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ABSTRACT As the diversity of components increases within the intelligent systems, trusted interactivity
also becomes critical challenge for the system components and nodes. Furthermore, emerging SDN (Soft-
ware Defined Networking) features are also utilized to assure its resiliency and robustness in a dynamic
context and monitored by trusted multi-agents’ system to maximize trustworthiness of the system compo-
nents and the deployed context. However, it is not feasible to deploy the intelligent mechanisms at massive
scale with the state-of-the-art architectural design paradigms. Therefore, we define three main architectures
(central, decentral/autonomous/embedded, distributed/hybrid) as a basis for TDAI methodology to ensure
end-to-end trust in holistic AI system life-cycle. Thanks to such a trusted multi-agents-based trust monitoring
mechanism, we will be able to overcome hardware limitations and provide flexible and resilient end-to-end
trust mechanism for trusted AI models and emerging massive scale intelligent systems. Finally, we evaluated
our TDAI Methodology in CCAM (Connected, Cooperative, Autonomous Mobility) domain of a smart-city
to monitor its system trust and user behaviors. By that means, it is exploited as a mean of decision-making
mechanism to be deployed either manually or automatically (example of anomalies detection etc.). Such a
mechanism improves total system performance and behavioral anomaly detection and risk minimization
algorithms over the distributed nodes of a given AI system. Furthermore, smartness features are also
improved with human-like intelligence abilities at massive scale thanks to the promising performance of
TDAI at real-life deployment experiments to maximize trust factor of the dynamically observed context of
the smart-cities during the monitored time-span.

INDEX TERMS Trusted AI, distributed computing, software defined networking (SDN), multi-agent
systems (MAS), trusted execution environment (TEE).

I. INTRODUCTION AND RELATED WORK
Intelligent systems are becoming more complex and diverse
as the amount of data exponentially increase. Since, the
system nodes and components are diverse and complexity
exponentially grows, which is not feasible to ensure trusted
scalability of the system and algorithms running in real
time [17]. Fortunately, widely accepted learning representa-
tion approaches with the data such as back propagation [1]
can help to formally state the environment and interaction
within that. In order to be able to track sequences and state
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transitions, end-to-end pipeline modelling and differentiation
approaches [2], [3] can be implemented. However, to be able
to keep the critical systems constraints and trusted scalabil-
ity of the algorithms between the cooperating components,
robust distributed check-point mechanisms and [4] compu-
tationally scalable mathematical/system models [6], [7] are
required.

On the other hand, holistic abstraction paradigms can help
to extend ACID (atomicity, consistency, isolation, durability)
features of database systems to higher system level by extend-
ing data locality [7] to the edges in trusted scalable manner.
Cooperation and task data sharing between the components
can be accelerated with SDN (software defined networking)
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[8] features of the components. However, as the system
functions virtualizes, and number of transactions increases,
behavioral integrity of the system is also become controver-
sial due to exponential growth in error rates in task sharing.
In order to maximize the performance of task cooperation
and minimize the error rates, trust assurance methodologies
can help to ensure the behavioral integrity of the system
with TEE (trusted execution environment) utilization such as
open-TEE [9].

Furthermore, holistic views [7] are required as critical
constraints for dynamic package transmission and task shar-
ing between these units. In order to tackle the challenge,
we propose a methodology called Trusted Distributed AI
(TDAI) in this study to ensure end-to-end trust and built a
software driven trusted execution environment to maximize
performance of task cooperation and minimize error rates.
So that, behavioral integrity of a growing intelligent system
can be assured with maximum performance and dynamic
feedback structures, which are utilized via the trusted holistic
views.

In addition to the holistic views, behavioral integrity
and trusted scalability issues of intelligent systems are
widely explored in literature with many perspectives.
In [10], authors integrate resources virtualization approaches
as SuperCloud and publishes initial data sets for per-
formance evaluations. In [11], 75,000,000,000 streaming
inserts/second using hierarchical matrices with bindings to a
variety of languages (Python, Julia, and Matlab/Octave) are
experimented.

In [3], Spatial Temporal Analysis of 40,000,000,000,000
Internet Darkspace packets are observed to analyze inter-
net traffic. Improvements of edge devices enabled to
extract more features to implement recent end-to-end
paradigms.

Reuther et.al. [13], explores the ways of Interactive super-
computing on 40,000 cores for machine learning and data
analysis. The authors targets to overcome old fashion com-
pute bound design limitations of HPC (High Performance
Computing) with interactive approaches. Kepper et.al. [14]
explores better representation of data in AI systems with
associative arrays. More interestingly Tataria et.al. [15], [16],
[19] makes holistic discussions by covering communication
and networking perspectives also with a focus on 6G wireless
components of the emerging intelligent systems. Thereby,
we can see the increasing need to end-to-end TEE and behav-
ioral integrity assurance with TDAI methodology in the state
of the art.

From the standardization side, many initiatives (like EU
ones) are claiming about the need of introducing certification
for ‘‘trusted AI’’ systems which can delivered by independent
bodies after testing the products for key trust features. This is
also true for AI products that are distributed by system char-
acteristic requirements [7], [18], [20], [21]. In all standards
and assessment related activities, a reference model is always

required to monitor with dynamics holistic views during all
stages of a system life-cycle.

Thereby, in this study we propose a new methodology
called Trusted Distributed AI (TDAI) to ensure end-to-end
trust and built a software driven trusted execution envi-
ronment to maximize performance of task cooperation and
minimize error rates. By that means, behavioral integrity
of a growing intelligent distributed system can be assured
with maximum performance thanks to dynamically justified
features of a system as explained in rest of the paper.

Paper is organized as follows: Section. II defines trusted
distributed AI methodology (TDAI), Section III defines dis-
tributed AI system architectures and explains the need for
distributed architectures and articulates increasing interest
to TDAI in literature. Furthermore, gives details about the
security, privacy, trust metrics, and regulative constraints
considered in this study by asserting the methodology and
contributions of TDAI in detail.

Additionally, the section compares the behavior mon-
itoring application in CCAM (Connected Cooperative
Autonomous Mobility) domain to comparatively analyze
TDAI with other SOTA methodologies; such as, centralized,
decentralized/autonomous ones, non-trusted approaches etc.
Section IV evaluates the contributions of this study and
discusses about the future potentials. Finally, Section. V con-
cludes the paper.

II. METHODOLOGY
A. METHODOLOGY OVERVIEW
This paper is introducing a novel methodology that offers
explicit means to justify trust in distributed intelligent sys-
tems with operational features (TDAI-OM). In fact, as the
number of required critical justified features increases to
ensure trusted interactivity [17], trust cost also increases to
be able to justify the trust in dynamic context in (near)
real time as illustrated in Figure 1.a TDAI-OM framework
helps finding the optimal trust zone based on the balance
that any systems operation can leverage in the targeted dis-
tributed nodes design and deployment. This way, depending

FIGURE 1. a Trust justification cost.
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FIGURE 1b. (1) A distributed system with set of nodes (2) Justified channels for trusted interactivity with TDAI.

TABLE 1. TDAI classes.

on the context of use case, the reachable trust level can be
managed based on the cost available and required features.
Next sub-section explains the trust levels and introduce TDAI
formulation.

B. TDAI TAXONOMY
1) TDAI-OM TRUST LEVELS
TDAI-OM is designed in a way that it can be used in most
cases compared to similar complex methodologies that exist
in the literature like Common Criteria standard [18], [20].
TDAI-OM is actually based on 5 trust levels that can be
accessible. TDAI-OM aim is to estimate the trust value of
each node based on key features do identify trust levels in
Table 1 and critical metrics/parameters listed in Table 2.
So that, each node will be included in available category, are

5 main levels associated to the TDAI taxonomy based on the
following:

- TL 1 - Trust Level 1 (0): System nodes not trusted
- TL 2 - Trust Level 2 (0.25): System nodes insufficiently
trusted

- TL3 - Trust Level 3 (0.50): System nodes sufficiently
trusted

- TL 4 - Trust Level 4 (0-75): System nodes partially trusted
- TL 5 - Trust Level 5 (1.0): System nodes fully trusted

In order to be able to identify a system or it’s node as trusted,
it has to be justified [17]. However, there is trust cost for each
justification feature as illustrated in Figure 1.a. As the number
of justification features increases, the trust cost also increases
exponentially. Furthermore, to be able to ensure the required
minimum throughput of a system, the trust cost worth to
pay [7] but can be kept at optimal level with right dynamic
strategy mechanisms. Dynamic strategy plans can be updated
in real time by ensuring interactivity of the all components of
a system within the observed context. For an optimal level of
trust in the context critical nodes iN i are monitored in (near)
real time by ensuring interactivity of trusted agents attached
to the nodes as illustrated in Figure 1.b. Next subsection
explains classes and critical identified features to defined trust
levels of TDAI methodology.

2) TDAI CLASSES
Table 1 represents a summary of the defined TLs of nodes
N{}. The columns represent an ordinal set of TLs, while the
rows represent the trust classes and features of criteria we use
in order to express the requirements for the various trust levels
with respect to the trust level taxonomy defined above. Each
number in the resulting matrix identifies a specific trust com-
ponent where higher numbers imply increased requirements.
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a: CLASS PERF: PERFORMANCE

b: CLASS RT: RUN-TIME

c: CLASS SEC: SECURITY

d: CLASS RT: TEST

Each feature within the classes helps to identify trust level of
a node and a system composed by the nodes and to justify
it dynamically. Next subsection explains the weight update
and error minimization strategies of TDAI methodology and
introduces TDAI formulation.

C. TDAI FORMULATION
1) TDAI TAXONOMY AND SYSTEM MODELLING (TRUSTED
NEURON AND TRUST MEASUREMENT METHOD)
Generic systems are represented by a dynamic model as
illustrated in Figure 1.b, where nodes N0..n{}, are con-
nected to neighbors for cooperation purposes. The aim of
the TDAI OM is to justify channels for trusted interactions
among the connected nodes. Each node can be consid-
ered as an agent or so-called trusted neuron Ni {}, see
Figure 2.a. The neurons interacts with the environment E{}
via the linked nodes and utilizes its’ functions dynami-
cally to pursue continues growth-flow within the observed
context. Next subsection gives details of the TDAI formal
statements.

FIGURE 2. a Trusted neuron.

FIGURE 2. b Single neuron network with error calculation.

2) TRUSTED VALUE FORMULATION
Stage 1: Trusted Neuron Formulation:

As formalized in equation (1) below, a neuron and a
trusted neuron, which have input function Ni, gives the
weighted sum of the unit’s input values, that is, the sum of
the input activations multiplied by their weights wij:

Ni =

∑
j=0..N

wijaj (1)

Stage 2: Function:
In the second stage, the activation function, g, takes the

input from the first stage as argument and generates the
output, or activation level, ai:

ai = g (Ni) = g
(∑

j=0..N
wiJaj

)
(2)

Stage 3: Neurons’ Trust Value:
Trust value tai (0,1) of output ai;

tai = Average

(
i∑
0

Ni

)
,Nϵtransaction flow. (3)

Transaction flow repeats continuously with holistic
feedback controller mechanism [7], which assures con-
tinuous growth of an intelligent system. Learning systems
of neural networks are iteratively updated. The frequency of
updates improves the total performance of the system, but
limited with available resources. By that means, growth flow
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in dynamic context is observed and updated dynamically.
Next subsection introduces weight update strategy and error
minimization methodology.

3) WEIGHT UPDATE STRATEGY AND ERROR MINIMIZATION
For a given set of representative input and output pairs,(
⟨xj, tj⟩

)k
j=1, consider a network with just one neuron N

directly connected to the inputs. The inputs xj can be thought
of as a vector with k components.

Let x ji be the i
th component in the jth training input. Random

weights are assigned for each input to initiate training. Output
and total errors are computed based on these inputs. Single
neuron n gives output n(xj) with the training data xj that
has ideal output oj. Error e, on a single input j is usually
defined as 1

2

(
oj − N (xj)

)2. The network computes the error
periodically as indicated in the Figure 2.b below.

Gradient descent training moves the weights in the
direction that they have greatest impact on the error. The
weights are then moved in the direction that the error reduces
most. Equation.4 below formulates changing the weights in
round r+1.

Wi (r + 1) = Wi (r) − ϵ
∂e
∂Wi

. (4)

If the function g is differentiable, chain-rule can be applied
for derivation. The chain rule application can enable to com-
pute the rate of change of the error function with respect
to the weights from the rate of change of the error with
respect to the output. For an input xj, the derivative of
the error with respect to the output is below equation.5.a
and 5.b;

∂e
∂N

= −
(
tj − N

(
xj
))

(5.a)

e =
1
2

(
tj − N

(
xj
))2

. (5.b)

Chain rule can be used to get the derivative of the error with
respect to any weight.

∂e
∂Wi

=
∂e
∂in

∂in
∂Wi

=
∂e
∂N

∂N
∂in

∂in
∂Wi

= −
(
tj − N

(
xj
))

∗ xi
∂N
∂in

(6.a)

∂e
∂Wi

= −
(
tj − N

(
xj
))

∗ x ij ∗
∂N
∂in

(6.b)

Equation.4 can be plugged to equation.6.a to get a rule to cal-
culate how the weights should be updated. Figure.3 illustrates
the single neuron network error calculation strategy.

Chain-rule can be applied to multi-layer neural networks
as well to train the network. Backpropagation method [1]
Rumelhart et al. is proposed for the error derivative with
respect to the weight from layer i to layer i + 1. Derivatives
of the errors used with respect to the inputs in layer i + 1.
The approach is emerging point for automatic differentiation

methods in machine learning [2] Baydin et al. The methods
enable end-to-end training of differentiable pipelines across
machine learning frameworks [3] Milutinovic et al.

Backpropagation algorithm is a special case of automatic
differentiation [4] Griewank and Walther. The method com-
putes a program P′ for the derivative of a function f ′ of a
function f given a program P for a function f . Univariate
Taylor series with suitable degree is proposed for the problem
of evaluating all pure and mixed partial derivatives of some
vector function defined by an evaluation procedure. Possibil-
ity of derivatives calculation only in some directions instead
of the full derivative tensor is explained. Estimates for the
corresponding computational complexities are given.

Computational differentiation is useful for gradient error
calculation and single/multi-layer neural network train-
ing. However, computing the rate of change is restricted
with computational scalability limitations. Furthermore,
it inflates the memory resources and require larger memory
resources. Algoritqhm 799 [4] Griewank et.al. implements a
checkpointing for the reverse or adjoint mode of computa-
tional differentiation.

The authors develop a check-point schedule as an explicit
‘‘controller’’ to reduce the storage requirements and to run a
time-dependent applications program. However, differential
sequences require (near) real time dynamic holistic views
to be able to ensure the validity of the control mechanisms.
Thereby, scalability of a system can be considered with the
dynamics feedback structures as critical performancemetrics.

Scalability modelling metrics and parameters are key
performance indicator for any system performance evalu-
ation process. Many aspects can be observed to indicate
desired outputs. Main bottleneck for the emerging systems
and neural networks is computational scalability constraints.
Amdahl law [5] Amdahl considers sequential and par-
allelizable portions of the programs. General theory of
computational scalability [6] Gunther extends Amdhall law
with queuing theory approach. The theory proves that com-
putational capacity is equivalent to the synchronous through-
put bound for a machine-repairman with state-dependent
service rate.

On the other hand, decentral and distributed architec-
tures are preferred for emerging systems. Scheduling and
control approach can be improved with MEMCA (Memory
Centric Analytics) holistic abstraction and distributed check-
pointing/control mechanism [7]. Check-point locations are
optimizedwith a hierarchical structure, which have TI-Cloud,
TII-Gateway, TIII-Fog, TIV-Edge layers. It can be applied
to end-to-end AI/ML pipelines to monitor transaction flows
also.

State-of-the-art design and holistic abstraction extend data
locality to the edges in trusted scalable manner, it can maxi-
mize neural network training total performancewith a holistic
view to the system. The holistic abstraction provides end-to-
end trust justification features for decision mechanism with
lineage graph recording of transaction-flows.
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FIGURE 3. a/b. Trust factor coefficient-based throughput maximisation approach [7].

Trust indicators defined in different system layers can
maximize the targeted throughput andminimize crosstalk and
latency penalties in hybrid designed architectures. Figure.3
illustrates the correlation of trust factor coefficient with
respect to growth of a system.

The study shows that, if a system is trusted, same value
of throughput can be obtained with less or same number
of nodes in an intelligent mechanism. That is, we can say
that in order to maximize throughput of a context, making
it trusted is more efficient approach rather than the increas-
ing number of nodes. The holistic abstraction can help to
define the features sets of a trusted agent as a system node
abstract component, which interacts dynamically with the
environments, as formally defined and stated in detail in next
subsection.

The feature sets are fetched dynamically as inputs to the
train sets of data models and structures with a feedback
controller mechanism. Thereby, checkpoints can be defined
as trusted execution environment (TEE) for critical pack-
age context extract/embed in set of flowing network packets
p<>. Next subsection explains the trusted agent and interac-
tion with the environment.

D. TDAI WORK-FLOW: TRUSTED AGENT INTERACTION
WITH ENVIRONMENT
Behavior of an agent Ni can be described as system node
abstract component in the environment E (from a class E of
environments), and which produces a sequence of states or

snapshots of that environment. A performance measure U ()
evaluates this sequence; see the box labelled ‘‘Performance
Measure’’ in Figure.4. Let V (f ,E,U ) denote the expected
utility according to U () of the agent function f () operating
on E {}.

EachNodeX(N); Defined as TrustedAgent= {Ni andwith
activation function ai }

Trusted Agent as Ni and activation function ai

Ni =

∑
j=0..N

wijaj

ai = g (Ni) = g
(∑

j
wijaj

)
(7)

Each Environment E has set of nodes; NE:{N1, N2, N3, . . . ,
Nn}. Each environment can be monitored with set of trusted
agents or nodes. Each node can be defined as a trusted agentor
agents can be defined as system nodes depending on the
context.

Let V (f ,E,U ) denote the expected utility according to U
of the agent function f operating on E. We identify rational
agent with an agent function:

fopt = argmax
f
V (f ,E,U ) (8)

Throughput of each Node X(N); monitored via trusted Agent

A{}and nodes N{}

Trusted Agent A{}

= {iN i and with activation function ai}
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FIGURE 4. Trusted agent environment interaction workflow 1 to 4.

The goal for the set of agents A{} and nodes N{} are to
maximize the expected utility V() of the set of environments
E{} by monitoring behaviors with fopt () function via trusted
channels. Set of dynamics packets p<> are observed in
distributed checkpoints within the trusted execution environ-
ments (TEE).

Behavior of the trusted agent A{} is monitored within set of
nodesN{} in the Environment E∈E {}with four steps below;

Step 1:TrustedAgent A{} produces a sequence of states
or snapshots of that environment.
Step 2: Performance measure U () evaluates this
sequence
Step 3: Let V (f ,E,U ) denote the expected utility
according to U of the agent function fopt () operating on
E{}.
Step 4: Monitors System/User Behavior with the Per-
formance Indicators
a. Quantifies and measures trust in system within set

of nodes Ny}
b. Maximizes expected utility V()

fopt = argmax
f
V (f ,E,U ).

Thereby, learning goals can be accelerated with dynamic
feature vectors as feedbacks to assure continuous growth
of the agents and the environments. Trusted Agent iN i in
an environment interaction workflow 1-4 is illustrated in
Figure.4. Rationality of agents can enable to interact with the
environment in dynamic context via trusted channels.

Transaction flow 1 to 4 repeats for continuous growth-flow
of intelligent-system.

(1) Trusted Channel Builder starts transaction-flow
(2) Sensors interacts with environment,
(3) Actuators monitors/detects from environment,
(4) Performance element updates/trains the agents.
Throughput values of each nodeX(N) is monitored dynam-

ically with expected average threshold limits.
Table.2 in next chapter illustrates the selected metrics and

regulative constraints identified in this study. The algorithm
called Trusted Distributed AI (TDAI) runs as below steps.

Set of Trusted Agent Ni in an environment gets the fea-
ture sets dynamically as input and produces set of targeted
outputs; such as, risk alerts for the environment dynamically.
Figure.5 illustrates the pseudocode and TEE based interaction
in set of environments E{}.

The loop enables continuous growth of the system with
feedback controller and holistic view to the context with an
end-to-end TEE (Trusted Execution Environment).

In order to be able to interact with each node, system level
design perspectives are required, since the interactions with
set of nodes NE:{N1, N2, N3, . . . , Nn} in a context are also
dynamic and it is not only data dependent but also other
dependencies arises up to context features. However, data is
the key component to track transaction states and required
knowledge-bases to assure the integrity and growth of the
mechanism.

Chapter.III explains the TDAI system components and
nodes in detail. Figure 5.a introduces the basic pseu-
docode for TEE based interaction with the environment. Each
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TABLE 2. Monitoring metrics/parameters of a node.

Environment E{} has set of snapshots for selected time spans
of the observed context. Set of nodes N{} in a context are
observed dynamically with set of Trusted Agents A{}, which
are embedded to OBU (On Board Units/Computers) of each
node.

Figure.6 in chapter III illustrates the main components of
the OBU nodes and interaction with the dynamic context with
(1) Central (2) Decentral/autonomous (3) Distributed/Hybrid
system architectural design perspectives. Thereby, we can
say that the generic and dynamic holistic abstraction [5] can

FIGURE 5. a Pseudo code for TEE based interaction with the environment.

FIGURE 5. b Pseudo code for TDAI trust verification for continuous
growth-flow.

be applied to obtain dynamic holistic view of the context
with trust factor coefficient-based throughput maximization
approach.
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Performance measure U() function is dynamically merged
from the dynamic context with an expected utility max-
imization function V (f ,E,U ). Furthermore, within the
well-defined parameters of the Environment E{}, optimiza-
tion function fopt () is also defined dynamically to improve the
knowledge base built with feature vector functions v< ∗ >.

So that, the agent function fTrustedAgent{A{}}(EN [∗]}) can
be operated dynamically in set of environments within end-
to-end Trusted Execution Environment (TEE) to maximize
the dynamically defined improvement parameters with a
dynamic optimizer fopt = argmax

f
V (f ,E,U ) to ensure the

continuous growth-flow of the observed context as introduces
in below pseudocode of Figure 5.b.
Next chapter introduces the TDAI system nodes and the

components, which has a dynamic growth-flow mechanism
based on continuously justified feedback-structures for opti-
mal trust level of the trusted system.

III. TRUSTED DISTRIBUTED AI SYSTEM ARCHITECTURES
AND COMPONENTS
In this section, we introduce three categories of sys-
tems (1) Centralized (2) Decentralized/autonomous (3) Dis-
tributed/Hybrid design perspectives and hypothesis with
theorems regarding the applicability of TDAI methodology
to such systems. In fact, the first category of systems enables
fully connected context but it faces connectivity and band-
width limitations, while the second category enable to design
fully decentralized autonomous nodes but capacities are lim-
ited with edge node feature sets. The third one can maximize
connectivity and interactivity with distributed nodes N{} and
hybrid system design paradigms.

Following sub-sections will describe themain architectural
and component features required for the applicability of the
TDAI methodology described in the previous section and
applied in different contexts.

A. SYSTEM NODES AND COMPONENTS
Trusted agent structure iN i and interaction flow with the
environment is formally stated in previous section II. This
section introduces TDAI system node main components
and architectural perspective differences. Throughput values
of the nodes X(N) are monitored dynamically via interac-
tion units called OBU (On Board Units) in the context of
mobile nodes and other linked nodes when required. The
node can be any kind of edge device/computers such as:
mobile/smart phones/watches, servers, storages, network-
ing/communications gateways etc.

Basic components of an OBU device is illustrated in
Figure.6, which are: trusted agent (for TDAI needs), con-
nection ports, processor, and memory. Interaction intra-nodes
and the environment can be iteratedwith (1) central (2) decen-
tral (Autonomous/Embedded/Local), (3)distributed/hybrid
mechanisms. Rest of the section introduces the main
design paradigms and hypothesis proposed regarding the
methodology.

FIGURE 6. OBU system components.

Each node N{} in different contexts interacts with set of
Environment E{} via TDAI methodology and embeds the
critical metrics and parameters dynamically to the packages
p<> as stated in equation 9. The packages are dynamically
monitored in critical checkpoints and detect/react mecha-
nisms are triggered depending on the threshold values of the
alerts (trust values ae under the expected value). The metrics
listed in Table.2 is transmitted from each node as a packet;

p =< nid , nst , ne, nl, nid , nk , nT , nchsum, nc, nρ, nd >, (9)

The packages p<> are monitored dynamically and related
feature sets are vectorized within the continues growth-flow
mechanism as represented in Figure 5.b. Each architectural
design has critical advantages and limitations ad summarized
in Table 3. It is clear that distributed design is required to
be able to ensure trusted interactivity, which will be for-
mally proved in next subsections. Next section gives details
on centralized design and its limitations with regard to the
applicability of TDAI methodology.

B. CENTRALIZED (FULLY CONNECTED)
Centralizing interactions of the nodes in a system has
advantages; such as, integrity of the design, accessibility
of resources, assuring trusted connectivity of components.
However, increasing diversity of the components and decen-
tralization of data/memory resources require system level
design reconsideration. Due to computational scalability limit
of algorithms and control structures, it is not feasible to
centralize the resources [7]. Figure 7 illustrates is a typical
example showing the basic components, which are a central
cloud, mobile nodes, and fog layer-based networking and
communication components.

As the number of the node NE:{N1, N2, N3, . . . , Nn} in
the context increases, throughput of the system decreases
as illustrated in Figure.3.a. Fortunately, making the system
trusted can help maximize the total throughput of the system
with less number of nodes, see Figure.3.b. Thereby, we can
assume that in order to be able to make the system trusted
and scalable, the nodes have to cooperate and share the tasks
to be able to ensure the integrity. Next subsection briefs
about decentralized design basics as another approach, which
enables to maximize capacities of each node.

C. DECENTRALIZED (AUTONOMOUS/EMBEDDED/LOCAL)
Decentralized design enables each node to have mem-
ory/storage and networking/communication components
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TABLE 3. Distributed design critical features advantages/disadvantages comparison (‘‘+’’: advantages, ‘‘– ‘‘= disadvantages).

FIGURE 7. Centralized (Fully connected).

independently. As the Moores’s law disappears with emer-
gence of 3D-Stack memory and storage components, data
capacities can be maximized within the autonomous nodes
as decentralized mechanism. By that means, the interac-
tions intra set of nodes NE:{N1, N2, N3, . . . , Nn} can
be minimized and networking and communication bottle-
necks are minimized as well. However, data intensive nature
of emerging intelligent systems generates peta-scale data
and require real-time massive analytics. Therefore, dis-
tributed design is required to be able to assure required
throughput (as one of the TDAI metric) of each node
and minimize crosstalk and contention bottleneck in total
system [7].
Next subsection introduces basics of the distributed and

hybrid design approach and compares advantages and dis-
advantages of each approach by correlating with expected
throughput values (as one of the TDAI metric) of the nodes
X(N) within the observed environment E{}.

FIGURE 8. Decentral (Autonomous/ Embedded /Local).

D. DISTRIBUTED (EDGE/HYBRID)
Previous two approaches (1) centralized (2) decentralized
ones can enable to build a joint knowledge base, is enough
for most cases as compared in above Table 3. However,
as the growth acceleration of the emerging intelligent systems
increases exponentially, the third approach is important since
distributed design becomes de facto paradigm for throughput
level requirement of each node and the total system.

Since the diversity of the components and number of inter-
acted nodes increases exponentially, behavioral integrity of
total system and transactions have to be assured in real-time
to be able to keep the critical system constraints. Figure 9
illustrates multi-layer abstraction approach and distributed
connectivity channels between the components. Each node
has an on-board unit and an embedded trusted agent (out
of the TDAI methodology requirement) to interact with the
environment. Trusted channels ensure and maximizes con-
nectivity of the components.

Trust factor coefficient-based throughput maximization
methodology [7] can enable to build end-to-end trusted
scalable channel within the components and total system.
Throughput value of each nodeX(N) is observed dynamically
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FIGURE 9. Distributed (Edge/Hybrid).

and the agent function fopt = argmax
f
V (f ,E,U ) operates

continuously to assure coherency and continuous growth of a
system.

Table 2 Introduces metrics, parameters, and regulative
constraints observed in this study. Table 3 introduces basic
comparative analysis and advantages/disadvantages of dis-
tributed design over other approaches with identified system
features. Next subsection articulates how this approach of
TDAI can be utilized to enable TEE based networking
for trusted channel as SDN (Software Defined Network-
ing) feature of the growth-flow mechanism as visualized in
Figure.10.a/b.

E. TEE BASED NETWORKING FOR TRUSTED CHANNELS
AS SDN (SOFTWARE DEFINED NETWORKS)
Increasing diversity of the components of the nodes NE:{N1,
N2, N3, . . . , Nn} and data intensive nature of the sys-
tems require critical updates in networking paradigms also.
Data-flow processes are improved with virtualized network
functionalities, which have software-controller based switch
and router design approaches [8], which is called soft-
ware defined networking (SDN). The innovation enables
dynamism for the growth-flow mechanisms of the emerging
intelligent systems, which require (near) real-time interactiv-
ity constraints of the trusted agents.

As the virtualized components increase in the systems,
abstraction paradigms are also rethought such as holistic
views [7]. The innovations enable to design end-to-end
Trusted Execution Environment (TEE) as illustrated in
Figure.4 to ensure interactivity within the environment E{}
more coherently. The proposed approach can enable to ensure
network scalability and throughput maximization of emerg-
ing software defined networking-based systems.

Furthermore, it can be utilized to monitor systems and
user behavior to minimize misbehaviors with a holistic view
to the system [7]; such as, emission generated by cars and
EMF generated by emerging computational/memory units of
intelligent-systems with set of the nodes NE:{N1, N2, N3, . . . ,
Nn} as dynamically controlled features of the growth-flow
mechanism. Next subsection introduces security, privacy,
trust metrics and package transmission approach of feature

FIGURE 10. a End-to-end TEE Flow Diagram.

FIGURE 10. b High-level view of proposed Mechanism and learning
approach for continuous growth.

vector structures with TDAI and introduces theorems and
hypothesis of TDAI methodology with distributed design
paradigms.

F. SECURITY, PRIVACY AND TRUST METRICS
As the diversity of the components increase, security and
privacy are also considered as key trust metrics within TDAI.
Security by design principles enable to design more robust
and secure intelligent mechanisms. However, security con-
straints still cause dependency to a custom hardware design
and limits software driven dynamic reconfiguration for adap-
tive systems.

Fortunately, emerging TEE mechanisms like Open-TEE
[9] can help to make the system software driven trustedmech-
anisms with dynamic compiling structures to any platform.
Thereby, we can obtain measurable dynamic trust metrics as
feature vectors within the transaction flow and package trans-
mission processes; such as, checksum values of packages,
trust factor of the nodes in the system, latency values of the
transactions. See Table 1 and Table 2 for the identifiedmetrics
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FIGURE 11. TDAI vs other approaches.

and features of TDAI for a package p<> based observation
within the dynamic context.

Virtualized functionalities of software driven TEE ecosys-
tems, can help to overcome limitations of hardware isolated
TEEmechanism in state-of-the-art designs. Dynamic compil-
ing and testing approaches, which are (1) black box (2) gray
box (3) white boxes arewidely implemented for cryptography
and testing features. Main differences are summarized in
Figure 11.

However, emerging paradigms triggers architectural
improvement need concerns also. For instance, decentraliza-
tion of resources requires updates in many system layers in
real time, which is only possible with distributed and hybrid
design approaches. Thereby, TDAI can enable dynamic
testing as user and developer with risk prediction and mini-
mization via monitored set of network packages p<>, which
have embedded feature to be compressed/decompressed in
available check-points.

Distributed check-point mechanisms are dynamically cor-
related with throughput values of each node X(N), with
respect to the regulative constraints identified in Table 2 as
critical features of the observed environment E{} with set of
nodes NE:{N1, N2, N3, . . . , Nn}.
So that, we can state the hypothesis and theorems with

TDAI with a comparative analysis on growth acceleration of
the mechanisms, which have

(1) Centralized.
(2) Decentralized/autonomous/embedded.
(3) Distributed/hybrid architectural perspectives.
Figure 10.a illustrates the end-to-end TEE workflow dia-

gram. The loop repeats continuously while the monitored
set of Environments E{} has active nodes to ensure the
growth-flow of the context.

Furthermore, dynamic optimizer function f opt =

argmax
f

V(f ,E,U) maximizes expected utilities of each

node via trusted agents f TrustedAgent{A{}}(EN[∗]}).
However, interactivity of these agents is strongly depen-

dent of embedded feature transmission via set of network
packages p<>. Fortunately, these features can be com-
pressed/decompressed within reasonable latency thresholds
of the emerging OBU mechanisms as feature vectors V<>

via dynamically observed packages p<>.

Theorem: So that, we can claim that it is possible to ensure
the growth-flow of a dynamic environment with set of nodes
EN[∗]} with

• Centralized,
◦ NE:{N1, N2, N3, . . . , Nn} are fully connected to mas-

ter node.
• Decentralized/autonomous/embedded

◦ NE:{N1, N2, N3, . . . , Nn} are not connected but has
(near) real time connectivity feature to each node and
master when required

• Distributed/hybrid-design perspectives of TDAImethod-
ology.
◦ NE:{N1, N2, N3, . . . , Nn} are fully-connected to each

other and master node also in real-time via edge node
or any other available node to the master node when
required.

The claim can be formalized as below in Equation 10.
Growth-flow of (1) Decentralized (2) Centralized (3) Dis-
tributed design can be arranged as below equation 10. Since,
distributed design can enable to maximize total throughput of
each node X(N) and total system.

Next section evaluates the methodology and introduces
validation for the proposed theorem after a short proof of the
statement below.

fDecentralizedGrowth of E[N] (N1,N2, . . . ,Nn)

< fCentralizedGrowth of E[N ] (N1,N2, . . . ,Nn)

< fDistributedGrowth of E[N ] (N1,N2, . . . ,Nn) (10)

Proof: The proof for TDAI methodology can be corre-
lated with the risk alerts minimized in the monitored context.
It is observed that TDAI can enable to minimize the alerts in a
dynamic context, for which the results are briefly introduced
in next section and will be discussed in details within the
related future works.

fNumberOfAlerts of Distributed E{N[∗]} (N1,N2, . . . ,Nn)

< fNumberOfAlert Centralized E{N[∗]} (N1,N2, . . . ,Nn)

< fNumberOfAlert Decentralized E{N[∗]} (N1,N2, . . . ,Nn) (11)

As formulated in above equation 11, we can say that
number of alerts are minimized via TDAI, which have dis-
tributed/hybrid design, it outperforms other centralized and
decentralized/autonomous design perspectives.
Minimized risk alerts of dynamic context, is illustrated

above Equation 11, proves that interactivity of the nodes
and growth-flow of the context can be maximized with a
distributed design rather than central and autonomous ones.
So that,
Throughput of each Node X(N); in an Environment E {}

can be monitored in (near) real-time via trusted Agent A{}
and set of nodes N{} can be improved continuously with
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dynamic growth-flow mechanism

fTrusted Agent{A{}}(EN [∗]})

Trusted Agent A{}

= {iN iand with activation function ai} (12)

Each feature of the linked nodes is improved with activator
level ai,j dependency;
Trusted Agent as Ni and linked activation function g() are

triggered depending on the activation level of the ai where
set of nodes N{} monitored continuously via package p<>

within the environment EN [∗]},

Ni =

∑
j=0..N

wijaj

ai = g (Ni) = g
(∑

j
wijaj

)
. (13)

Trust value tai (0,1) of activator threshold level ai monitored
continuously where;

tai = Average

(
i∑
0

Ni

)
,Nϵ transaction flow

The activation levels are linked to trust level of the nodes
within the observed EN [∗]} as dynamic growth-flow mech-
anism of TDAI methodology as stated in above equation 12
and equation 13.

Next section introduces initial experimental validation
results with trust factor coefficient theorem [7] based
total system throughput maximization approach. In which,
we experimentally validate and demonstrate promising per-
formance of TDAI methodology within real-life use-cases of
a smart-city to minimize the risk alerts within the observed
context.

IV. EVALUATION AND DISCUSSION
A. EXPERIMENTAL VALIDATION ACTIVITIES
In order to demonstrate the proof for TDAI methodology,
each critical metrics and parameters up to impact on through-
put level of each node’s trust factor [7] listed in Table 2
are correlated dynamically with expected throughput values
of the nodes and the context. The correlations are utilized
dynamically with TDAI riskminimization approach to ensure
growth-flow within the observed environment EN [∗]}.
Thereby, set of trusted agents fTrusted Agent{A{}}(EN [∗]})

operates in dynamic context of the observed Environment
E{} to monitor misbehaviors and maximize trust factor of
each node and total system and generates risk alerts when
there is impact on throughput levels of the monitored nodes
N{}. The time span and observation metric/parameters can
be limited to scope of Figure.13 to demonstrate TDAI perfor-
mance as in the defined cross-border smart-city scenario.

The scenario for the risk observations are based on a
DigiBank Intracontinental hybrid-cloud use-case for global
digital asset monitoring within a bank and an account based
on package p<> transmission traffic-based risk alerts within
the environment E{}.

FIGURE 12. TDAI micro-service architecture for trusted interactivity.

The monitoring periods are in limited time-span and uti-
lized between the USA-TÜRKİYE-EU during cross-border
mobility evaluations of the bank account transaction flow
analysis as summarized in Figure 13.

The risks metrics and parameters are broadened with
further parameters of a custom designed simulator for the
simulation of accident detection and signal propagation anal-
ysis as represented in Figure 14 with dynamic holistic views
of the observed environment EN [∗]}.
Dynamic holistic views are updated dynamically with data

sensor fetching as illustrated in Figure 10.a with dynamically
updated feedback controllers. Furthermore, features embed-
ding mechanism also ensure the continuous growth of the
context depending on throughput values of each node X(N)
with respect to 1/λ as indicated in Figure.10.b. Furthermore,
Figure 12 illustrates the TDAI microservice architecture,
is designed to ensure andmaximize interactivity of the trusted
agents. Next chapter introduces the critical parameters and
the correlation approach to minimize the false-positive alerts
of the dynamic environment to maximize growth-flow of the
observed context.

The simulation scenario for experimental validation,
is visualized at Figure.14, targets trusted observation within
the EN [∗]} is defined to detect critical risk alerts with TDAI
utilization. The alerts are ported to growth-flow mechanism
of TDAI approach via package p<> transmission dynami-
cally to train the DigiBank hybrid-cloud system, which have
5G connectivity features also for (near) real-time package
transmission capacities of the monitored nodes N{}.

Critical metrics and parameters of package p =<

nid , nst , ne, nl, nid , nk , nT , nchsum, nc, nρ, nd >; such as,
throughput GBPs, EMF v/m, latency ms, are defined as
critical risk resources nR and activation threshold ai within
the EN [∗]}. Next subsection articulates the correlation and
alerting approach utilized for the observations.
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FIGURE 13. TDAI sample experimental observation.

FIGURE 14. MEMCA-Hybrid cloud for generic smart city emulation and TDAI trusted interactivity experimental observation with sample DigiBank
monitoring application [7].

B. CORRELATION AND ALERTING APPROACH
As stated in trust factor coefficient theorem [7], trust value
of each node is correlated dynamically to throughput and the

metrics, which have direct impact on it. Furthermore, it is
proportional to generated risk alerts nR from the nodes as
formulated in equation 14.
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TABLE 4. Alert sources in a dynamic environment with set of nodes
E{N[∗]}.

Additionally, Table 2 illustrates the monitoring met-
rics/parameters of each node and critical identified regulative
constraints, which are EMF, SAR and Power values of each
node and the observed dynamic context. Low emission driv-
ing constraint defines a trusted system as a system that
cannot exceed/generate a certain level of emissions. To do
so, it has to take care of the following elements, and find coun-
termeasures, when necessary (e.g. with optimization), so that
overall trust value of each node controlled and correlated to
risk alerts in (near) real time. Equation 14 below formulates
the risk monitoring model and trust value correlation of an
environment EN [∗]}.

tNi

= Average

(
i∑
0

Ni.ttrustvaluet∈{0to1}

Ni.R(total risk alert number)

)
,

Nϵthe nodes in observed Environmment E {N [∗]} (14)

As stated in above Equation 14, the trust values are directly
proportional to risk alerts of resources as set of nodes N {}.
Thereby, the metrics have impact on the risk alerts can be
defined as other critical constraints of the observed context.
By that means, critical alerts from legal constraints violations
are the major trust indicators and threshold bounds ai have
direct impact of throughput level of the nodes and linked trust
values. Table.4 visualizes list of alert resources within the
observed 4G and 5G traffics.

TDAI performs promising performance of detection of the
legal constraint based critical alerts, which results in account
termination and bank investigations with %100 ratio for the
observations of the main transactions linked to monitored
nodes. On the other hand, further parameters and metrics can
be defined with custom designed simulator as visualized in
Figure.14. Below are the some of the other critical observa-
tion metrics for TDAI methodology for further risk analyzes
and observations;

- The behavior of the driver, which directly impacts the
emission level. It can be measured by inferring the acceler-
ation of the car, which obviously depends on the way the
user accelerates or decelerates. With this value it is possi-
ble to deduce how much a driver is aggressive, slow, etc.
This acceleration profile can be computed with GPS, RPM
(Revolution PerMinute) or the smartphone’s accelerometer
for instance depending on the position of the device in the
car. The driver him/herself is also important, since the age,
driving habits and experience are all factors that obviously
influence the behavior.

- The vehicle itself, and most specifically its maintenance
and type (e.g., age, engine, etc.) – A old vehicle for instance
usually generates more emissions that a recent.

- Environmental conditions: weather, road traffic, etc. can
affect the emissions generated by tires, brakes and exhaust
emissions.

- The profiling and recommendations systems that are
embedded in the app and that are only using local routines,
so only a limited information knowledge that can easily be
influenced negatively – thus biasing the recommendations.

- The connectivity part used to transmit the data – if false
data is sent, then the models will not be accurate.

Furthermore, other metrics from data sensors e.g. data col-
lected through the OBD dongle includes Gas pedal position
(%), RPM, Gear position, Fuel consumption, Mass Air Flow
(MAF), NOx sensor, Vehicle speed, Engine Coolant Temper-
ature, Steering wheel angle, Catalyst Temperature Banks &
sensors, Air pressure, Engine out NOx emission are defined
as critical constraints of TDAI.

The more metrics are observed the more trust level
between TRL 1-5 can be assured and justified proportionally
in a dynamic context with trusted agents based continu-
ous growth-flow mechanism in the monitored context via
fTrusted Agent{A{}}(EN [∗]}).
However, each feature causes a justification process and

increases the trust cost exponentially as formulated in
Figure.1.a. Therefore, TDAI limits the critical constraint
and metrics as selected in Table.1. The more trust value is
depending on the risk alerts in the context which have impact
on required throughput values of the nodes as summarized
in Figure.13 with a holistic view to the context within the
selected time frame.

Dynamic holistic views can help to accelerate the
growth-flow with trusted feedback structures, which have
(1) Centralized (2) Decentralized/autonomous (3) Dis-
tributed/Hybrid design perspectives.

Since, distributed design can enable to maximize total
throughput of each node X(N) and total system with utiliza-
tion of TDAI with maximized growth-flow of the observed
environment EN [∗].

To sum up, it is observed that in initial simulations of
TDAI, as briefed in Figure 14, which has trusted interactiv-
ity since it can be assured at massive scale with minimum
risk alerts as summarized in Table 4. TDAI can merge the
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feedbacks in (near) real time and detect the risk with 70%
true positive detection performance with scaled up alerts and
trustfully utilized MEMCA holistic views [7] for accelerated
growth-flow mechanism.

MEMCA hybrid-cloud is utilized to develop generic smart
city emulation and ensure trusted interactivity with TDAI for
a sample DigiBank financial transaction monitoring appli-
cation. So that, we can ensure optimal trust in observed
Environment E {Nodes[∗][ ‘Alerts’]} and correlate potential
risks with trust values of each nodes with minimized risk alert
and maximum growth-flow performance as summarized in
Figure 13, in which each node and total system can succeed
the expected throughput levels in (near) real time thanks to
TDAI based trusted interactivity of the context and maxi-
mized growth-flow performance with dynamic holistic views
to the system.

V. CONCLUSION
To sum up, we can state that three main architectural
perspectives (central, decentral/ autonomous/ embedded, dis-
tributed/hybrid) can enable to build basis for TDAImethodol-
ogy to ensure end-to-end trust in holistic AI system life-cycle.
Distributed/hybrid designs can enable to improve total system
performance and ensure growth-flow in dynamic context.
So that, computational algorithm can be decentralized with
task cooperation approaches and data caching policies with
trust factor coefficient based total system throughput maxi-
mization approach and TDAI based multi-agent system with
maximized interactivity.

Any other critical constraints, which have impact on
expected throughput values of the nodes are defined as risk
alerts and critical constraints of TDAI. Thereby, main sources
of the alerts can be detected in (near) real time and ported to
growth-flow pathswith trusted feedback controller structures.
So that defined critical constraints summarized in Table 4,
e.g. EMF, bandwidth congestion, system throughput limits,
saturation effects can be detected and false-positives values
can be minimized for optimal system resource management.
The more trust in the context, the less alerts generated in
observed context and continuous growth-flow can be assured
for maximum trust values of an environment with set of nodes
EN [∗]}.
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these data into information and decisions guaranteeing the alignment of
the infrastructures with the business services delivered. Examples of such
systems include: supply chains, mobility systems, ICT/Telco systems and
communication networks, remote manufacturing, and space systems. The
reliable distributed systems research activities are dealingwith the design, the
security, and the optimization of service systems enabled by data-intensive
infrastructures engineering and aligned with the creation of business impact.
The actual research activities will target the following topics, such as
optimization and decision-making systems (OPTIMISE), edge computing
and networks (EDGE), and trustworthy data systems (TRUST).
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