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ABSTRACT The use of multiple transmitters in a turbulent free-space optical (FSO) communication link
can enhance the systems performance because greater received power can improve receiver sensitivity.
Nevertheless, the effect of having more power at the receiver can be severe. This paper investigates the impact
of using multiple transmitters in preamplified FSO communication links limited by strong atmospheric
turbulence (AT), amplified spontaneous emission noise, fixed path loss and pointing errors (PEs) using
different preamplifier operating modes and different decision thresholding schemes. Results obtained show
that regardless of the number of transmitters used, the best bit error rate (BER) performances are obtained
with normalised decision threshold levels of about 0.2 and 0.5 when the decision thresholding scheme at the
receiver is non-adaptive and adaptive, respectively. Also, in the strong AT regime, an additional transmitted
power of about 7dB is required for the FSO communication systems under minimal PE effects to have
the same performance as FSO communication systems without PE. The results also show that when the
effects of PE are absent or minimal, a larger receiver would require about 15dB less transmitted power
to record the same performance as a smaller receiver. However, with a non-adaptive decision threshold,
smaller receivers perform better than larger receivers when the PE effects are severe. Additionally, it is
shown in this paper that when the effects of PE is severe, the BER performances consistently get better
with more transmitters regardless of the decision thresholding scheme employed at the receiver. However,
in the absence of PEs, increasing the number of transmitters indefinitely will not always guarantee improved
BER performances when the receiver decision threshold is non-adaptive. The use of multiple transmitters is
particularly advantageous for applications where it is either necessary or unavoidable to use lower transmitted
power.

INDEX TERMS Atmospheric turbulence, optical amplifier, spatial diversity, pointing error, free space
optical communication, optical receiver, decision threshold.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Free-space optical (FSO) communication involves trans-
approving it for publication was Tae Wook Kim . mitting data using optical signals through the atmosphere,
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typically over short to medium distances. Due to the
significant detrimental effects of limitations such as atmo-
spheric turbulence (AT) on the optical signal traversing
the atmosphere in a FSO communication system [1], [2],
various techniques such as using multiple receivers and/or
transmitters to enhance spatial diversity have been used
to mitigate these undesirable effects [2], [3]. The use
of multiple receivers and/or transmitters offers advantages
such as increased data rates due to simultaneous transmis-
sion across multiple channels, redundancy and reliability,
improved robustness, extended coverage and higher avail-
ability. Also, FSO communication systems using multiple
receivers and/or transmitters can be used for applications
such as urban communication networks, disaster recovery and
temporary networks, indoor wireless networks, aerospace and
satellite communication, data centers and high-performance
computing, military and security applications and last-
mile connectivity. Pointing errors (PEs) also occur in FSO
communication links, especially over long distances, where
it is difficult to ensure that the receiver and the transmitter
are perfectly aligned [4], [5]. In addition to the AT induced
received signal fluctuations and PEs, the optical signal power
also reduces along the propagation path as a result of geo-
metric spread (GS) and other impairments such as rain, haze
and snow [6], [7]. While the use of an optical amplifier (OA)
as a preamplifier in a FSO communication system ensures
an increase in the received signal power and an improvement
in the optical receiver sensitivity, it also generates amplified
spontaneous emission (ASE) which produces beat noises that
can further limit system performance [8], [9].

By considering gain saturated and fixed gain operating
modes of an OA and also considering non-adaptive and
adaptive decision thresholds at the receiver, this paper will
examine the performance of FSO communication systems
impaired by AT, ASE noise characterized by statistical
properties following a Gaussian distribution, GS and PE using
multiple transmitters and a preamplified receiver. By ana-
lyzing different FSO communication system configurations,
optimal normalized decision threshold levels and bit error rate
(BER) results are obtained. Many recent literature [10] on
the use of multiple transmitters with a preamplified receiver
have based their analysis on the small signal (fixed) OA gain.
However, the OA can be driven into saturation (which will
lead to a reduction in the OA small signal gain) when the input
power of the OA is large enough [8], [10]. Additionally, while
most literature have focused on a receiver decision threshold
that constantly adapts to the turbulence level [7], [11],
practical FSO systems make use of a decision threshold that is
non-adaptive due to the complexity involved in the practical
fabrication of an adaptive decision threshold [12]. The major
contributions of this paper to the body of knowledge on FSO
communication system consisting of multiple transmitters are
shown below.

o Performance evaluation of fixed gain and gain satu-

rated preamplifiers using various decision thresholding
schemes
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o Performance evaluation of non-adaptive and adaptive
decision thresholding schemes using various preampli-
fier operating modes

o Determination of the optimal normalized decision
threshold levels for various decision thresholding
schemes and preamplifier operating modes

« Implications of choosing particular receiver diameter
sizes in the presence of GS, AT and PE for various deci-
sion thresholding schemes and preamplifier operating
modes

After the introductory section, the review of related
works is presented in section II. Section III presents
the system model and BER analysis where the gamma-
gamma (GG), AT and PE models are also described.
The results obtained from the analysis are presented and
discussed in section IV. A conclusion is provided in
section V.

Il. RELATED WORK

In [13], a FSO communication system with hybrid OAs
(consisting of two erbium-doped fiber amplifiers (EDFAs))
used to improve reach by a factor of 5 was proposed.
In [13], where the lognormal distribution was used to model
the weak AT regime and the GG distribution was used to
model the moderate to strong AT regimes, the hybrid OA
configuration substantially improved the quality factor (Q-
factor) and BER. Note that the limiting impact of ASE beat
noises was not considered in [13]. In [14], the performance
of FSO communication systems limited by atmospheric
turbulence, pointing errors and amplified spontaneous emis-
sion using non-return-to-zero (NRZ) on—off keying (OOK)
modulation and chi-square statistics were analysed. Closed-
form expressions were derived for the average BER and
results in [14] showed the significant detrimental effects of
PEs on system performance. Also, [14] showed that system
with preamplifiers performed better than systems without
preamplifiers. In [15], a switching system was used to switch
transmission between the use of multiple FSO transmitters
and multiple RF transmitters and theoretical expressions were
derived for the outage probability and symbol error rate.
It was shown in [15] that over longer distances and in strong
AT regimes, systems based on switching between the multiple
FSO transmitters and multiple RF transmitter performed
better than systems based on using only multiple FSO
transmitters.

Using the OptiSystem simulation package and a hardware
prototype, the performance of a FSO communication system
consisting of an array of transmitters was investigated in [16]
and results were obtained for the BER, eye diagram (for
the link distance), received power and Q-factor. The use of
multiple transmitters to reduce the susceptibility of FSO com-
munication systems (impaired by PE and AT) to interception
and eavesdropping was shown in [17]. It was shown in [17]
that using multiple transmitters can improve the average
secrecy capacity (ASC) of FSO communication system even
when PE effects are substantial. Authors in [17] also showed
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that no significant ASC improvement was noticed when the
transmitters are more than 4 and that increasing the normal-
ized beam width will reduce the possibility of eavesdropping.
In [3], experimental and theoretical investigations were
carried out on FSO communication systems with repetition
coding using parallel multiple transmitters and an EDFA
at the receiver over a correlated turbulent channel. While
other works on FSO communication systems using multiple
transmitters and receivers [18], [19] have carried out various
analysis based on assumptions of an identical distribution
of the turbulent channel over parallel links, authors in
[3] showed that the turbulent channel in feasible FSO
communication systems is largely not distributed identically.
The advantage of using a preamplifier was also shown in
[3] as systems with a preamplifier performed better than
systems without a preamplifier by about 6dB at the same
target BER.

In [20], the author used evaluation methods such as the
gaussian approximation (GA), saddle point approximation
(SPA) and modified Chernoff bound (MCB) to analyse the
performance of FSO communication system consisting of a
single receiver and a single transmitter. In [20], BER results
were obtained while considering AT, GS, PE and ASE noise
effects. Also, [20] dealt with various OA operating modes and
decision thresholding schemes. However, since only a single
transmitter was considered in [20], the advantage of using
multiple transmitters in an atmosphere limited by AT and PE
was not considered.

IIl. SYSTEM MODEL AND BER ANALYSIS

A FSO communication system with multiple transmitters
and an optical receiver (having a preamplifier) is shown in
Fig. 1, where Ny, represents the number of transmitters. The
system uses NRZ OOK modulation at each transmitter and
direct detection at the receiver. Even though it is assumed that
all the transmitters maintain a ‘line of sight’ configuration
with the receiver, they are not in perfect alignment with the
receiver. Each transmitter directs its optical signal towards
the preamplifier, where all the optical signals are cumu-
latively collected. After optical preamplification, processes
such as filtering with an optical band pass filter (OBPF),
photodetection with a photodiode, electrical amplification
and filtering and the retrieval of the sent information by a
decision circuit takes place. Note that the responsivity of the
photodiode R = ngq / hv where h and n represents the Planck
constant and quantum efficiency respectively. Also, v and ¢
represents the optical carrier frequency and electronic charge
respectively [1], [8].

A. ATMOSPHERIC TURBULENCE AND POINTING

ERROR MODELS

Different statistical models have been used to represent
the random fluctuations present in the intensity of the
optical signal traversing an atmosphere limited by AT. The
GG distribution, which is known to adequately represent
various AT regimes, is used to describe the strong AT
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regime considered in this paper. The GG distribution has a
conditional probability density function (PDF) given as [1],
[21].

2Aap) O (45)-

S (he) = T@r @

Ku-p (2v/aBhi) e > 0
(H

where I', h; and K, (.) represents the Gamma function,
AT induced loss/gain of the fluctuating channel and order
u modified Bessel function (second kind) respectively.
Note that #, has a mean of 1. Also, h = Ihh,
represents the AT, PE and GS induced loss/gain of the
fluctuating channel where h, represents the PE and GS
induced loss/gain of the fluctuating channel. Also, « and
B represents the large scale eddies and small scale eddies
produced by the scattering process respectively and they are
given as [1].

0.49072
a=1 exp —1 2)
12/5\\ /¢
(1+ (1105))
0.5107
B=1 exp = 56 |~ 1 3)
(1+ (06955))
The Rytov variance of = 1.237'/5%k7/°C2 where C2,
z, k = 27 / A and A represents the structure parameter

of the refractive index, link length, number of the optical
wave and wavelength respectively. By considering AT
and diffraction effects, the Gaussian beam width at z, is
given as [21].

we o wop 1+ 13302 (22 /kws,) )

where w,, = woy/1+ (z/ zR)2 represents the width of the

beam as a result of  diffraction alone.
R = nwé / A and wy represents the Raleigh range and the
beam waist when z = 0 respectively. By assuming that
the aperture of the optical receiver is circular and that a
Raleigh distribution model (used to represent PE, AT and GS)
adequately represents the radial displacement from the beam
center axis 7, h, can be represented by a PDF given as [22]
and [23]

fiy (hp) =15~ 25 Jag = hy 2 0 5)

where ¢ = erq/ZO'PE. Wepy = WZ\/ﬁerf W) /2vexp (—vz)
represents the equivalent beam and the PE displacement at
the receiving end has a standard deviation, opg. The power
accumulated at the receiving lens (for » = 0) has a fraction,
ay = [erf (V)] and v = ﬁrrx/«/zwz. By combin-
ing (1) and (5), the PDF representing AT, PE and GS is
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FIGURE 1. FSO link with multiple transmitters (System model).

given as [24].

2 (a+pB)/2 atB)_1_ 2
fi(h) = %hgzl//agoh,( 2 ) I—¢
ag T (@) T (B) h

x Ko—p (2\/()%) dh, 6)

Note that while a closed form of (6) exists [10], (6) is used
in this work because, in addition to (6) being an established
method for solving similar problems [18], [19], (6) is also
computationally convenient.

B. PREAMPLIFIER MODEL
The use of a preamplifier to reduce turbulence-induced
scintillation relies on exploiting the way OAs respond when
their gain becomes saturated. This scintillation reduction
technique assumes that the OA gain can quickly adjust to
turbulence fluctuations [25], [26]. Now, the OA gain G,
is related to its input optical signal power, P;,, as shown
below [8]
PSH[ GSS

Pm—G_llnG N
where Py, and Gy are the OA’s internal saturation power and
small signal gain respectively. Thus, OAs help to suppress
scintillation by giving more gain to lower input power and less
gain to higher input power. Note that when the preamplifier
is operating in the fixed gain mode, G = Gy. However,
when the preamplifier is operating in the gain saturation
mode, G < Gg.

C. BER ANALYSIS
By assuming that the noise (including ASE noise) present
in the received signal is Gaussian and by taking multiple
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transmitters into consideration, the BER can be modified
from [8] and given as

BER — % %erfc iDyasa (Poain;) — i0(Poain;)
N 2002(P0Ain,-)
+%e e i1(PoAin;) — iDyasa (Poin;)
\/ 202 (Poain;)
i=1...... Nix) (8)
where ip represents the receiver decision threshold.

i0(Poain) = 2RG XM Poap,/ (r +1) and i1(Posin,) =
2¢,RG Zﬁv’x Pouain;/ (r + 1) represents the average levels
of the signal at the sampling instant for the ‘0’ and ‘1’
bits sent respectively. e, represents the extinction ratio.
Poain;(Pi;) = Pu,Li is the OA input power from the
ith transmitter where P, and L; = L,;h; represents the
transmitted power of the ith transmitter and total link loss
of the ith link respectively. h; is the h of the ith link.
Ly, = (drx /(p[z)2 €; represents the turbulence free path loss
of the ith link where d,., ¢; and ¢; = e represents
the diameter of the receiving lens, beam divergence angle
of the ith transmitter and the atmospheric attenuation of
the ith link respectively. ¢; represents the scattering and
absorption induced attenuation coefficient of the ith link.
0'(2()/1)(5') = Uéio/]),sp(POAin,-) + US%;_SP + O'szh’(o/l)(POAini) +
o3 03 01y (Poain) = 2qR(G X1 Posin; + miNoBop)Be,
ops 0o _gpPosin) = 4GRS PosinNoB, and
aé,_sp = 2mR’N§BopBe (1 — Be/2B,p) represents the
noise current variance, the shot noise, variance of the
receiver thermal noise, the signal-spontaneous and the
spontaneous-spontaneous beat noises respectively. Note that
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TABLE 1. Numerical analysis parameters.

Parameter Symbol Value
Optical wavelength A 1550 nm [8],
[27]
Bit rate R, 2.5 Gb/s [27]
OBPF bandwidth Byt 76 GHz [28]
Quantum n 0.8[29]
efficiency
Receiver thermal Otn 7x107A[11]
noise
Noise figure NF 5dB[11]
OA small signal G 30 dB [27]
gain
Extinction ratio e, 10dB [11]

the signal-spontaneous and spontaneous-spontaneous beat
noises are due to the preamplification process [9], [11].
No = 0.5(NFG—1)hv, Bops, B = 0.7Rp, Rp, m; and
noise figure (NF') are the ASE noise power spectral density,
OBPF bandwidth, bandwidth (equivalent) of the receiver
noise, bit rate, polarisation states parameter number and the
noise figure, respectively [10]. The decision threshold (non-
adaptive) is given as [10]

iDya (POAini)
o0 Ntx
>~ 2D,.R / > Posinfu )dh(i=1...... Ny)  (9)
(U

where D,,; represents the decision threshold level and it is
usually normalized to values ranging from O to 1. Note that a
D;.; value of 0.5 means that the decision threshold is placed
halfway between the O and 1 bits. The decision threshold
(adaptive) is given as [8].

ipy (Posin;)
~ D, i1(Poain;)00(Poain;) + 10(Poain;)o1(PoAin;)
o1(Poain;) + 00(Poain;)
i=1...... Ni) (10)

Also, the optimal decision threshold level can be given as

Drel[,p, (iDAK,) =A (BERav,D,-gl (POAin,-)) Drel

€(0,...,05, ..., 1| Poan,),
(i=1...... Ni) (11)

where Drel,,,,, represents the optimal decision threshold level;
the decision threshold level that gives the lowest average BER
value over a range of received power.

IV. RESULTS AND DISCUSSION

Table 1 contains the numerical analysis parameters. The
FSO commuication systems considered are those with PE
(WPE) and those without PE (WoPE) using single and
multiple transmitters with different opg, normalised beam
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width (W, / r) and OA internal saturation power (Pg,) values.
Note that gain saturated (Ps,; = 5 dBm) and fixed gain
(Psgt — 00) OAs refer to OAs that are not restrained
from experiencing gain saturation and OAs restrained from
experiencing gain saturation respectively. Also, acceptable
BER results are BER results that fall within forward error
correction limits. The strong AT regime (o,% = 3.5)
considered in this work results from C2 = 8.36 x 10~ 4m~%/3
and z = 1500m. Also, with wy = 0.002 and a 1.5 x 1074
rad beam divergence angle, normalised beam widths W, / r=
25 and W, / r = 5 are obtained from 0.03m and 0.15m receiver
diameters respectively.

Minimum average BER results obtained for FSO commu-
nication systems WPE (N, € {1, 2,5}, Psyy € {5dBm, 00},
opr = 0.1, Wz/r = 5) for different normalised decision
threshold levels are shown in Fig. 2. Note that the minimum
average BERs were obtained from BER results covering a
selected range of transmitted power (-10dBm to 20dBm).
In Fig. 2(a), minimum average BER results for FSO com-
munication systems using a non-adaptive decision threshold
show that in gain saturated and fixed gain preamplified FSO
communication systems using single or multiple transmitters,
the best average BER performances were observed with D,;
values of about 0.2.

In Fig. 2(b), minimum average BER results for FSO
communication systems using an adaptive decision threshold
show that in gain saturated and fixed gain preamplified FSO
communication systems using single or multiple transmitters,
optimal performances are observed with D,,; values of about
0.5. These results for FSO communication systems with
increased number of transmitters align with earlier works
[20], [30] with a single transmitter, where it was shown that to
obtain optimal average BER performances, D,,; should have
values of about 0.2 and 0.5 when a non-adaptive decision
threshold and an adaptive decision threshold is used at the
receiver respectively. Note that based on these results, the D,;
used for the adaptive and non-adaptive decision thresholds in
Figs. 3 and 4 are 0.5 and 0.2 respectively. Also, regardless
of the number of transmitters, a consistency is noticed in the
BER performance for each normalised decision threshold lev-
els for the FSO communication systems using a non-adaptive
decision threshold as shown in Fig. 2(a). However, the FSO
communication systems using an adaptive decision threshold
in Fig. 2(b) show while the normalised decision threshold
levels obtained from using different number of transmitters
follow the same patten, the BER performance gets better as
the number of transmitters increase. Specifically, N_tx values
of 1, 2 and 3 produced optimal BER performances of around
1078, 5 x 107 and 10° respectively.

Using adaptive and non-adaptive decision thresholds,
the average BER results obtained for different transmitted
power are shown in Fig. 3. In Fig. 3(a), average BER
results for FSO communication systems WOPE (N, €
{1,2,5), Py € {5dBm,oo}, W,/r € {5,25} using
a non-adaptive decision threshold show that for N, €
{1, 2,5}, an average BER of about 1073 is obtained when
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FIGURE 2. Minimum average BER against normalised decision thresholds
where Ny, € {1,2,5}, Psgt € {5dBm, o} for systems WPE (opg = 0.1,

W, /r = 5). (a) Non-adaptive decision threshold (b) Adaptive decision
threshold.

Psy = 5dBm for Wz/r € {5,25}. However, an error
floor is observed at an average BER of about 10~! when
Pyyy = oo for W, / r € {5,25}. This further confirms
the assertion in [10] that OA saturation is only useful
for AT suppression when the receiver uses a non-adaptive
threshold. Fig. 3(a) also shows that while increasing the
number of transmitters in the FSO communication systems
under consideration did not improve the best average BER
performance, FSO communication systems having more
transmitters will need lower transmitted power to achieve the
same average BER results as FSO communication systems
with fewer transmitters. This advantage is particularly useful
for applications where it is either necessary or unavoidable
to use lower transmitted power. Average BER results in
Fig. 3(a) also show that FSO communication systems WoPE
using a larger receiver (W, / r = 5) performed better (an
improvement of about 15dB at the same target BER) than
those using a smaller receiver (W, / r =125).
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In Fig. 3(b), average BER results for FSO communication
systems WoPE (N, € {1,2,5}, Py € {5dBm, 00},
W, / r € {5,25} using an adaptive decision threshold
show that unlike in Fig. 3(a) where different average BER
performances were observed for the different Py, values,
Fig. 3(b) shows similar performances for Py,; = SdBm
and Py, = oo regardless of the number of transmitters.
This is so because with an adaptive decision threshold where
Dy; = 0.5, the adaptive decision threshold responds to
the AT fluctuations and always ensure that the threshold
level is always approximately midway between the 1 and
0 bits. Average BER results obtained in Fig. 3(c) for FSO
communication systems WPE (N, € {1,2,5}, Py €
{5dBm, o0}, Wz/r € {5, 25}, opg =0.1) using a non-adaptive
decision threshold and in Fig. 3(d) for FSO communication
systems WPE (N, € {1,2,5}, Psyy € {5dBm, o0},
Wz/r € {5,25}, opg = 0.1) using an adaptive decision
threshold are similar to those obtained in Figs. 3(a)
and 3b respectively. This is due to the fact that
since the PE effects considered in Figs. 3(c) and 3(d) are
not severe (opg = 0.1), the only performance impairment
noticed when compared with systems WoPE is a transmitted
power deficiency of about 7dB at the same target BER across
all the corresponding FSO communication systems. This
means that for the strong AT regime under consideration,
an additional transmitted power of about 7dB is required
for the FSO communication systems under minimal PE
effects to have the same performance as FSO communication
systems WOPE. The effect of increasing the severity
of PE effects is shown in Fig. 3(e) for FSO communication
systems WPE (N, € {1, 2,5}, Psos € {5dBm, o0}, Wz/r IS
{5, 25}, opr = 4) using a non-adaptive decision threshold and
in Fig. 3(f) for FSO communication systems WPE (N;, €
{1,2,5}, Psy € {5dBm, o0}, Wz/r € {5,25}, opg = 4)
using an adaptive decision threshold. While average BER
results in Figs. 3(a) to 3(d) consistently show that using a
larger receiver (W, / r = 5) is preferable to using a smaller
receiver (W, / r = 25) because a larger receiver achieved
same BER performances with a smaller receiver while
using less transmitted power, average BER results Figs 3(e)
and 3(f) lacked such consistency. In Fig. 3(e) where a non-
adaptive decision threshold is used, FSO communication
systems using smaller receivers performed better than
FSO communication systems using larger receivers when
the transmitted power are increased (> —30dBm). It is
also noteworthy that increasing the number of transmitters
indefinitely might not guarantee improved BER performance
because at further increased transmitted power (> 15dBm),
FSO communication systems using 5 transmitters performed
worse than FSO communication systems using less number
of transmitters. In Fig. 3(f) where an adaptive decision
threshold is used, the average BER results obtained also
follow the same trajectory as those in Fig. 3(e) because it
can also be observed that using smaller receivers is better
than using larger receivers when the transmitted power
are high.
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The impact of further increasing the number of transmitter
is shown in Fig. 4 where FSO commuication systems
(W, / r = 25, P, = 10dBm) using adaptive and non-
adaptive decision thresholds are considered. In Fig. 4(a),
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average BER results for FSO communication systems using
a non-adaptive decision threshold further confirms the earlier
assertion in Fig. 3(a) that OA gain saturation is only
advantageous when the receiver uses a non-adaptive decision
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(Dyes = 0.5).

threshold because while fixed gain OAs recorded very
poor performances (> 10~!) even with 20 transmitters,
gain saturated OAs performed better (< 1072). Also,
average BER results in Fig. 4(a) align with the average
BER results obtained in Fig. 3(e) that showed that for
FSO communication systems, WoPE using a non-adaptive
decision threshold, increasing the number of transmitters
indefinitely will not always guarantee improved BER
performances.

However, the use of more transmitters is shown to
mitigate the effect of severe PE in Fig. 4(a) where FSO
communication systems WPE consistently performed better
with more transmitters. When an adaptive decision threshold
is used in Fig. 4(b), a continual improvement (though
less significant as the number of transmitters increase) is
noticed with more transmitters in all the FSO communication
systems considered, regardless of the operating mode of the
preamplifier.
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V. CONCLUSION

The performance of preamplified FSO communication sys-
tems using multiple transmitters in a communication link
impaired by strong AT, ASE noise and pointing errors was
considered in this paper. Results are obtained for cases where
the preamplifier is operated in different modes (gain saturated
and fixed gain) and for when the receiver is employing
different decision thresholding schemes (adptive and non-
adaptive). Results from this paper showed that regardless of
the number of transmitters used, the best BER performances
are obtained with normalised decision threshold levels of
about 0.2 and 0.5 when the decision thresholding scheme at
the receiver is non-adaptive and adaptive respectively. Results
from this paper also showed that increasing the number of
transmitters when a non-adaptive decision threshold is used
did not improve the best average BER performance. However,
FSO communication systems having more transmitters will
need less transmitted power to achieve the same average
BER as FSO communication systems with fewer transmitters.
Results from this paper showed that when pointing error
effects are either absent or minimal, a larger receiver can
achieve the same performance as a smaller receiver using
less transmitted power (an improvement of about 15dB at
the same target BER). However, smaller receivers performed
better then larger receivers at higher transmitted power when
a non-adaptive decision threshold is used. As expected, the
use of more transmitters in FSO communication systems
using an adaptive decision threshold resulted in improved
BER performances. However, this improved performance
becomes less significant as the number of transmitters
increase. It is also noteworthy that when PE is absent in
FSO communication systems using a non-adaptive decision
threshold, increasing the number of transmitters indefinitely
will not always guarantee improved BER performances.
However, the use of more transmitters is shown to mitigate
the effect of severe PE as the BER performance consistently
got better with more transmitters regardless of the decision
threshholding scheme used at the receiver when PE effects
are severe. Since this work focussed on spatial diversity at
the transmitting side, a natural progression of this work is to
also study spatial diversity at the receiving side by placing an
OA before each receiver (using various decision thresholding
schemes) and considering the impact of gain saturation on
each preamplifier. Also, the pulse position modulation (PPM)
format can be used with preamplified FSO communication
systems (with or without spatial diversity) limited by AT,
GS and PE with emphasis on how gain saturation of the
preamplifier(s) will affect system performance and how
the PPM system compares with the OOK results in this

paper.
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