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ABSTRACT Mobile Edge Computing has been widely recognized as a key enabler for new latency-sensitive
applications on resource constrained mobile devices. The objective to offload a computationally intensive
task to a cloud server is in general intended to reduce the system’s energy consumption and/or latency. In this
paper, we attempt to examine how profitable computation offloading is from a service provider’s perspective.
The joint optimization of radio and computing resources along with offloading decisions results in a mixed
integer nonlinear optimization problem which belongs to the class of NP-hard problems. To counter this
challenge, we decouple the offloading decision from the resource allocation problem. Initially, approximately
optimal offloading decisions are determined using evolutionary algorithms such as genetic algorithms and
binary particle swarm optimization algorithms. After several iterations of the evolutionary process to make
offloading decisions, the optimal solution is ultimately obtained that performs resource allocation based on
exact calculation of the profit value. For faster execution of the evolutionary algorithm, instead of using an
optimization solver to find the exact solution, we use a novel approach to seeding the initial population and
a regression-based machine learning method to predict the optimal resource allocation values to minimize
the objective function evaluation time. According to the simulations performed as part of this study, the
proposed evolutionary algorithms outperform existing spectral efficiency-based offloading algorithm in
terms of profitability, with shorter execution times as well. The effects of resource availability and the
parameters of the algorithm on the profitability of offloading are also examined.

INDEX TERMS Computation offloading, genetic algorithm, binary PSO, profit in MEC.

I. INTRODUCTION
As latency-sensitive and computationally intensive services
such as AR-VR and autonomous vehicles are emerging, the
demand for computation capabilities in mobile devices has
increased tremendously. Also, because the battery capacity
of these devices grows only at a rate of nearly 5-6% every
year [1], supporting these services becomes even more
difficult. The main constraints of mobile computing are
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limited energy, low computation capabilities and limited
wireless bandwidth, all of which require mobile devices to
offload computationally intensive tasks to nearby servers.
Researchers have examined whether or not such offloading
can save energy [2]. Broadly, offloading mechanisms can be
divided into two types. In the first type, mobile terminals
determine whether to offload or not by comparing the
energy consumption of executing a task locally with the
energy consumption of sending data to an edge server for
processing [3]. In the other type of offloading, the edge server
has a central control unit that contains all task information
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and the channel state information (CSI) of all connected user
equipment (UEs). It then decides which UEs will offload
tasks based on a task partitioning framework [4] and on the
joint optimization of energy consumption under latency and
other resource constraints [5], [6].

The cloud radio access network (C-RAN) [7] and mobile
edge computing (MEC) [8], [9] are two exciting cloud
technologies which can play a pivotal role in supporting
upcoming services on mobile terminals. C-RAN is a form of
distributed base station deployment in which there is a central
base band unit (BBU) pool and many remotely connected
remote radio heads (RRHs). In cloud RAN, the BBU pool
is responsible for PHY baseband processing and MAC layer
processing and requires strong computing resources. The
RRHs transmit and receive the signals from BBU pool via
a fronthaul link. It also communicates these signals to mobile
users on the RF frequency band. On the other hand, MEC
brings the concept of cloud computing to the cellular network
in order to handle computationally intensive and latency-
sensitive applications. So, it is necessary to decide whether to
offload the tasks generated by the application to a nearby edge
server to save the terminal’s battery instead of processing
them locally. In the efforts to achieve an efficient offloading
strategy, joint optimization of radio and computing resources
remains a challenge because such resource allocation prob-
lems often tend to be of the NP-hard type. In [10], the authors
presented a survey of the MEC research literature related
to joint optimization of resource allocation. As the system
becomes more complex, solving an optimization problem for
energy efficiency or latency of the overall system becomes
computationally demanding. Therefore, a distributed opti-
mization algorithm for multi-cell MEC was developed [11].
In this paper, however, we confine our discussion to the
formulation of a strategy for computation offloading so as to
maximize the network operator’s profit. The reader interested
in computation offloading modeling and approaches to
solve such resource allocation problems is referred to
an earlier study [12] for a comprehensive survey of the
topic.

A. RELATED WORKS AND OUR CONTRIBUTIONS
Researchers have formulated a multi-objective optimiza-

tion problem for MEC, taking into account user satisfaction,
profit of the network operator and resource utilization of
cloudlets [13]. The authors in [14] proposed a multi-objective
evolutionary algorithm based on a genetic algorithm, and
suggested applying the statistics-based Taguchi technique
to determine the parameter values of the genetic algorithm.
In other work [15], the authors used migrating bird [16]
and simulated an annealing based algorithm for profit opti-
mization. The modeled optimization problem was nonlinear,
which was then converted to an unconstrained optimization
problem using penalty terms. In [17], the authors formulated
a non-convex joint optimization problem of service caching
and computation offloading to maximize profits inMEC. The
optimization problem was difficult to solve, so the authors

designed an algorithm which used Lyapunov optimization
theory to transform the original long-term problem into
a slot-by-slot optimization problem that can be solved by
knowing only the current slot information. Other authors
formulated a profit maximization problem in MEC with
the C-RAN scenario and proposed the spectrum-efficiency-
based joint optimization of offloading and resource allocation
processes [18].
MEC will become a key pillar of 5G and 6G networks

to support ultra-reliable and low-latency communications
(URLLC). Further, computation offloading is one of the
important use cases of MEC. Based on a literature survey
focusing on MEC, we define the problem of the joint
optimization of resource allocation and offloading decisions
where the objective is to maximize the profit of the network
service provider in a C-RAN scenario.
• Using a system model and problem formulation pro-
posed earlier [18], we adopt a different solution strategy.
Instead of relying solely on the spectrum efficiency of
the RRH-UE links for offload decisions, we add task-
related information to the spectrum efficiency to create
a ranking. UEs with higher ranking are likely to generate
more revenue for the service provider.

• We propose solutions based on a genetic algorithm and
particle swarm optimization for the joint optimization
problem of finding computation offloading strategy and
resource allocation method. For the rapid execution
of the evolutionary algorithms, we use a machine
learning based regression model to predict the resource
allocation values during the evolutionary cycle. Also,
we compare the proposed algorithms with other existing
algorithms to demonstrate their superior performance.
The proposed algorithms have nearly a constant exe-
cution time which does not increase with an increase
in the number of UEs, making them ideal scalable
solutions.

• Lastly, the impact of resource availability on profitabil-
ity of computation offloading is examined.

II. SYSTEM MODEL
Weconsider a scenario inwhich aMEC server is collocated

at the BBU pool of a C-RAN. The RRHs are connected
to the BBU pool via fronthaul links. The mobile devices
are connected to RRH via wireless links. We assume that
the computation capacity of each mobile device is limited.
Thus, the MEC server allocates computational and radio
resources for the mobile device’s computational processing.
The offloading scenario assumes a task-aware approach,
which means that the offloading strategy is determined by
considering the types and characteristics of the task. For
the offloading service, the UEs must send a prior indication
signal to the MEC server, which then charges the UEs for
caching, processing and sending the results. If the MEC
server does not accept a UE’s request, the UE then executes
the task using its local CPU. Accordingly, no revenue is
earned by the service provider in this case. Hence, the MEC
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FIGURE 1. MEC in C-RAN system.

service provider must choose a combination of UE tasks to
maximize its profit.

In the C-RAN structure, let N = {1, 2, . . . ,N } be the
set of RRHs connected to the BBU pool through fronthaul
links. LetM = {1, 2, . . . ,M} be the set of UEs accessing the
network through these RRHs. For simplicity, we assume that
each UE and RRH is equipped with only a single antenna.
The offloading matrix is A =

{
am,n

}
M×N ,∀m ∈ M,

n ∈ N , where a binary variable am,n=1 implies that UE m is
permitted to access the MEC server through RRH n, and 0 if
not so. LetMp be the set of UEs that are permitted to offload
such that Mp

⊂ M. Considering the task awareness case,
we assume that the task data of the UEs has already been
cached into the MEC server. We denote a taskWm of UE m
by

Wm = (Fm,Dm,Tm,max), m = 1, 2 . . . ,M (1)

where Fm denotes the number of CPU cycles required to
accomplish the task, Dm represents the output data size to be
transmitted to UE m after the execution of the task on the
MEC server via RRH, and Tm,max is the time limit within
which the task execution result should finally reach UE m.

A. COMMUNICATION MODEL
It is assumed that the MEC server has access to full downlink
channel state information (CSI) from all RRHs to all UEs.
We consider a frequency reuse in multi-cell environment
where the spectrum used by RRH is overlaid, thus causing
inter-RRH interference. Intra-RRH interference is ignored
here because the spectrum is assigned orthogonally at the
RRH. The signal to interference plus noise ratio (SINR) for
RRH n transmitting to UE m is given as:

SINRm,n =
pngm,n

σ 2 +
∑N

j=1,j̸=n pjgm,j
(2)

where pn is the transmit power of RRH n; gm,n represents
the channel gain from RRH n to UE m; σ 2 is defined as
the variance of Additive White Gaussian Noise distributed
normally as N (0, σ 2). According to Shannon’s channel
capacity formula, the spectrum efficiency of UE m and

RRH n link is given by:

em,n = log2

(
1+

pngm,n

σ 2 +
∑N

j=1,j̸=n pjgm,j

)
. (3)

The total spectrum bandwidth that can be allocated at
each RRH is B Hz. The fraction of bandwidth that the RRH
allocates to an UE is represented by an element of matrix
b={bm,n}M×N ,∀m ∈ M, n ∈ N and further the sum of
total bandwidth fractions allocated at any RRH should be less
than one, i.e.,

∑
m∈Mp bm,n ≤ 1,∀n ∈ N . The achievable

instantaneous rate of UE m accessing RRH n can then be
calculated as:

Rm,n = am,nbm,nBem,n. (4)

Summing up the instantaneous rates offered by each RRH to
its client UEs gives the fronthaul capacity constraint,∑

m∈Mp

Rm,n ≤ Ln,∀n ∈ N (5)

where Ln is the fronthaul capacity for RRH n. The time taken
by the MEC to send the output data back to UE m after
execution is given by

T Tr
m =

Dm∑
n∈ N Rm,n

(6)

where
∑

n∈N Rm,n denotes the combined transmission rate
obtained from summation for all RRHs supporting offloading
to the UE m. We ignore the transmission time from MEC
to RRH as it is negligible compared transmission time from
RRH to the UE. The task uploading transmission time is also
ignored, as we assume that MEC has task awareness and that
the task data are already cached in the MEC server.

B. COMPUTATION MODEL
Once it is determined which UEs are permitted to execute
the tasks in the edge cloud, the MEC server then allocates
the computing resources to the permitted UEs (in terms of
CPU cycles/s). Let F denote the total computing resources
available to the MEC server. Then, we define cm ∈

[0, 1],∀m ∈Mp as a fraction of the computing resources (F)
allocated by theMEC server to UEm, which have a constraint
of

∑
m∈Mp cm ≤ 1. This results in computing resource

allocation set c={cm},∀m ∈ Mp. At this point, we can
calculate the execution time for task Wm on the MEC server
with

T Exe
m =

Fm
cmF

(7)

where Fm is the required number of CPU cycles for the
execution of task Wm and cmF is the computing resource in
cycles/s allocated to UE m by the MEC server. Hence, the
total time for task offloading process for UE m is determined
by the sum of the execution time in the cloud and the
transmission time back to the UE, as

Tm = T Exe
m + T Tr

m . (8)
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Also, for offloading to be useful to UEs, the amount of
computing resources allocated to a UE in the cloud should be
greater than its local computing resource (f Localm ), resulting in
the constraint

cmF ≥ am,nf Localm . (9)

C. PROFIT FUNCTION
The goal of this study is to maximize the profits of network
operators. Therefore, we need to model the revenue and cost
functions to arrive at the profit objective function. We define
the unit price charged per CPU cycle in the cloud as pf , the
fee for caching the original task data related to the size of task
data as Sm, and the unit price per bit for data transmission to
the UE as pt , respectively. The revenue that can be obtained
from offloading the task Wm for a permitted UE m is then
given as

�m = pf Fm + ptDm + Sm. (10)

Taking cost into account, the unit price of spectrum
assigned to a UE is qb per Hz and the unit price of the
computing resource is qc per CPU cycle/second. Finally,
considering the revenue and cost functions, the profit from
an offloading-permitted UE m is

Um = �m − κcmFqc − ω
∑
n∈N

bm,nBqb (11)

whereω and κ denote the impact coefficients which represent
the tradeoff between scarcity and price fluctuation of the
spectrum resources and computing resources, respectively.

For simplicity, we define 0C
m = κFqc and 0T

m =

ωBqb, with the the overall profit function from all
offloading-permitted UEs then defined as

U =
∑

m∈Mp

(
�m − cm0C

m −
∑
n∈ N

bm,n0
T
m

)
. (12)

Therefore, our profit optimization problem can be written as

max
am,n,bm,n,cm

∑
m∈Mp

(
�m − cm0C

m −
∑
n∈N

bm,n0
T
m

)
s.t. C1 :

∑
m∈Mp

am,nbm,n − 1 ≤ 0,∀ n ∈ N ,

C2 :
∑

m∈Mp

∑
n∈N

am,ncm − 1 ≤ 0,

C3 : T Tr
m + T

Exe
m − Tm,max ≤ 0,∀m ∈Mp,

C4 :
∑
∀n∈N

am,nf Localm − cmF ≤ 0,∀m ∈Mp,

C5 :
∑

m∈Mp

Rm,n − Ln ≤ 0,∀n ∈ N ,

C6 : am,n ∈ {0, 1},∀n ∈ N ,∀m ∈Mp. (13)

The optimization problem above is a mixed integer non-linear
program which belongs to the class of NP-hard problems

FIGURE 2. Overview of the solution strategy.

in general. However, if we separate the offloading strategy
from the resource allocation problem, (13) is reduced to a
simple linear program problem. Therefore, first we attempt
to find an approximately optimal offloading matrix A using
evolution based methods and then use it as the input to the
aforementioned optimization problem to find the optimal b∗
and c∗. This is illustrated in Figure 2.

III. GENETIC ALGORITHM-BASED OFFLOADING
STRATEGY
A Genetic Algorithms (GA) is a type of Evolutionary
Algorithm [19] based on the concept of evolution through
natural selection, which is suitable for many types of
problems and can provide very good (not necessarily optimal)
solutions to difficult problems in a reasonable amount of
time. A GA is characterized by binary representation of
individuals, fitness proportionate selection, a low mutation
probability, and genetically inspired recombinations.

In [18], the authors outlined a spectral efficiency-based
joint optimization of radio and computing resources
allocation(SJOORA) for determining the offloading strategy
of (13). Here, we propose a genetic algorithm customized
to the problem scenario under consideration to find an
approximately optimal offloading strategy and compare its
performance with the SJOORA algorithm. When applying a
genetic algorithm that requires testing random populations
for candidate solutions, it is desirable to be able to easily
compute the fitness/objective functions for the solution.
However, the objective function in (13) is computationally
expensive to calculate. Using a typical genetic algorithm to
find the best possible offloading strategy, it can take a long
time to compute the optimal value of (13) multiple times.
This can severely constrain the MEC server, as computing
resources must be allocated for finding the optimal offloading
strategy instead of actually computing the offloaded tasks.
As a tradeoff between fast computation and finding an
optimum solution, we propose a fast genetic algorithm that
is suitable for this problem (13).

A. SIMPLE GENETIC ALGORITHM
For comparison with the proposed fast genetic algorithm,
we first describe a general method for applying a genetic
algorithm to (13), which we call the Simple Genetic
Algorithm (SGA) (See Fig. 3)
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FIGURE 3. A flowchart illustrating genetic algorithm.

First, the MEC server ranks each UE that requests an
offload service. This ranking is based on the computational
and communication requirements of the UE tasks and the
best achievable link spectral efficiency between the UE
and all RRHs. The process of ranking is as follows: First,
we create a task metric of UE m, λm = (λm1 , λm2 , λm3 ) =
(α1Fm, α2Dm, α3Tm,max) and get a metric value 3m =∑3

i=1 λmi of the task Wm, where αi’s are the weighting
coefficients of the λmi . We combine the elements of λm
linearly because the higher the computational requirement,
output data size, and latency constraints, the more revenue is
generated for the network operator. Another factor to consider
when ranking is the spectral efficiency of the links available to
the UE. Let em = max(em,n), ∀n ∈ N be best link efficiency
available to UE m among all the RRHs. Let r1 be the range
of task metric 3, i.e., r1 = max(3) − min(3) and r2 be the
range of max spectrum efficiencies em available to the UEs,
i.e., r2 = max(em) − min(em), ∀m ∈M. The metric Zm for
offload profitability of UE m is then given by

Zm =
r1 × em + r2 ×3m

r1 + r2
. (14)

UE tasks with more radio and computing resource require-
ments for execution, less strict latency demands and better
spectral efficiency are ranked higher. For the SJOORA
algorithm considered for performance comparison, each UE
only offloads to the RRH that provides the best spectral
efficiency.

Next, we find an approximate number of UEs whose
tasks can be offloaded under the resource constraints of the
MEC. Let this number be represented by τ . In other words,
τ ≊ card(Mp). This can be obtained by repeatedly solving
for the constraints in (13) using a cvx (SDPT3) solver [20],
where during every iteration of the loop, the optimization
constraints are solved for an increased number of UEs. The
loop stops when the problem becomes infeasible for the
current UE count. This number is used as the starting value

for the total number of UEs permitted to offload in the initial
population of the genetic algorithm (i.e., the number of ones
in a binary string).

Using τ , we create an initial population of NIND
chromosomes such that each chromosome has only τ number
of ones, with the remaining M − τ entries being zeros,
where NIND denotes the number of individuals in the
population. Note that the optimal solutions are expected
to contain more high-ranked UEs. Hence, we seed some
individuals in the initial population so that the number of
highest-ranked UEs in the chromosome has some fraction
of τ . The remaining individuals are generated by random
sampling so that each individual has τ number of permitted
UEs, where the probability of the selection of a UE is directly
proportional to its rating.

Following the steps above, we now have the total number
of NIND individuals to start the evolutionary process of the
genetic algorithm. The following steps are repeated for each
generation until we reach the MAXGEN generations:

1) First, we check the conditions for changing the
mutation rate and whether to terminate the evolutionary
cycle or not. Refer to the simulation code in earlier
work [21].

2) Next, for each chromosome given as input to the
offloading decision, we find the objective (profit) value
by solving (13). We normalize the objective values of
all chromosomes to generate a fitness vector.

3) We find the number of new individuals (offspring) to be
created from the existing population, i.e., new_NIND
= GGAP×NIND, where GGAP is the generation
gap having a value greater than 1. We create more
individuals than the existing population.

4) Next, we perform parent selection using a tournament
selection method [19].

5) We create new_NIND child chromosomes from a pool
of new_NIND parents using a recombination process
(Fig. 4).

6) For these new_NIND child chromosomes, we perform
a mutation operation, i.e., the flipping of bits at random
locations. The fraction of bits flipped is controlled by a
parameter called the mutation ratio (MUTR).

7) The objective value (profit) of eachmutated new_NIND
chromosomes is evaluated and the best NIND
individuals among them are chosen as the resulting
population for that generation.

In the final generation, the fittest individual, i.e., the
chromosome giving the maximum profit value is taken as
the output of the Simple Genetic Algorithm. Note that to
calculate the profit for a chromosome, the offload decision
matrix is derived by element-wise multiplying the transpose
of the chromosome vector by the initial offload matrix. This
initial offload matrix is identical to that in step 2 of Algorithm
1. The resulting offload decision matrix is fed as the input
to the optimization problem (13), which can then be solved
using an optimization solver.
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FIGURE 4. Recombination process.

B. FAST GENETIC ALGORITHM
The Simple Genetic Algorithm described in subsection
III-A requires much computation and takes longer time
to execute because the objective function is a constrained
optimization problem. Since computational offloading in
MEC is usually for delay-sensitive tasks, this is not a
favorable scenario towards a better solution. Therefore,
we propose a statistics-based fast genetic algorithm to take
full advantage of the genetic algorithm.

The Fast Genetic algorithm (FGA) follows the same
evolutionary steps as the SGA, except that the objective value
(profit) calculation is different. In the FGA, we define a
new objective function by adding penalties for constraint
violations to the objective function of the optimization
problem (13). Constraints in the optimization problem can
also be managed with other advanced methods [22], but we
prefer to use the penalty function approach for its simplicity
and faster execution. The penalty coefficients for constraint
violations in penalty functions were chosen empirically such
that the overall penalty for constraint violations can be
of the order of the objective function and to discourage
any infeasible solutions. By using this technique, we can
afford to start with a larger initial population and repeat the
evolutionary process for many generations to arrive at a better
final population in much less time as compared to the simple
genetic algorithm with the same parameter values. At the
end of the evolutionary process, we solve the optimization
problem (13) with the best of l individuals with highest fitness
in the final population, and select the most profitable one
among them as the final offloading strategy. l can be set to
a small value such as 3 or 5. Discussions of FGA can be
summarized in the form of Algorithm 1.
In section III-A, we used a convex optimization solver

to calculate the profit for a chromosome. However, the
‘‘CalculateProfit’’ function in the FGA Algorithm 1 does not
use the solver. Instead, it calculates the sum of the profit and
penalty for a given chromosome. The amount of penalty is
proportional to the number of constraint violations.

To calculate the profit with the ‘‘CalculateProfit’’ function
in Algorithm 1, we need some approximate values of radio
resource allocation b∗ and computing resource allocation c∗

for the given offloading strategy A. We use a decision tree
regression-based Machine Learning model in MATLAB to

Algorithm 1 Fast Genetic Algorithm
Input: e M N W B F NIND GGAP MUTR MAXGEN and

other simulation parameters
Output: Profit, Offloading strategy A
1: Create emax of lengthM where emax = max

n
(e),∀m ∈ M .

2: Create Ain where am,nin = 1 if n = argmax
n

e∀m ∈
M; 0 otherwise .

3: Calculate Zm for ranking all UEs.
4: Chrom← Create an initial Population of NIND individ-

uals.
5: Gen← 0
6: while Gen < MAXGEN do
7: Check the conditions for mutation ratio change and

exiting out of evolution and update accordingly
8: ObjV← CalculateProfit(Chrom)
9: FitnV← Normalize(ObjV)

10: new_NIND← floor(GGAP× NIND)
11: ParCh ← TournamentSelect(Chrom, FitnV,

new_NIND)
12: i← 1
13: while i < new_NIND do
14: [ChldCh[i], ChldCh[i+1]] ← CrossingOver(

ParCh[i], ParCh[i+1])
15: i← i+ 2
16: end while
17: for i← 1 to GGAP×NIND do
18: MutCh[i]← Mutation(ChldCh[i], MUTR)
19: end for
20: ObjVMut← CalculateProfit(MutCh)
21: Chrom← Selection(MutCh, ObjVMut, NIND)
22: Gen← Gen+ 1
23: end while
24: ObjV← CalculateProfit(Chrom)
25: Sort ObjV in descending order.
26: Calculate the profit for the top l chromosomes with the

highest profit using the optimization solver. Let a_best
be the fittest chromosome out of these l chromosomes.

27: Final offloading strategy A = a_bestT ⊙ Ain.

predict the values of b∗ and c∗. To build the regression model,
we need a set of optimization-related dataset. To obtain that
data, we solved the optimization problem (13) multiple times
with random offloading strategies and recorded the following
information for each strategy:
• Total number of UEs which were permitted to offload
• Total number of RRHs which support at least one UE
• Total fraction of the bandwidth allocated to UEs by each
RRH

• Total number of UEs supported at each RRH
• Total fraction of computational resources allocated by
the MEC server

The generated dataset is filtered out to remove results that are
infeasible. Next, we use the following approximations:
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1) We train a regression model on the generated dataset to
predict the value of the total fraction of the bandwidth
allocated at RRH n,

∑
m∈M bm,n, where the predictor

variables are the total number of UEs permitted to
offload, the number of RRHs supporting any of the
UEs and the number of UEs supported by each RRH.
The total fraction of bandwidth allocated at RRH n
is then equally distributed among the number of UEs
supported by it to find bm,n.

2) We calculate the mean of computing resource alloca-
tion fractions for the entire dataset, mean_frac, and
further consider the ratio of each UE’s computation
requirement Fm among all UEs as cm = mean_frac ×

Fm∑
m∈Mp Fm

. The allocation of the MEC’s computing
resources in proportion to the task requirements of UEs
was done in earlier work [23].

So far, our ‘‘CalculateProfit’’ function has not considered
constraint violations in its profit calculation. In order to
compensate for violations, we include a penalty term in
this calculation. The requirements which are set by the
constraints (C1, C2, C6) are automatically met during the
implementation of the‘‘CalculateProfit’’ function. To decide
a suitable penalty function for violation of constraints C3, C4
and C5 of (13), we compared our penalty function in earlier
work [24], expressed as

Penalty1 = −(θ1 × (max(
∑
m∈M

C3, 0))2

+ θ2 ×max(
∑
m∈M

C4× 10−10, 0)2

+ θ3 ×max(
∑
n∈N

C5× 10−8, 0)2) (15)

with the penalty functions given by (3)-(6) in another
study [25]. The θis are constants and the multiplier values,
10−10 and 10−8 in the penalty function, are selected such
that they bring the constraint violations to the same numerical
order. Fig. 5 shows a comparison of the different penalty
functions (NIND = 30 and MAXGEN = 7, results averaged
over ten iterations). The best penalty function was found to
be

Penalty3 = −(φ1 × (
∑
m∈M

max(C3, 0))

+ φ2 ×
∑
m∈M

max(C4× 10−10, 0)

+ φ3 ×
∑
n∈N

max(C5× 10−8, 0)) (16)

where the φis are constants.
The Penalty3 was chosen as the penalty function for

Algorithm 1 and was added to the profit calculated by
the ‘‘CalculateProfit’’ function to determine the actual
(penalized) profit value for a chromosome.

FIGURE 5. Penalty functions comparison.

Our previous work [21] explains the implementation of the
Algorithm 1 using the MATLAB code.

C. MODIFIED SJOORA
When implementing the SJOORA algorithm as proposed in
the aforementioned study [18], we found that the combination
of UEs finally selected for offloading can occasionally be
infeasible. Therefore, we considered a modified SJOORA
algorithm in which we keep reducing the number of UEs until
(13) becomes feasible for the selected combination of UEs.

D. GREEDY ALGORITHM
As another algorithm for performance comparison, we con-
sidered a greedy algorithm, which functions quite similarly
to the initial population creation process in the SGA. We first
find an approximate number of UEs, τ , which can be feasibly
offloaded under the resource constraints, then sort the UEs
according to five different offloading strategies based on
rankings and select some number of UEs starting from the
top. For example, for the first strategy, we select 95% of
the feasible number of UEs starting from the highest ranked
UE. Likewise, we do this for the remaining four offloading
strategies, each having a different percentage value. We then
calculate the profit of each strategy and select the most
profitable one as the final offloading strategy for the greedy
algorithm. Note that the greedy algorithm does not search
for the optimal solution in any way. It merely performs an
initial selection, assuming that higher-ranked chromosomes
will yield a higher profit value.

We choose five different τ because choosing only the
highest ranked τ UEs for offloading may result in an
infeasible solution. On the other hand, a lower τ may be less
profitable, but more feasible. Therefore the algorithm tries to
find τ that results in the most profitable and feasible solution.

IV. PSO-BASED OFFLOADING STRATEGY
Particle Swarm Optimization (PSO) [26] is another class of
evolutionary algorithm widely used for non-linear optimiza-
tion problems. PSO is inspired by the social behavior, such
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as birds flocking or fish schooling, and differs from other
evolutionary algorithms in that it does not use crossover
with its mutation. Each particle is an object variable with
various attributes, such as position, value, last position,
probability vector, personal and global best positions and
their corresponding values. PSO was originally introduced
to continuous domain problems where a particle’s trajectory
is defined by a change in position, i.e., velocity, which
depends on the difference between the personal best position,
global best position and the particle’s current position.
Binary PSO (BPSO) is a modified version of PSO for the
binary domain, and the position value is determined as 1 or
0. Trajectory (or velocity) that depends on the difference
between the best position and the current position generate
probability using a sigmoid function and determine whether
the next position will be 1 or 0. This means that if the
probability value is greater than a random number between
[0,1] extracted from a uniform distribution, the next position
is determined as 1 and, otherwise as 0. So, the greater the
difference between the current position and the best position,
the greater the probability that the position value will flip
to 1 [27].

A. APPLYING SBPSO FOR PROFIT OPTIMIZATION
We apply the Sticky Binary Particle Swarm Optimization
(SBPSO) algorithm introduced in [28] to solve (13), where
stickiness is a value between 0 and 1 that represents the
property of maintaining the current bit value. A stickiness
is set to 1 as soon as the bit is flipped and decays
linearly in the next iterations. In SBPSO, the greater the
difference between the particle’s current position and the
best position and the smaller the stickiness, the more likely
it is to flip. In one study [29], the authors proposed a
dynamic version of SBPSO, namely DSBPSO, to control
the algorithm parameters during the evolutionary process.
They also compared the performance of these two algorithms
with other state-of-the art algorithms, specifically the novel
modification binary differential evolution (NMBDE) [30],
Time-Varying BPSO [31], Up BPSO [32], and Quantum
BPSO [33] algorithms for knapsack and feature selection
problems, demonstrating the superior performance of these
two algorithms (SBPSO and DSBPSO) in most cases.
Another advantage of SBPSO and DSBPSO is their simple
computation, which uses only basic mathematical operators.
Therefore, here we use these algorithms to solve the profit
optimization problem (13).

B. INITIALIZATION
We initialize with a fixed number of particles, P. Each
particle’s position is a (1,M ) binary string, where the
mth index is 1 if UE m is allowed to offload, and
0 otherwise. Each particle’s position is equivalent to a
chromosome in the genetic algorithm. The value (profit) of a
position is calculated using the ‘‘CalculateProfit’’ function in
Algorithm 1.

As was done in section III-A, we create rankings for UEs
and find the initial number of feasible UEs τ . The positions
of particles are initialized in the same way to generate the
initial population. At the beginning of the first iteration, each
particle’s last position, personal best and global best positions
are set equal to its current position. The probability vector
of flipping a bit is a (1,M ) vector, which depends on three
factors: (a) how recently the bit has been flipped, (b) its
distance from the personal best and (c) its distance from
the global best. In our scheme, flipping a bit corresponds
to changing whether the mth UE’s task is offloaded or not.
Each element of a probability vector is initialized randomly
between 0 to 1. Parameter settings for the algorithms are
available in the literature [29].

C. ITERATION PROCESS
For every particle, we evaluate the profit value of the
particle’s position based on whether the UEs’ tasks are
offloaded or not, at each iteration. If the value of the particle
is greater than its personal best value, we then update the
personal best value and the corresponding position. Also,
if the value of the particle is greater than the global best
value, we then update the global best value and position of
all particles to the value and position of the current particle.

The elements of each particle’s position vector and
probability vector are also updated. For the position vector
of particle i, in the (t + 1)th iteration, if the bit value of UE
m in the last iteration is flipped, we set the stickiness to 1,
otherwise, we update it according to

stknst+1i,m =


1 if the bit is

just flipped

max(stknsti,m −
1

stknsS
, 0) otherwise,

(17)

where stknsi,m is the stickiness vector, and stknsS is the step
size.

For SBPSO, a weight was defined that increases the
probability of a bit flipping when the bit is different from
the personal best and global best bit. Using the stickiness
property instead of momentum, the probability that the mth

bit of the ith particle is flipped is defined as

pt+1i,m = µs(1− stknsti,m)+ µp|pbest
t+1
i,m − x

t
i,m|

+ µg|gbestm − x
t
i,m| (18)

where µs is the importance of the stickiness factor, and µp
and µg are the importance of the personal and global factors
respectively. Based on the flipping probability (18), the bit
value in the position vector of the ith particle is updated at the
(t + 1)th iteration as follows:

x t+1i,m =

{
1− x ti,m, if rand() ≤ pt+1i,m

x ti,m, otherwise.
(19)

In the dynamic SBPSO case, the importance factors
and stickiness step size are updated during every iteration
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FIGURE 6. A flowchart for SBPSO.

according to equation (12) in [29], whereas for the static
SBPSO case, they remain constant as in Table 2 in that
study [29]. The overall process of the SBPSO-based solution
of (13) can be summarized in the form of a flowchart,
as shown in Figure 6 and Algorithm 2.

V. SIMULATION RESULTS AND DISCUSSION
The simulation scenario and parameters are similar to those in
the aforementioned study [18]. The MEC coverage radius is
set to 500 m. N = 10 RRHs and the number of UEsM varies
from 30 to 110, being randomly distributed. The fronthaul
link capacity of each RRH is set to 50 Mbps. The tasks are
randomly generated. The range of the output data size Dm
is between 50 to 200 KB. The CPU cycle requirement for a
task is 1000 times its data size (Fm = 1000Dm). The latency
requirement varies from 360 ms to 900 ms depending on
the task. The channel bandwidth is set to 10 MHz and the
transmit power is set to 30 dBm with an antenna gain of
10 dBi, and the path loss model is 37.6 log (dist) + 148.1.
The shadowing factor is given by a log-normal function
with standard deviation of 8 dB. The noise power is set to
σ 2
= −174 dBm/Hz. Remaining parameters are as shown in

Table 1.

A. PERFORMANCE COMPARISONS
The comparison of the six algorithms described in Sections
III and IV, namely the simple genetic algorithm (SGA),
the fast genetic algorithm (FGA), the modified SJOORA
algorithm, the greedy algorithm, the static SBPSO and the
dynamic SBPSO in terms of service provider’s profitability
is shown in Figure 7a. The simulation results are the average
performance over 10 iterations. As shown in the figure,
for all algorithms, when the number of UEs is initially
low, the profits increase rapidly with the number of UEs.
This is because with relatively small number of UEs, there
are enough resources to allocate, so the profits increase

Algorithm 2 Sticky Binary Particle Swarm Optimization
Algorithm (SBPSO)
Input: eM N W B F l P and other simulation parameters
Output: Profit, Offloading strategy A
1: Create emax of lengthM where emax = max

n
(e),∀m ∈ M .

2: Create Ain where am,nin = 1 if n = argmax
n

e∀m ∈
M; 0 otherwise .

3: Calculate Zm for ranking all UEs.
4: Create a list of P particle objects as in section IV-B.
5: for t ← 1 to T do
6: Update importance factors and stickiness step size.

{Only for the case of dynamic SBPSO (DSBPSO)}
7: for i ← 1 to P do
8: particle(i).value ← CalculateProfit(

particle(i).position)
9: if particle(i).value > particle(i).pbestvalue then

10: particle(i).pbestvalue← particle(i).value
11: particle(i).pbest← particle(i).position
12: if particle(i).value> particle(i).gbestvalue then
13: particle(:).gbestvalue← particle(i).value
14: particle(:).gbest← particle(i).position
15: end if
16: end if
17: for m← 1 to M do
18: Update particle(i).stkns(m)
19: Update particle(i).probability(m)
20: Update particle(i).position(m)
21: end for
22: end for
23: end for
24: Select the top l particles with highest values. Calculate

profits using the optimization solver for these l particles’
positions.

25: Let a_best be the most profitable particle out of these l
particles.

26: Final offloading strategy A = a_bestT ⊙ Ain.

TABLE 1. Simulation parameters.

linearly with the number of UEs. However, as the number of
UEs increases, the rate of profit growth begins to decrease,
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resulting in a saturated profit curve. This happens because
as the number of UEs increases, the demand for offloading
increases and the resources become scarcer. Therefore, more
UEs requesting offloading does not result in a proportional
increase in profits.

Among the six algorithms, the modified SJOORA shows
the least profitability. The greedy algorithm outperforms the
modified SJOORA, in which the profit from selecting a UE
for offloading depends not only on the spectral efficiency of
theUE-RRH link, but also on the Zm (14), the rank assigned to
UE task informationWm. By using a greedy approach to seed
the initial population with the expected optimal solution, our
proposed evolutionary methods explore solution space better
as they evolve, finding more profitable offloading strategies
and solutions that can yield higher profits. Therefore, the
proposed genetic algorithms (SGA and FGA) and the swarm
optimization algorithms (SBPSO and DSBPSO) show better
performance. Despite using approximate method for the
fitness calculation, FGA provides better profits than SGA in
much shorter time. SBPSO and DSBPSO perform similarly,
but DSBPSO has more variation because the parameter
values are dynamically adjusted in each iteration. These
two algorithms also outperform the genetic algorithms with
similar execution times, demonstrating the effectiveness of
the swarm-based optimization approach in the binary domain.

Figure 7b shows the execution times of the algorithms
when run on MATLAB using a PC with 11-th Gen i7-11700,
2.5GHz processor and 16GB RAM. As shown in the figure,
the modified SJOORA algorithm has comparable execution
latency for relatively few UEs, but it becomes extremely slow
as the number of UEs increases. This is expected, because
the time complexity of the original SJOORA algorithm [18]
depends linearly on the number of UEs. Other evolutionary
algorithms have nearly constant execution time, meaning that
the execution times of the algorithms are independent of the
number of UEs. This is the main advantage of evolutionary
algorithms, which can be used as scalable solution where
the MEC system needs to accommodate a large number of
UEs for computation offloading. The greedy algorithm is
the fastest because it simply attempts five different possible
offloading solutions and selects the best among them, and
there is no additional evolutionary procedure to find the
optimal solution. SGA is the slowest among the evolutionary
algorithms as it uses the optimization solver to calculate the
fitness value of each chromosome for every generation of
evolution. FGA, SBPSO andDSBPSO, on the other hand, use
approximate profit calculationmethods for a given offloading
decision, which results in much shorter execution times.

The execution time of a genetic algorithm is a function
of the number of individuals in the population (NIND),
the number of evolutionary generations (MAXGEN), the
generation gap (GGAP) and the objective function for fitness
evaluation (‘‘CalculateProfit’’). Since the parameters of the
genetic algorithm, NIND, MAXGEN and GGAP, do not
depend on the number of UEs, the execution time of the
evolutionary algorithm remains nearly constant as the number

FIGURE 7. Performance comparison of the algorithms.

of UEs increases. Similarly, the execution times of SBPSO
and DSBPSO are dependent on the number of particles,
the number of iterations T , the number of bits M in the
position vector and the objective value evaluation function.
Here, the effect of the number of particles and the number
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of iterations on the execution time greatly overwhelms the
effect of the number of bits in the position vector. Therefore,
the execution time remains constant for both SBPSO and
DSBPSO schemes and does not increase as the number of
UEs increases.

In figure 7c, we compare the performance of the fast
genetic algorithm FGA proposed in this paper, which uses a
machine learningmodel for the resource allocation prediction
in the profit calculation, to our previouswork [24], which uses
only heuristic values for this type of approximation. Clearly,
the method based on statistics (machine learning) provides
significantly better profits in a slightly shorter execution time
than the method based on the heuristics.

B. IMPACT OF RESOURCE AVAILABILITY
Next, we evaluated the impact of resource availability on the
profitability of the offloading scheme for the following three
simulation parameters:

1) Fronthaul link capacity for each RRH (Ln)
2) Bandwidth per RRH (B)
3) Computing resources available on the MEC server (F).

We used the simple genetic algorithm (results averaged over
10 iterations) for this evaluation.

In Fig. 8, we compare the profitability for different levels
of given resource availability, while keeping the other factors
constant. A common trend in Figs. 8a, 8b, and 8c is that
the profit increases as the amount of resource increases,
but the proportion of the profit increase begins to decline
as the resource availability increases further. This trend can
be explained by the fact that as the availability of certain
resource increases, the availability of other resources starts
to function as a limiting constraint on the optimization
problem, thus restricting the profit increase. For example,
in Fig. 8a, we plot the Profit vs Number of UEs for different
fronthaul link capacities, Ln, i.e., for 20 Mbps, 60 Mbps
and 100 Mbps indicating that more fronthaul link capacity
does not necessarily mean proportionately higher profit,
as the profits at 60 Mbps are similar to those obtained
with a link capacity of 100 Mbps. However, a very low
fronthaul such as 20 Mbps can act as a limiting constraint
on the optimization problem and reduce the expected profits.
Similar observations can be made regarding the availability
of bandwidth at RRH and the computational capacity of the
MEC server.

C. IMPACT OF SIMULATION PARAMETERS ON
EVOLUTIONARY ALGORITHMS
Since the execution time and the profitability of evolutionary
algorithms depend on the number of chromosomes(NIND),
particles(P), the number of generations(MAXGEN), and
iterations(T ), we compare the performances of FGA and
SBPSO as the values of these parameters change. A common
observation in Fig. 9 is that the profits increase as the
parameter value increases, but the profit increase becomes
marginal as the parameter values increase further. The
execution time of the algorithm also increases proportionally

FIGURE 8. Impact of resource availability.

to the increase in parameter values. Therefore, setting the
parameter value too high is undesirable because it increases
the execution time of the algorithm by more than the slight
increase in the profit value. Conversely, setting the value too
low will reduce the proper exploration of the solution space,
resulting in lower profitability.
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FIGURE 9. Impact of evolutionary algorithms’ parameters.

VI. CONCLUSION AND FUTURE WORKS
With limited battery and computing resources in UE
terminals, computation offloading using MEC or cloud
servers to avoid excessive battery consumption and reduce
latency can be very useful from a user perspective, espe-
cially for latency-sensitive applications such as VR/AR
and autonomous vehicles. Furthermore, for network service
providers who have built their networks with huge capital
expenditures (CAPEX), it is important to create business
models to increase the utilization of MEC networks and
monetize them.

In this paper, we examined how profitable it is to
offload computation in C-RAN with MEC from the network
operator’s perspective. We formulated a profit maximization
problem considering the joint optimization of offloading
decisions along with radio and computing resource allo-
cation. The optimization problem belongs to the class of
mixed integer nonlinear programming problem. Therefore,
we decoupled the offloading decision from the resource
allocation problem. To arrive at the offloading decision,
we used several nature-inspired evolutionary algorithms,
specifically SGA, FGA, SBPSO, DSBPSO algorithms and
compared them to spectral efficiency-based optimization
algorithm (modified SJOORA).We compared several penalty
functions for incorporating constraint violations in the
profit calculation. In addition, for the faster execution of
the evolutionary algorithms, we use a machine learning
based regression model to predict the resource allocation
values during the evolutionary cycle. To obtain a dataset
for a statistical-based model, we initially start with a

heuristic-based algorithm as in our previous work [24], and
by generating a dataset using a simulator, we have more
optimization-relevant data to switch to a statistical-based
model.

We showed that the proposed algorithms (FGA, SBPSO)
outperform the other algorithms in terms of profitability,
while their execution time is lower and almost constant,
meaning that it does not increase as the number of UEs
increases, making them ideal as a scalable solution. In addi-
tion, the low execution time allows system to quickly decide
whether to offload computation for latency-sensitive services.
Finally, we evaluated how the profitability of offloading
changes with resource availability and with changes of the
parameters of evolutionary algorithms.

There has been active research on optimizing com-
putation offloading in MEC using deep reinforcement
learning (DRL) [23] and multi-agent reinforcement learning
(MARL) [34], [35]. In our future works, we plan to consider
new optimization modeling including objective function
and constraints and conduct optimization methodology that
combines the evolutionary algorithm with methods based on
DRL or MARL.
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