for further
research.

(2) We explore transformer fusion methods for Chinese
sentiment intensity prediction.

We propose a transformer fusion framework to integrate
word-level and character-level transformers for Chinese sen-
timent intensity prediction in the valence-arousal dimensions.
Chinese Valence-Arousal Sentences (CVAS) and Chinese
Valence-Arousal Texts (CVAT) from the Chinese EmoBank
corpus [9] were used to evaluate performance. In experi-
ments, our proposed fusionmodel outperformed other neural-
network-based, regression-based, and lexicon-based models,
confirming the effectiveness of our transformer fusion frame-
work.

The rest of this paper is organized as follows. Section II
describes related studies for dimensional sentiment inten-
sity prediction. Section III introduces details of our trans-
former fusion model for valence-arousal rating prediction.
Section IV presents the experimental results and evaluation
analysis. Conclusions are finally drawn in Section V.

II. RELATED WORK
This section describes the existing methods for sentiment
intensity prediction, including lexicon-based [4], [10], [11],
[12], [13], [14], [15], [16], regression-based [17], [18], [19],
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[20], [21], [22], neural-network-based [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33] and transformer-based
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [49],
[50], [51] approaches.

A. LEXICON-BASED METHODS
A number of one-dimensional sentiment lexicons provide
word-level sentiment intensity, including SentiWordNet [10],
SO-CAL [11], SentiStrength [12], and VADER [13]. Affec-
tive Norms of English Words (ANEW) [14], [16] and
Extended ANEW [15] are three-dimensional lexicons which
provide real-valued scores for the valence, arousal and
dominance dimensions. Lexicon-based methods typically
determine the sentiment intensity of a given text by aver-
aging the sentiment scores of words matched in the lexicon
[4]. These approaches are simple and easy to implement,
but do not capture real sentiment expressions due to com-
plex linguistic usages in the texts. For example, two phrases
‘‘ ’’ (totally not agree) and ‘‘ ’’ (not
totally agree) have the same words with different ordering,
and express meanings with almost opposite affective states.
Hence, lexicon-based methods are usually used to provide
baseline results for reference.

B. REGRESSION-BASED METHODS
Regression-based methods have been intensively studied to
predict valence-arousal ratings. A cross-lingual approach was
used to train a linear regression model for valence-arousal
score prediction, in which the dimension scores of English
seed words were regarded as the source language and their
translated Chinese seed words were viewed as the target
language [17]. The valence ratings of new words were esti-
mated based on semantic similarity scores and a kernel
model which was trained using least mean squares estimation
[18]. A locally weighted regression method was proposed
to improve linear regression to predict the valence-arousal
values of affective words [19]. A community-based weighted
graph model that performs the regression task on a graph
was developed to predict the dimension scores of words [20].
A linear regression model was built to predict sentence-level
affective ratings based on combinations of partial affective
ratings of word n-grams [21]. The support vector regression
was used to predict the sentiment intensity of words and
phrases [22].

C. NEURAL-NETWORK-BASED METHODS
In recent years, neural network models with sentiment
embeddings that capture contextual and emotional infor-
mation of words have been applied to dimensional score
prediction [23]. To learn sentiment embeddings, a word
vector refinement model was proposed to refine existing
pretrained word vectors using real-valued intensity scores
provided by affective lexicons [24]. A boosted neural network
trained on character-enhanced word embeddings was used
to predict valence-arousal ratings of words [25]. A convo-
lutional neural network (CNN) was trained on Twitter word

embeddings to exploit neural activation values for Twitter
sentiment classification and quantification [26]. A densely
connected long short-term memory (LSTM) network was
used to concatenate features at different levels to predict
dimension scores of Chinese affective words and phrases
[27]. An ensemble of different neural networks was devel-
oped to determine the intensity level for different emotion
categories such as anger, fear, joy and sadness [28]. Bi-
directional LSTM and CNN were combined to consider
global and local information to predict emotional intensity of
tweets [29]. A neural-network-based architecture that com-
bines convolutional layers, fully-connected layers, linguistic
features, and pretrained CNN activations in a non-sequential
fashion was used for emotion intensity prediction in tweets
[30]. An adversarial attention network was presented to pre-
dict the dimension scores of short texts [31]. A pipelined
neural network model was used to sequentially learn word
intensity and modifier weights for phrase-level sentiment
intensity prediction [32]. A weighted-sum tree GRU model
was developed to include dependency features for predicting
Chinese phrase-level sentiment intensity in valence-arousal
dimensions [33].

D. TRANSFORMER-BASED METHODS
Recently, BERT-like transformer architectures have been
widely used for dimensional sentiment analysis. The
pre-trained and case-sensitive BERT-base model was
fine-tuned to predict the degree of sentiment intensity
associated with multiple entities for aspect-based senti-
ment analysis [34]. A multi-task architecture based on the
RoBERTa transformer was proposed to predict empathy and
distress scores [35]. The RoBERTa multi-task model and the
vanilla ELECTRA model was combined to predict empathy
scores [36]. A demographic-aware EmpathBERT architec-
ture was presented to infuse demographic information for
empathy prediction [37]. The BERT transformer was used
to recognize the emotion intensity scores of Japanese tweets
on the topics of vaccinations [38]. Pre-trained BERTweet
was used as the shared text encoder between a multi-label
emotion classifier and a multi-dimension emotion regressor
in a multi-task learning framework [39]. The pre-trained
MacBERT transformers were used to fine-tune valence-
arousal score prediction shared task for educational texts
[40]. The BERTmodel was combined with specific sentiment
word masking to improve sentence-level valence-arousal
prediction [41]. The pre-trained RoBERTa-Large model was
fine-tuned with categorical emotion labels to predict the
continuous dimensions of valence, arousal, and dominance
scores [42]. The domain-distilled BERT model was pro-
posed to learn domain-invariant features on scarce language
resources for dimensional sentiment score prediction [43].
Recently, transformer-based fusion methods have also

been used for sentiment analysis, usually with promising
results. BECMER combines a CNN model on audio signals
and a BERT transformer on the lyrics for music emotion
recognition [49]. The HFU-BERT framework improves the
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FIGURE 2. Our proposed transformer fusion framework. We propose word-level BERT to fuse the existing character-level BERT for
Chinese dimensional sentiment intensity prediction. Two transformers in different granularities are separately pretrained and
fine-tuned, and then jointly optimized to predict valence-arousal values.

BERT transformer by integrating heterogeneous language,
audio, and visual features for multimodal emotion recogni-
tion [50]. A stacking method was used to fine-tune BERT to
generate metadata for each emotion type separately and then
assemble them to train a meta-classifier for emotion category
prediction [51].

Different from the above fusion methods used for cate-
gorical sentiment analysis on multimedia and modal targets,
we aim to develop a transformer-based fusion framework
for dimensional sentiment analysis for Chinese texts. This
paper reports the pre-training of a Chinese word-level BERT
for contextualized language representations and propose
a transformer fusion framework to combine word- and
character-level BERT transformers for sentiment intensity
prediction in the valence-arousal dimensions.

III. TRANSFORMER FUSION MODEL
Figure 2 shows our proposed network architecture for Chi-
nese dimensional sentiment intensity prediction, comprised
of two parts: 1) Chinese word-level BERT; and 2) word-
/character-level transformer fusion.

A. CHINESE WORD-LEVEL BERT
BERT (Bidirectional Encoder Representations from Trans-
formers) [44] is a pre-trained language model proposed by
Google Research that uses a multi-layer transformer archi-
tecture as its network architecture. BERT uses an encoder
architecture with an attention mechanism [53] to construct
a transformer-based neural network architecture, providing
state-of-the-art results in a wide variety of natural language
processing tasks. There are two steps in the framework: 1)
pre-training, in which the model is trained on unlabeled data
over predefined tasks and 2) fine-tuning, in which the BERT

model is first initialized with the pre-trained parameters and
then fine-tuned using labeled data from the downstream tasks.

BERT proposes two pre-trained tasks: 1) Masked Lan-
guage Model (MLM): a fixed ratio of tokens is masked to
train BERT and the model then predicts the original value of
the masked words based on the context and 2) Next Sentence
Prediction (NSP): BERT is trained to predict whether the
following sentence is probable or not based on the previ-
ous sentence. Through pre-training, BERT learns contextual
embeddings for representations from large-scale data sets.
After pre-training, BERT can be fine-tuned on smaller data
sets to optimize its performance on specific tasks.

While a character-level BERT pre-trained model is pub-
licly released [52], a Chinese word-level BERT is lacking due
to the need for pre-processing in Chinese word segmentation
over huge data sets. Therefore, we collected a huge set of text
corpora and segmented the texts into words using the NCTU
word segmentation tool [48] to train the word-level BERT
model. We only trained the MLM task using the dynamic
masking strategy [54] for language model training. We use
the SentencePiece that uses Byte-Pair Encoding (BPE) as the
subword detection mechanism.

B. WORD-/CHAR- LEVEL TRANSFORMER FUSION
We further propose a transformer fusion framework to com-
bine our developed word-level BERT with the existing
character-level BERT for sentiment intensity prediction in
the valence-arousal dimensions. In the encoding layer, the
word/character-level token embedding Xemb at a given posi-
tion is obtained by looking up the embedding vector and
adding up the word vectors that correspond to that posi-
tion, as shown in Eq. (1). The positional encoding uses sine
and cosine functions to encode the positional information,
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ensuring a consistent relative relationship among different
positions. For the self-attention mechanism, three parameter
matrices W q, W k and W v are used to respectively map the
input vector Xemb to three new vectors Q = W qXemb, K =

W kXemb, and V = W vXemb. The residual convergence of
our multi-head vector is accelerated by the layer normaliza-
tion calculation shown in Eq. (2). Finally, the multi-headed
embedding vector Xenc is computed using two linear trans-
formations and the activation function GeLU, as shown in Eq.
(3).

In the decoding layer, we obtain the different granular-
ity embedding Xword and Xchar via 1-layer transformer that
is identical to the encoding layer using a 2-head multi-
head attention with 256 hidden dimensions, while using
max-pooling to retain the important features for each dimen-
sion [55], as shown in Eq. (4). Eventually, we concatenate
different granularity embeddings Pword and Pchar together,
as shown in Eq. (5), which are used to obtain prediction
scores using a 2-layer Multi-Layer Perceptron (MLP) with
the activation function hyperbolic tangent (tanh).

Xemb = EmbLookup(X ) + PosEncoding (1)

Xatt = LayerNorm(Xemb + SelfAtt(Q,K ,V )) (2)

Xenc = GeLU (Linear(Linear(Xatt ))) (3)

Pword ,Pchar = max(Xword ,Xchar ) (4)

r = tanh(tanh(Pword + Pchar )) (5)

For sentiment intensity prediction in the valence-arousal
dimensions, we use the downstream task datasets to fine-
tune pre-trained word/character-level BERT model in our
transformer fusion framework to obtain the valence-arousal
ratings.

Take the following sentence ‘‘
’’ (Why can I give up so resolutely now?)

with VA ratings of 4.333 and 4.000 as an exam-
ple. We can obtain a 17-tokens character sequence
as ‘‘ ’’ and a 9-tokens word
sequence ‘‘ (why) (I) (now) (can)

(so) (resolutely) (pronounced as De) (give
up)’’ to generate the embeddings at both the character- and
word-levels based on Eq. (1). Both embedding sequences
at different levels of linguistic granularity are fed into the
encoder layer of the 12-layer word-/character-level BERT
model, using the process described in Eq. (2) and using the
GeLU activation function specified in Eq. (3). Then, the out-
puts are passed to the decoder layer of a 1-layer transformer
using 2-head multi-head attention. Consequently, through the
max pooling operation described in Eq. (4), we can respec-
tively obtain sampled word/character embeddings for fusion.
Finally, following Eq. (5), we merge the word/character rep-
resentations through 2-layer MLPs to predict the VA ratings.
Comparing the predicted results of this example sentence,
standalone word-level BERT predicted a valence of 4.969 and
an arousal of 5.314, while the standalone character-level
BERT model predicted VA ratings of 5.048 and 4.801.
Our word/character-level BERT fusion model can obtain

improved valence (3.916) and arousal (4.003) results, rel-
atively close to human-annotated VA ratings of 4.333 and
4.000.

IV. EVALUATION
A. DATASETS
Chinese valence-arousal sentences (CVAS) and Chinese
valence-arousal texts (CVAT) from the Chinese EmoBank
corpus [9] were used to evaluate sentiment intensity pre-
diction performance. Valence-Arousal (VA) ratings were
annotated through crowdsourcing with each instance ran-
domly assigned to 10 annotators. Both the valence and
arousal dimension use a nine-degree scale. A value of 1 on
the valence and arousal dimensions respectively denotes
extremely high-negative and low-arousal sentiment, while
a 9 denotes extremely high-positive and high-arousal senti-
ment, and 5 denotes a neutral and medium-arousal sentiment.
Outlier ratings were identified and excluded from the calcu-
lation of the average VA ratings.

CVAS was collected from Chinese tweets, including 2,852
single sentences with an average of 11.7 characters or
7.3 words. CVAT collects web texts crawled across six differ-
ent categories: news articles, political discussion forums, car
discussion forums, hotel reviews, book reviews, and laptop
reviews. A total of 2,969 multi-sentence texts were included
in the CVAT each with an average of 55.1 characters or
35.5 words. Each instance in the CVAT is about five times
comparing with CVAS in terms of character or word lengths.
In addition, the ratios between the number of characters
divided by the number of words are respectively near 1.6 in
the CVAS and 1.55 in the CVAT.

B. SETTINGS
To train Chinese word-level BERT, we collected the
following text resources: LDC Chinese Gigaword (Ver-
sion 2.0),1 Sinica Balance Corpus (Version 4.0),2 Chinese
Information Retrieval Benchmark (Version 3.03),3 Taiwan
PanoramaMagazine,4 Mandarin Conversation Dialogue Cor-
pus (MCDC),5 National Educational Radio Corpus,6 Micro-
phone Speech Database (TCC300),7 and NYCU text corpus
(collected from Chinese Wikipedia8 and other web pages).
After preprocessing based on NCTU word segmentation tool
[48] and text normalization, we obtained about 2.8 billion
words to train Chinese word-level BERT model. Our quan-
tity scale is huge, but it still has a clear gap comparing
with English BERT released by Google9 that was trained on
3.3 billion words.

1https://catalog.ldc.upenn.edu/LDC2005T14
2http://www.aclclp.org.tw/use_asbc.php
3http://www.aclclp.org.tw/use_cir.php
4https://www.taiwan-panorama.com/
5http://shachi.org/resources/4037
6http://www.aclclp.org.tw/use_mat_c.php#ner
7http://www.aclclp.org.tw/use_mat.php#tcc300edu
8https://zh.wikipedia.org/wiki
9https://web.stanford.edu/class/cs224n/slides/Jacob_Devlin_BERT.pdf
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The experimental implementations were carried out using
the ASUS Taiwan Computing Cloud (TWCC)10 computing
resource. The hyper-parameters of our transformer fusion
framework were set up as follows: batch size 16; max pool-
ing style; decoder used 1-layer transformer; and compared
character-level BERT.11 Our developed word-level BERT
both had 12-layers, 768-hidden and 12-heads; 2-layer MLP
dimensions of 768; the optimizer was AdamW; and the num-
ber of epochs were restricted to 20.

C. METRICS
We used five-fold cross-validation evaluation, identical to
that used for the Chinese EmoBank corpus [9]. The sentiment
intensity predication performance is evaluated by examin-
ing the difference between machine-predicted ratings and
human-annotated ratings using two metrics to independently
evaluate the valence and arousal predictions: Mean Absolute
Error (MAE) and Pearson Correlation Coefficient (PCC),
defined as follows

MAE =
1
N

n∑
i=1

|ai − pi| (6)

PCC =
1

n− 1

n∑
i=1

(
ai − µA

σA
)(
pi − µP

σA
) (7)

where ai ∈ A and pi ∈ P respectively denote the i-th actual
value and predicted value, n is the number of test samples,
and σA respectively represent the mean value and the standard
deviation of A, while µP and σP respectively represent the
mean value and the standard deviation of P.
The actual and predicted real values range from 1 to 9,

so MAE measures the error rate in a range where the lowest
value is 1 and the highest value is 9. A lower MAE indi-
cates more accurate prediction performance. The PCC is a
value between −1 and 1 that measures the linear correlation
between the actual value and the predicated value. A lower
MAE and a higher PCC indicate more accurate prediction
performance. Each metric for the valence and arousal dimen-
sions is ranked independently. A model’s overall ranking
is computed based on the cumulative rank across the four
metrics. The lower the cumulative rank, the better the system
performance.

D. RESULTS
In the first set of experiments, the following four model types
were compared to demonstrate their performance. Experi-
mental results of the first three types were obtained from
the Chinese EmoBank corpus evaluation [9] for reference,
whereas the last one was conducted by this study.

• Lexicon-based method [5], [15]: Chinese Valence-
Arousal Words (CVAW) and Chinese Valence-Arousal
Phrases (CVAP) from the Chinese EmoBank corpus
were used to predict the valence (or arousal) ratings

10ASUSTWCC computing resources: https://www.twcc.ai/
11Multilingual BERT: https://github.com/google-research/bert

of a given instance in CVAS (or CVAT) by averaging
the valence (or arousal) ratings of words/phrases in the
CVAW and CVAP.

• Regression-based methods: including the Linear
Regression (LR) [17] and Support Vector Regression
(SVR) [22].

• Neural-Network-based methods: including Convolu-
tional Neural Network (CNN) [26], Recurrent Neu-
ral Network (RNN) [56], Long Short-Term Memory
(LSTM) [57], Attention LSTM [58].

• Transformer-based methods: including character-level
BERT model () [44] released by the Google Research,
our developed word-level BERT and transformer fusion
model.

Table 1 shows the prediction results of CVAS. For both
the lexicon-based and regression-based methods, the SVR
approach outperformed the others in both the valence and
arousal dimensions. The character-level BERT outperformed
the other neural-network-based methods in both dimensions.
Comparing the results achieved by our character-level BERT,
our word-level BERT had a slightly lower cumulative rank.
In our observations, short sentences with an average of
7.3 words (or 11.7 characters) do not provide sufficient
information for valence-arousal rating prediction using com-
plicated neural networks, especially for those word-level
basedmodels. Our fusionmodel ranked first for valenceMAE
(0.494) and valence PCC (0.891), while the character-level
BERT ranked first for arousal MAE (0.700). Finally, both
methods tied first for overall performance with the same
cumulative rank.

Table 2 shows the prediction results of CVAT. For lexicon-
based, regression-based, and neural-network-based methods,
we obtained nearly consistent findings. For transformer-
based methods, the overall performance of our word-level
BERT was close to that of character-level BERT in terms of
overall cumulative rank. Based on our observations, the aver-
age word length of a given text in CVAT is about five times
that of a short sentence in CVAS. These characteristic benefits
the word-level based models. Our fusion model ranked first
for valence MAE (0.519), arousal MAE (0.494) and arousal
PCC (0.695) and second for valence PCC (0.831). Overall,
our fusion model ranked first in terms of cumulative rank.

In summary, almost all models on the CVAS clearly under-
performed the corresponding model results on the CVAT.
The valence-arousal ratings for CVAS data containing single
sentences from Twitter were more difficult to predict than for
multi-sentences texts that provide more information in CVAT.
Comparing results achieved by word-level BERT on CVAS
and CVAT, we find that performance improve with increased
sentence length. Character-level BERT outperformed word-
level, possibly because the insufficient size of pre-trained data
sets, with a difference of about 500 million words. However,
our fusion model combining word- and character-level BERT
provided the best overall performance by including features
in different linguistic granularities.
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TABLE 1. Results of sentiment intensity prediction on CVAS.

TABLE 2. Results of sentiment intensity prediction on CVAT.

V. CONCLUSION
We propose a transformer fusion framework for Chinese sen-
timent intensity prediction in the valence-arousal dimensions,
making the following contributions:

(1) We develop a Chinese word-level BERT model based
on huge collected data sets to obtain contextual language
representations. We plan to release the pre-trained language
model for further research.
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(2) We propose a transformer fusion framework to predict
valence-arousal ratings for dimensional sentiment analysis.
Experimental results on the Chinese EmoBank indicate that
our fusion model integrating word- and character-level BERT
outperformed other neural-network-based, regression-based
and lexicon-based methods.

Future work will exploit other semantic features and
develop other pre-training tasks to further improve perfor-
mance for Chinese dimensional sentiment analysis.
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