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ABSTRACT In the field of sports video processing, specifically in the context of motion recognition for
shuttlecock match videos, we first propose a method based on attitude estimation to measure the movement
extent of the shotting arm, allowing for temporal positioning of shuttlecock shot motions and extraction of
corresponding shot-sequences. The shot-sequences is defined in this paper as video segments that exclusively
contain the complete shot motion of the mainplayer. During the training phase, we incorporate a lightweight
channel-spatial attention mechanism into the Temporal Segment Network (TSN) to classify the extracted
shot-sequences into four types, i.e., forehand shot, backhand shot, smash shot, and drop shot. Furthermore,
we employ image morphology-based techniques to further distinguish smash shot-sequences as either high
clear shots or kill shots based on the shuttlecock’s motion trajectory. The extensive experiment results
demonstrate the effectiveness of proposed method in accurately positioning and recognizing shuttlecock
shot motions.

INDEX TERMS Automatic shuttlecock motion recognition, deep learning, temporal positioning, image
morphology-based method.

I. INTRODUCTION
Ball sports can be classified into two categories based on the
rules of winning and losing: time-based sports and score-
based sports. In score-based sports, such as shuttlecock,
players need to employ various techniques and footwork,
includingmoving, jumping, rotating, and swinging their rack-
ets on the court. The recognition of shuttlecock shot motions
provides valuable information regarding players’ skill lev-
els, opponent analysis, audience experience, and data-driven
training [1]. It holds significant importance for players,
coaches, and spectators. Specifically:

(1) Motion analysis and technical assessment: By identify-
ing and analyzing shot motions, players’ skill levels can be
evaluated. This helps coaches and players understand their
strengths and areas for improvement, enabling targeted train-
ing and enhancement.

(2) Opponent strategy analysis: Recognizing shot motions
allows for studying and analyzing opponents’ playing styles
and strategies. Understanding opponents’ shot preferences,
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technical characteristics, and tactical inclinations assists
in formulating corresponding countermeasures and tacti-
cal arrangements, thereby improving chances of winning
matches.

(3) Audience experience and entertainment value: Rec-
ognizing shot motions in shuttlecock matches enhances the
visual and immersive experience for spectators. It enables
better comprehension and appreciation of players’ technical
performances, thereby increasing the entertainment value and
attractiveness of the game.

(4) Data-driven training and improvement: Collecting and
analyzing a large volume of shot motion data facilitates
data-driven training and improvement. Leveraging machine
learning and data mining techniques, patterns and regularities
can be discovered from the extensive data, providing person-
alized training recommendations and improvement directions
for players.

In the broadcast perspective of shuttlecock matches, the
trajectory of shuttlecockmovement and the droppoint of shut-
tlecock are realted to the player’s shot attitude. Wang et al.
[2] categorized shot motions, including high clear shots, drop
shots, drive shots, and kill shots, based on the main player’s
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FIGURE 1. Different movements in shuttlecock match.

shot attitude in shuttlecock singles match videos. However,
their classification relied solely on the gradient features of
single-frame shot motion images using the Histogram of
Oriented Gradients (HOG) technique, lacking motion infor-
mation. Zhi et al. [3] classified the main player’s shot motions
into forehand shots, backhand shots, kill shots, and other
types but did not perform temporal positioning of the shot
motions. In this study, we locate the shot motions of the main
player (i.e., the player facing away from the camera, occupy-
ing the main region of the video) in shuttlecock singles match
videos and classify them into four types: forehand shots,
backhand shots, smash shots, and drop shots. Additionally,
using image morphology-based techniques, we differenti-
ate between smash shots as high clears or kills. The video
sequences for each shot motion type are sampled as shown in
Figure 1.

The essence of categorizing shuttlecock shot motions falls
under the problem of video motion recognition in the field of
artificial intelligence [4]. Video motion recognition is primar-
ily divided into motion recognition in clipped videos and in
long-duration videos [5]. Clipped videos contain only single,
complete motions, while long-duration videos consist of mul-
tiple consecutive motions. In the case of long-duration video
motion recognition, temporal segmentation of motions is a
crucial step. These videos exhibit clear boundaries between
different motions, and the foreground or background features
have significant differences, as observed in behavior video

FIGURE 2. Shot-sequence processing.

FIGURE 3. The overall framework.

datasets such as 50Salads [6] and Breakfast [7]. However,
in shuttlecock match videos, the foreground and background
features of adjacent shot motions are consistent, and there are
no distinct boundaries [8]. In cases where the shot motion
sequences are relatively short, the TS-WMS (time series-
warp metric segmentation) algorithm [9], which measures
the curvature of time series, fails to sufficiently learn the
segmentation of shot motion sequences and often introduces
unnecessary motion boundaries [10]. In summary, methods
based on long-duration video motion recognition are not
suitable for positioning shuttlecock shot motions. Therefore,
a clipped video motion recognition approach is adopted for
classifying shuttlecock shot motions. This paper focuses on
shuttlecock match video segments and proposes a method
based onmulti-person attitude estimation to temporally local-
ize and extract shot-sequences of the main player’s shot
motions, as shown in Figure 2. The shot-sequence represents
a video segment containing only one complete shot motion
of the main player.

The overall framework of this paper is illustrated in
Figure 3. For shuttlecock video segments, the player’s shot
motions are localized using attitude estimation methods to
identify video segments that contain a single shot motion,
thus forming a shot-sequence. Then, a channel-spatial atten-
tion mechanism is introduced into the temporal segment
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network, and the network is trained to classify shuttlecock
motions.

In summary, our contribution is as follows:
a) By leveraging an attitude estimation model, we propose

a method to temporally localize shot motions by calculating
the range of arm motion, facilitating the accurate extraction
of shuttlecock shot-sequences. This innovative approach does
not rely on traditional image analysis or motion sensors.
Instead, it utilizes armmotion range calculations for temporal
positioning. This makes accurate extraction of shuttlecock
shot sequences from videos more feasible and aids in sub-
sequent analysis.

b) Through a heightened focus on feature channel infor-
mation and spatial positioning information, the improved
TSN with the introduction of the channel-spatial attention
mechanism achieves precise classification and recognition of
shuttlecock motions. This constitutes a significant contribu-
tion to video analysis in the field of sports, particularly for
shuttlecock.

c) The introduced image morphology-based approach
effectively discriminates between high clear shots and kill
shots in the smash shot-sequences. This approach, which
pays attention to the morphological characteristics of the
shuttlecock in the images rather than just its trajectory, offers
an effective means of distinguishing different types of shots.
This method holds practical potential in the analysis of shut-
tlecock shot motions as it enhances shot type accuracy.

II. THE PROPOSED METHOD
A. POSITIONING OF SHOT MOTION AND EXTRMOTION OF
SHOT-SEQUENCES
In shuttlecock match videos, the movement extent of the
arm of the main player is larger during shot execution com-
pared to when not shotting. Therefore, the moment of the
player’s shot can be located by tracking the variation in
the movement extent of the arm, allowing for the extraction
of shot-sequences that contain only a single complete shot
motion of the main player.

To calculate the real-time movement extent of the main
player’s arm in a shuttlecock video sequence, accurate detec-
tion of the arm’s skeletal attitude is necessary. Since there are
multiple individuals in shuttlecock match videos, including
players, referees, and spectators, it is not straightforward to
directly locate the skeletal attitude of the main player using
single-person attitude estimation algorithms. On the basis of
a multi-person attitude estimation model, we add confidence,
position, and joint constraints to locate the arms of the main
player. First, we estimate the skeletal attitudes of all individu-
als in the video segment using RMPE (regional multi-person
attitude estimation) [11], as shown in Figure 4. After extract-
ing the skeletal attitudes, the arms of the main player need
to be located. Among all the estimated skeletal attitudes, the
two attitudes with the highest confidence belonging to the
two players are selected, and then the vertical coordinate
constraint is used to locate the attitude of the main player,
as shown in Figure 5. Since each joint in the single-person

FIGURE 4. Extracting the skeletal attitude.

FIGURE 5. Positioning the skeletal attitude of the main player.

FIGURE 6. Estimating the arm attitude of the main player.

FIGURE 7. Illustration of movement vectors of the shotting arm across
consecutive frames.

skeletal attitude has a fixed and unique index, the indices of
the shoulder, elbow, and wrist joints are used as constraints to
locate the two arms of the main player, as shown in Figure 6.

The movement extent of the arm cannot be directly
obtained by calculating the Euclidean distance between arm
joints in consecutive frames since it is not affected by the
overall movement speed of the player. To avoid interference
from changes in the player’s overall position, the movement
extent of the arm is calculated using the movement vectors of
the upper and lower limbs of the arm.

Based on the joint features of the arm, there are three joints
in the arm skeleton, namely the shoulder, elbow, and wrist,
where the upper arm is between the shoulder and elbow, and
the lower arm is between the elbow and wrist. In frame f ,
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FIGURE 8. The detection and positioning result of the shotting arm of the
main player.

the 2D coordinates of the shoulder, elbow, and wrist joints
estimated by the RMPE are denoted as sf (xsf , y

s
f ), ef (x

e
f , y

e
f ),

and wf (xwf , ywf ), respectively. The movement vectors of the
upper and lower arms are denoted as uf and df , respectively,
with vector coordinates as follows:

uf = ef − sf = [xef − xsf , y
e
f − ysf ] (1)

df = wf − ef = [xwf − xef , y
w
f − yef ] (2)

Therefore, the movement vectors of the upper arm and
lower arm in frame f are uf - uf−1 and df - df−1, respectively,
as shown by the dashed vectors pointing towards ef and wf
in Figure 7.
The movement extent of the arm in frame f is defined as

the linearly weighted sum of the squares of the norms of the
movement vectors of the upper and lower arms:

ϕf = λ ||uf − uf−1||
2
+ (1 − λ )||df − df−1||

2 (3)

in which, the parameter λ (0 ≤ λ ≤ 1) and 1 - λ represent
the weights of the movement vectors at the elbow and wrist,
respectively. The square of the norm enhances the difference
in movement extent between shotting and non-shotting states.

As pointed out by [12], detecting the racket for locating
the arm is impractical due to the blurry features of the racket
in the video. Instead, comparing the movement extents of the
two arms of the main player allows for further positioning of
the shotting arm. Setting the movement extent threshold as
ϕτ , the shotting arm is denoted as ζ T , and the non-shotting
arm as ζF . By traversing the movement extent values of each
arm ζ i (i= T, F) in each frame, when themovement extentϕfm
in the m-th frame fm exceeds ϕτ , fm is marked as a movement
frame for arm ζ i. Subsequently, the frames between fm and
fm+t are skipped, and the detection continues with fm+t. This
process continues until the traversal is completed. Here, the
parameter t defines the range of frames on both sides of
fm, which determines the duration of the shot-sequence. The
movement frames for arm ζ i form an oscillation set Fim.
If the average movement extent of the oscillation points in

arm ζ i is smaller than the other arm, it indicates that arm is
generally less active than the other arm throughout the video
segment, and the other arm is considered the shotting arm.
Finally, the shotting arm of the main player is detected and
localized, as shown in Figure 8.

FIGURE 9. Example of optical flow.

To address the issue of arm occlusion in the video, RMPE
can still provide reasonable estimations of the arm by refer-
encing the visible parts of the body in frames with occlusions,
as shown in the second row of Figure 8, ensuring the conti-
nuity of arm positioning in the video segment and avoiding
temporal interruptions in arm detection. After positioning the
shotting arm of the player, the initial and final frames of
each consecutive pair of shot-sequences are referred to as the
temporal boundaries of the shot-sequence. During the frame
traversal process, when accessing frame fm (s.t. ϕ(fm) ≥ ϕτ ,
ϕ(fm−1) < ϕτ ), since the arm motion has a certain delay, the
movement extent of the subsequent adjacent frames to fm may
still exceed ϕτ . Therefore, the frames between fm and fm+t are
skipped to avoid redundant movement frames. The detection
continues with fm+t+1 until the traversal is completed. Here,
the parameter t defines the frame range on both sides of
fm, which determines the duration of the shot-sequence. The
movement frames of arm ζ i form amovement set S i. For each
frame in the set ST , when frames fm−t and fm+t are within
the frame index range of the video segment, t frames before

111284 VOLUME 11, 2023



Y. Zhao: Automatic Shuttlecock Motion Recognition Using Deep Learning

FIGURE 10. Modified module of CTSN.

and after fm are combined to form a shot-sequence centered
around fm in the temporal domain, where frames fm−t and
fm+t serve as the temporal boundaries of the shot-sequence.
At last, the number of frames in each shot-sequence is 2t+1,
and the value of t for the frame range can be assigned based
on the frame rate.

B. SHUTTLECOCK SHOT MOTION RECOGNITION
There is a high redundancy between frames with small
time intervals in the shot-sequences. If each frame of the
shot-sequence is inputted into the network, it would con-
sume excessive computational time and memory resources.
The Temporal Segment Network (TSN) utilizes a random
sampling strategy to reduce time and memory consumption
and maintains high robustness even with limited training
samples [13]. Therefore, this paper conducts research on the
classification recognition of shuttlecock shot motions based
on the modified TSN.

The TSN is built upon the dual-stream ConvNet (Convo-
lutional Neural Network) [14] and requires the extraction of
spatial and temporal streams from the shot-sequences after
training and testing. The spatial stream contains RGB image
information, which includes single-frame image information
of the shotting motion [15]. The temporal stream contains
global feature information of the shotting motion [16]. Sub-
sequently, a series of small segments are obtained through
random sampling, where each segment consists of one frame
image and two optical flow feature maps. The obtained frame
images and optical flow feature maps are separately fed into
the spatial convolutional layer and the temporal convolutional
layer. DenseFlow [10] is used to extract the optical flow
from the shuttlecock video. The optical flow between the
consecutive frames f RGBi−1 and f RGBi is illustrated in Figure 9,

where f FLOW_X
i and f FLOW_Y

i represent the horizontal and
vertical components of the optical flow, respectively.

In the shot-sequence, the recognition object, i.e., the main
player, occupies a partial region in each frame and exhibits
spatial locality. CBAM (Convolutional Block AttentionMod-
ule) [17], including spatial attention mechanism and channel
attention mechanism, can enhance the generalization perfor-
mance of network by focusing on important features and

FIGURE 11. Architecture of CTSN.

suppressing irrelevant features. It can be embedded into
different baseline ConvNet structures [18]. The two mod-
ules of channel attention mechanism and spatial attention
mechanism can be combined in parallel or sequentially.
However, previous research has shown that sequential combi-
nation with channel attention placed before spatial attention
can achieve better results [19]. Therefore, this paper intro-
duces the channel attention mechanism and spatial attention
mechanism in a sequential manner. In the TSN, the spatial
and temporal convolutional backbone structure used is BN
(Batch Normalization)-Inception [11]. To further improve
the performance of the model, Yue et al. [20] embedded
SE (squeeze-and-excitation) mechanism into the Inception
structure, which achieved better results. SE allows the neural
network to focus on meaningful feature channels for the
classification task and suppress irrelevant feature channels,
but lacks focused attention on spatial positions. Inspired of
this, this paper introduces CBAM (convolutional block atten-
tion module) after the BN-Inception structure, and improves
the original TSN network to CTSN network, as shown in
Figures 10 and 11.

Proposed CTSN architecture models the shot-sequence
by segmenting it into consecutive k segments T1, . . . , Tk .
Then, a series of frame samples are randomly and sparsely
sampled from each segment. Each segment provides its
preliminary prediction for the motion category, and these
segments are aggregated to obtain the final prediction for the
entire shot-sequence. The aggregation of temporal and spatial
convolutions is fused using a multi-class linear support vector
machine [21].
During network training, the model parameters are itera-

tively updated to make the loss converge. The CTSN structure
models a series of segments, as follows:

CTSN (T1,T2, . . . ,Tk ) = H (g(F(T1;W ),F(T2;W ),

. . . ,F(Tk ;W ))) (4)

where H is the prediction function and W is the training
parameter. The segment consensus function g aggregates the

VOLUME 11, 2023 111285



Y. Zhao: Automatic Shuttlecock Motion Recognition Using Deep Learning

prediction results of each segment to obtain the category
prediction aggregation for the entire shot-sequence. F(Tj;W )
represents the prediction vector of segment Tj (1 ≤ j≤ k) for
various types of shuttlecock shot motions. Average pooling is
used as the segment consensus function [21], as follows:

gi =
1
K

K∑
k=1

f ki (5)

where i ∈ {1, 2, . . . , C}, C is the total number of categories,
and K is the number of segments. Based on this aggregation,
f ki represents the prediction result of segment Tk for the i-th
shot motion, which is the i-th element in the vector F(Tk ;W ).
The prediction function H predicts the probabilities of each
shuttlecock shot motion type for the entire video. Since the
training set includes four types of shuttlecock shot motions,
the output layer of the CTSN network consists of four nodes,
corresponding to the predicted probabilities of the four types
of shuttlecock shot motions. Combined with the standard
classification cross-entropy loss [22], the loss function for
segment aggregation is as follows:

L(y,G) = −

C∑
i=1

yi logH (gi) +
η

2n

∑
w
W 2 (6)

whereG the prediction results of each segment that aggregat-
ing by segment consensus function g, H (gi) is the predicted
probability of the model on category i, and yi is the label
value. If category i is the labeled category for a sample, yi
is set to 1; otherwise, it is set to 0. η

2n

∑
wW

2 is the L2
regularization term [23], which reduces the weight to a lower
value for alleviating the overfitting problem of the model, n is
the number of training set samples, and η is the regularization
parameter. The softmax function is used for normalization in
the output layer of the CTSN network [24]. The predicted
category with the highest probability in the output layer cor-
responds to the final prediction of the CTSN network. When
the shot-sequence is predicted a smash shot, it will continue
to be classified as either a high clear shot or a kill shot.

High clear shots and kill shots have highly consistent pos-
ture characteristics in the game videos, as they both belong to
smash shot types. However, in actual matches, they represent
two distinct categories. The difference between them lies
in the trend of the shuttlecock’s trajectory after the shot,
which is opposite to the direction of motion in the later stage.
Additionally, the differences in the attitude features of the
main player are evident in the shot-sequences of different shot
motions. To fcous the feature differences of different motion
categories on the attitude features of the main player in the
training set, high clear shots and kill shots are categorized
as smash shots. In high clear type shot-sequences, the upper
region of the frame area at the end of the video segment shows
the presence of the shuttlecock’s mask information. Con-
versely, the upper region of the frame in the shot-sequences
of kill shots does not contain shuttlecock mask information.

For the image morphology-based processing method, this
paper uses Fi ± Fi−1 to represent the sum and difference of

pixels between frame i and frame i-1, respectively. F⊗Wn×n
represents the smoothing linear filtering of frame F using
the operator Wn×n. F ⊕ Sr represents the dilation operation
of image F using the structuring element Sr with a radius
of r. e(w, h) represents an elliptical structuring element with
the major axis length w and the minor axis length h. When
CTSN predicts a shot-sequence as an smash shot, an image
morphology-based processing method is applied to differen-
tiate the shot-sequence as either a high clear shot or a kill shot.
The specific steps for differentiating high clear shots and kill
shots in the shot-sequences are as Algorithm 1.

The Algorithm 1 controls the prediction result by defining
and returning the boolean variable IsHighClear. Steps 1 to
7 obtain the horizontal boundaries of the foreground court
area and the upper boundary coordinate of the frame. Steps 8
to 9 determine whether the background region of each frame
contains the shuttlecock mask. If a frame contains the shut-
tlecock mask, the ordinate of the bounding box is saved
as an approximation of the mask’s ordinate. Steps 10 to
11 determine whether there are at least two positive and
decreasing ordinates of the mask in the frames at the end of
the video. Based on this determination, the value of IsHigh-
Clear is assigned, and it is returned as the final discrimination
result.

As the result, the variation of the height h(h = yRt − yi)
between themask region and the upper edge of the foreground
court for the set of high clear shots and kill shots with respect
to the frame index i is shown in Figure 12. Figure 12(a) shows
the presence of consecutive mask regions with decreasing
ordinates in the later part of the shot-sequence, indicating
that it is a high clear shot type. Conversely, Figure 12(b) does
not exhibit such consecutive mask regions, indicating that it
corresponds to a kill shot type.

III. EXPERIMENT
A. EXPERIMENT SETTINGS, DATASET AND EVALUATION
METRICS
Experimental environment configuration for this study
included an Intel Xeon Platinum 8160Ts CPU, GeForce
GTX 2080 Ti GPU, and CUDA 11 with CUDNN 7.7 as the
GPU acceleration library. The deep learning framework used
was Tensorflow, running on the Ubuntu system. The training
parameters are listed in Table 1.

The evaluation metrics for clustering performance
included Average Recall (R), Average Precision (P), and the
area under the curve (AUC) for both micro-average (micro-
AUC) and macro-average (macro-AUC) [25]. The formulas
for calculating Average Recall and Average Precision are
given by (7) and (8):

R =

N∑
i

TPi
TPi + FNi

(7)

P =

N∑
i

TPi
TPi + FPi

(8)
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Algorithm 1 Differentiating High Clear Shots and Kill Shots
in the Shot-Sequences Using Image Morphology-Based Pro-
cessing Method
Input: The shot-sequence of smash shot.
Output: Predicted result.
Procedure:
Obtain the number of frames N in the shot-sequence.
Initialize a boolean control variable IsHighClear as True, defaulting
the discrimination result as a high clear shot.
Initialize a list PL to store the ordinate of the upper-left corner of
the bounding rectangle of the shuttlecock mask for each frame.
Read the first frame of the shot-sequence and segment the G channel
of the frame using a threshold of 125 to obtain the channel segmen-
tation image BGR_G.
Remove connected regions in BGR_G with an area smaller than
1E+4 and perform hole filling on the remaining connected regions
to obtain BGR_GF.
FG_CL = [BGR_GF · S50] ⊗ W5×5.
Traverse the connected regions in FG_CL and obtain the bounding
rectangle R with the largest area, then save the abscissas of left
and right boundaries of R as xRl and xRr , respectively, and save the
ordinate of upper boundary as yRt .
for i = 1: N :

Read the current frame Fi and its previous frame Fi−1.
Fi−1,i = (Fi−1 - Fi) + (Fi - Fi−1 ).
Convert Fi−1,i to a grayscale image Fi− 1, igray.
WFi− 1, igray = Fi− 1, igray ⊗W5×5.
WFi− 1, igray is segmentedwith pixel threshold of 50, andWFTi

of moving object is obtained.
DFbm = (FG_CL + WFTi) ⊕ S25.

Define a list CT to store the contours of connected regions in
DFbm.
Traverse the connected regions in DFbm and store each connected

region in the list CT.
Remove the connected regionBmax with the largest area fromCT.
if CT becomes empty after removing Bmax, then PL[i] = −1 and

continue to the next iteration.
end if.
Define a list CPA to store the local area of connected regions.
for j = 0:length(CT) - 1:

Obtain the abscissas of left and right boundaries xil and x
i
r , as well

as the ordinate of upper boundary as yit , of the bounding rectangle
of connected region Bj.

if xil > xRl & xir < xRr & yit < yRt :
Store the area S(Bj) of Bj in the list CPA.
end if.
end for.
if CPA is not empty:
Obtain the maximum area in CPA and the corresponding bounding
rectangle’s ordinate yi, and assign PL[i] = yi.
else:
Assign PL[i] = −1.

end if.
end for.
if there are at least 2 positive and decreasing elements in the last
10 elements of list PL:
IsHighClear = False.
end if.
return IsHighClear.

where TPi represents the i-th true positives, FN represents the
i-th false negatives, FP represents the i-th false positives, and
N represents the total number of motion categories.

FIGURE 12. Example of height variation of shuttlecock mask in high
clears and kills shot-sequences.

TABLE 1. The training parameters.

The collected shuttlecock videos were sourced from the
internet, primarily including footage from the 2012 London
Olympics, 2016 Rio Olympics, and the 2018 and 2019 circuit
tournaments.

For the classification of motions in the shot-sequences,
a manually curated dataset was created to ensure the max-
imum integrity of the shot motions. Using video merging
and splitting software, 5,160 shot-sequences were generated
from a large collection of recorded shuttlecock match videos.
These shot-sequences were manually labeled with motion
categories, including forehand shot, backhand shot, smash
shot, and drop shot.

B. EXPERIMENT ABOUT POSITIONING OF SHOT MOTION
AND EXTRACTION OF SHOT-SEQUENCES
Regarding the positioning of shot motions in video seg-
ments, the parameter λ in (3) was set to 0.35, the movement
range threshold ϕτ was set to 500, and the frame range
t on both sides of fm had a value of 15. If a extracted
shot-sequence VP and the ground truth shot-sequence VT
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FIGURE 13. The movement extent variation curve when IoU=85.7%.

FIGURE 14. The movement extent variation curve when IoU=91.7%.

FIGURE 15. The movement extent variation curve when IoU=77.8%.

FIGURE 16. The movement extent variation curve when IoU=75%.

FIGURE 17. The movement extent variation curve when IoU=87.5%.

contain the same motion, then VP is considered to be the
same as VT . For a video segment, the collection of extracted
shot-sequences obtained from experimental tests is denoted
as P, and the collection of true shot-sequences is denoted

FIGURE 18. The movement extent variation curve when IoU=77.8%.

FIGURE 19. The loss change of the verification set when K takes different
values.

as T. The Intersection over Union (IoU) is used to measure
the overlap between sets P and T. A higher IoU indicates
better performance. The movement extent variation curves
of the main player’s movement arm in six video segments
were measured, as shown in Figures 13-18. These frames
exhibit significant fluctuations in movement extent within
their neighborhoods, while the movement extents of other
frames remain relatively stable.

The IoU values for the positioning of shot motions in the
six video segments were measured, resulting in percentages
of 85.7, 91.7, 77.8, 75.0, 87.5, and 77.8, respectively, with an
average of 82.6. The IoU indicator for the positioning of shot
motions in video segments is influenced by the selection of
the movement extent threshold and the motion characteristics
of the main player. Sometimes, when the player is not in the
shot moment, the movement extent of their movement arm
may still be excessive, or the movements of the elbow or wrist
during the shot may not be sufficiently intense, resulting in
the positioning of non-shot motions as shot motions. Such
cases would result in false shot-sequences, and if they are
input to the neural network for training, potentially interfer-
ing with the training and even testing. Experimental results
demonstrate that the method of shot motion positioning
based onmovement extent discrimination shows overall good
performance.

C. EXPERIMENT ABOUT SHUTTLECOCK SHOT MOTION
RECOGNITION
For the testing of CTSN, we employed the hold-out method
[26] and applied stratified sampling [27], which involves
dividing the overall data into mutually exclusive categories
and independently sampling a certain proportion of sam-
ples from each category to create a sample collection.
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FIGURE 20. ROC-AUC.

TABLE 2. Contarst experimental results.

We extracted 10% of the samples from each class of the
shot-sequence dataset as the testing set, while the remaining
samples were used for training. After training the network
on the training set to obtain the model, we evaluated its
performance using the testing set. During the training pro-
cess, we used a stratified 10-fold cross-validation [28], where
before each validation, the shot-sequence data from each
class in the training set were divided into 10 folds, taking
turns to choose one fold as the validation set and using the
remaining 9 folds for network training. The learning rate was
reduced to 10% of its original value at the 30-th and 40-th
epochs. We set K from 1 to 5, and the training loss trends for
different values ofK are shown in Figure 19, with the training
loss outputted every 20 iterations.

It can be observed that when K increases from 1 to 2,
the convergence of the loss becomes more apparent, while
when K from 2 to 5, the loss curve becomes almost stagnant,
with no significant improvement in performance. At around
1250 iterations, the overall trend of the training loss stops
decreasing, indicating convergence has been reached.

We find, when the number of segments K is set to 3,
the recognition rate and accuracy reach a relatively balanced
state. The receiver operating characteristic (ROC) curves of
the classifiermodel for the fourmotion categories of forehand
shot, backhand shot, smash shot, and drop shot are shown in
Figure 20. The true positive rate (TPR) represents the rate of
true positives, while the false positive rate (FPR) represents
the rate of false positives.

TABLE 3. Confusion matrix of shuttlecock motion recognition.

TABLE 4. Recall and precision of shuttlecock motion recognition.

As shown in Figure 20, the AUCmetrics for all four motion
categories are above 0.98, and the micro-AUC and macro-
AUC are both approximately 0.99, indicating that introducing
CBAM into the TSN network and training the classifier
through transfer learning can achieve good performance.

To validate the effectiveness of the proposed CTSN model
in shuttlecock motion recognition, we conducted tests and
comparisons with three other deep learning-based benchmark
motion recognition methods. The compared methods include
ST-GCN (spatial temporal graph convolutional networks)
based on skeleton extrmotion [29], P3D-ResNet based on 3D
convolutional networks [30], MM-SADA (multi-modal self-
supervised adversarial domain adaptation) based on RGB
and optical flow [31], ITN (Improved Time Network) [32],
SA-CNNbased on Transformer [33], SI3D (Silhouette Iflated
3D network) [34], CMFF (Context Multi-feature Fusion)
[22]. To ensure fairness, we used pre-trained models and
parameters suitable for each method. The experimental
results are shown in Table 2.
It can be observed that P3D-ResNet achieved the high-

est recall rate, while MM-SADA achieved the highest
macro-average, with slightly lower scores than CTSN. The
CBAM-based temporal segmental network, which we pro-
posed, achieved the highest precision and micro-average
AUC. ST-GCN employs a skeleton model that is a heuris-
tic pre-definition representing the physical structure of
the human body, lacking the flexibility and capability
to model multi-level semantic information contained in
all layers. The experimental results demonstrate that our
method, which combines the spatio-temporal features of
videoswith channel-spatial attentionmechanisms, has certain
advantages.
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TABLE 5. Ablation experimental results.

To further evaluate the recognition performance of the
model for each class of samples, we further divided the sam-
ples of smash shots in the testing set into high clear and kill
categories. The confusion matrix of the testing set predictions
is shown in Table 3, and the recall rates and precision rates for
each category are shown in Table 4.

From Table 3, it can be seen that the total number of
correctly predicted shot-sequence samples for each category
is 467, accounting for 91.6%, demonstrating good recogni-
tion accuracy. However, there is a relatively high confusion
between forehand shots and drop shots, as well as between
high clears and kill shots, due to occasional similarities in
the motions of forehand shots and drop shots, and when
the shuttlecock at the end of high clear shot-sequences is
too small or blurry, the image morphology-based method
proposed in this paper is prone to misjudging high clears as
kill shots. When multiple strong dynamic noises appear in the
background area of the kill shot-sequence at the end, it can
also lead to misjudgment of kill shots as high clears.

From Table 4, it can be seen that the recognition precision
for each motion category is above 86%, and the recall rate
is above 86%. The average recall rate and accuracy rate are
91.2% and 91.6%, respectively, indicating that the method
based on the temporal segmental network can approach the
level of human judgment to a large extent and effectively
accomplish the task of recognizing shuttlecock shot motions.

D. ABLATION EXPERIMENTS
The original TSN model and the TSN models with SE
and CBAM modules were subjected to ablation experiments
using the testing set provided in this paper, and the results are
shown in Table 5. It can be observed that CTSN achieves the
relatively highest average precision and AUC, indicating that
incorporating CBAM into the TSN network can improve the
performance of shuttlecock motion recognition. Therefore,
we adopt the proposed CTSN as the final model for shuttle-
cock motion recognition.

IV. CONCLUSION
We propose a method for temporal positioning and clas-
sification of shot motions performed by the main player
in extracted shuttlecock video clips. The method involves
detecting the player’s arm using attitude estimation tech-
niques on the shuttlecock video clips and temporally
localizing the shot motions based on the variations in
arm movement extent. The localized motions are used to
generate shot-sequences. We introduce a channel-spatial
attention mechanism into the TSN and train the network to

classify the shuttlecock motions. The classification results
include four common types: forehand shot, backhand shot,
smash shot, and drop shot. Additionally, we employ image
morphology-based techniques to classify the smash shot as
either a high clear shot or a kill shot. Experimental results
demonstrate the effectiveness of the poposed method for
motion recognition in shuttlecock video clips, combining
temporal positioning andmotion classification to enhance the
intelligence of the recognition process and provide valuable
applications in sports video analysis.

However, it should be noted that our recognition of shut-
tlecock player motions is currently limited to single-player
match videos from specific broadcasting angles, which con-
strains the viewing perspective. Additionally, the proposed
CTSN has yet to perform simultaneous classification and
recognition of multiple shot-sequences. Future work will
focus on developing shuttlecock video motion recognition
methods that are not constrained by viewing angles and
exploring parallel classification and recognition in the CTSN
model to achieve real-time performance.
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