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ABSTRACT The application of robots in high-precision automated machining is constrained by their limited
multi-directional repeatability. In contrast, robots demonstrate superior levels of unidirectional repeatability,
implying the potential for enhancing their precision. To further improve the positioning accuracy of robots,
backlash error induced by rotating direction is considered, the concept of robot joint extended space is
proposed, and the robot kinematic model is used to analyze the spatial similarity of robot error in the
extended joint space. The dynamic Kriging method based on the optimization of basis functions is proposed
to avoid overfitting of the surrogatemodel, and amodel for estimating the robot’s positioning error in the joint
extended space is constructed. Based on the estimated positioning error, the proposed calibration method is
finally experimentally validated by error feedforward compensation. The results indicate that after Kriging
interpolation in the robot joint space and feedforward compensation, the maximum/average positioning
error of the robot is improved from 1.5157 mm and 0.8562 mm before compensation to 0.3471 mm and
0.1856 mm after compensation, and then further improved to 0.1848 mm and 0.1197 mm after adopting joint
expansion space and dynamic Kriging interpolation, which decreases by 46.7% and 33.5%, respectively. This
method effectively compensates the multi-directional repeatability error introduced by the joint backlash and
improves the robot’s positioning accuracy.

INDEX TERMS Industrial robots, calibration, joint-dependent errors, error compensation.

I. INTRODUCTION
Due to their openness, dexterity, rapid reconfiguration, and
low cost, industrial robots have become popular [1], [2]
in recent years for assembly, welding, grinding, polishing,
and loading/unloading. However, as a result of the tandem
robot’s open kinematic chain, their absolute positioning
accuracy is typically only ±1 ∼ 2 mm [3]. The robot
kinematic model-based offline programming technology
relies significantly on absolute positioning accuracy [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yangmin Li .

To successfully promote offline programming technology
for high-precision manufacturing applications, the robot’s
absolute positioning accuracy must be enhanced with the aid
of technology for accuracy compensation.

In terms of classification, there are three main strategies
to improve robot accuracy [5]: error prevention, online
compensation, and kinematic calibration. Error prevention
is a crucial method for ensuring robot accuracy, as it elim-
inates or reduces errors via reasonable design, processing,
assembly, and environmental control. However, the open
chain structure of a tandem robot makes error prevention
costly, and the cost will increase exponentially as the accuracy
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requirement increases [6]. Online compensation demands
various high-precision sensors (such as six-dimensional force
sensors, laser trackers, etc.), so its widespread application
is hampered by complex systems and high costs, which is
presently restricted to aviation, aerospace, and other high-end
manufacturing applications [7]. Kinematic calibration is the
process of improving the robot accuracy by analyzing the
causes of errors, establishing an error model based on
the error measurement results, and adjusting to the robot’s
positions using the corresponding compensation method [8].
Compared to error prevention and online compensation,
kinematic calibration is more economical and widely used.

Currently, robot kinematic calibration methods are divided
into two categories [9]: model-based kinematic calibration
and non-kinematic calibration. The model-based kinematic
calibration technique identifies the robot’s kinematic param-
eters using the least square method (LSM) [10], extended
Kalman filter (EKF) [11], Levenberg-Marquardt algorithm
(LM) [12], etc., after establishing the kinematic model.
Finally, the error is corrected by modifying the robot
controller’s kinematic parameters. The Modified Denavit-
Hartenberg (MD-H) model [13], the S-model [14], the
complete and parametrically continuous (CPC) model [15],
and the product of exponentials (POE) model [16] are typical
robot modeling techniques. It is necessary to develop error
models based on robot configuration and dimensions, which
lack flexibility for different robot systems. Furthermore, the
correction of robot kinematic parameters necessitates high
open access to the controller, which severely restricts its
application and diffusion.

To overcome the limitations of the model-based calibration
technique, a non-kinematic calibration method that does
not require a robot kinematic model is proposed [17]. The
non-kinematic calibration method disregards the specific
mechanism of the error source, instead treating the robot sys-
tem as a ‘‘black box’’ and replacing the mapping relationship
between the positioning error and the theoretical position or
joint angle with a nonlinear model, such as a polynomial
model [18] or neural network model [19]. In addition,
an interpolation method based on spatial similarity of the
positioning error is proposed [20]. The above non-kinematic
calibration method is highly versatile and independent of
robot configuration, but the robot must have excellent
repeatability in multi-direction.

In fact, the unidirectional repeatability of the robot is
quite high (about ±0.06 mm), while the multi-directional
repeatability is poor (about ±0.15 mm) [21]. Literature
[22] indicates that backlash error induced by joint rotating
direction is a significant factor contributing to unidirectional
repeatability, and which is much larger than the robot’s
unidirectional repeatability. Due to the fact that the above
compensation methods are based on the robot’s theoretical
position, or joint spaces, they do not account for the
multi-directional error caused by joint backlash. As a result,
the robot’s accuracy after compensation is still three to
six times the unidirectional repeatability, which cannot be

improved further. According to previous research, the joint
backlash error can be expressed as a periodic function of the
joint angle and is related to the joint’s rotating direction [23].
Therefore, the robot’s positioning error can be expressed as a
nonlinear function of joint angle and direction.

Based on the above, the direction coefficient of robot
joint is proposed, and the concept of extended joint space
is developed in this article. The dynamic Kriging algorithm
based on Pearson correlation coefficient (PCC) and prin-
cipal component analysis (PCA) is proposed, in order to
avoid overfitting of the standard Kriging algorithm when
multiple input parameters exist in an extended joint space.
Furthermore, a generalized pattern search (GPS) is used to
establish the mapping model of the extended joint space
and the positioning error, and command feedforward is
employed to compensate the positioning error. The remainder
of this article is organized as follows: The spatial similarity
of the robot’s positioning error in its extended joint space
is analyzed based on the kinematic model in Section II.
In Section III, the error modeling and error compensation
techniques based on the dynamic Kriging algorithm are
described. Experimental validation of the proposed robot
calibration method is presented in Section IV. Finally,
the article is summarized by a conclusion and outlook in
Section V.

II. SPATIAL SIMILARITY OF POSITIONING ERRORS
A. ERROR MODELING BASED ON MD-H
According to the MD-H model definition [13], the kinematic
model parameters θi, di, ai, αi, and βi are the rotation
angle from xi−1 to xi about zi−1, the distance from xi−1
to xi along zi−1, the distance from zi−1 to zi along xi, the
angle from zi−1 to zi about xi, and the twist angle about yi,
respectively. Consequently, the homogeneous transformation
matrix between two consecutive links i−1 and i can bewritten
as follows:

T i−1
i = Rot (zi−1, θi)Tr (zi−1, di)Tr (xi, ai)

Rot (xi, αi)Rot (yi, βi) (1)

where Rot (j, •) is the rotation matrix about j, and Tr (j, •)
is the translation matrix along j. If 1θi, 1di, 1ai, 1αi and
1βi represent the errors of the kinematic parameters for the
i-th joint, then the actual transformation matrix of the n-DOF
robot from the tool center point (TCP) to the base frame can
be expressed as:

T̃ =

n∏
i=1

T̃ i−1
i =

n∏
i=1

(
T i−1
i + δT i−1

i

)
(2)

where δT i−1
i is the error transformation matrix. Due to

the error of each kinematic parameter is tiny, it can be
approximated as a simple linear equation:

δT i−1
i =

∂T i−1
i

∂θi
1θi +

∂T i−1
i

∂di
1di +

∂T i−1
i

∂ai
1ai
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+
∂T i−1

i

∂αi
1αi +

∂T i−1
i

∂βi
1βi (3)

According to (2) and (3), ignoring the higher order terms,
the error between the actual and theoretical position can be
calculated as follows:

1P =

n∑
i=1(

∂T
∂θi
1θi +

∂T
∂di

1di +
∂T
∂ai

1ai +
∂T
∂αi

1αi +
∂T
∂βi

1βi

)
(4)

where ∂T
∂•

= T 1
2 T

2
3 · · ·

∂T i−1
i
∂•

· · · T 5
6 , • denotes the robot

kinematic parameters, i.e., θi, di, ai, αi, and βi.

B. SPATIAL SIMILARITY OF POSITIONING ERRORS IN
EXTENDED JOINT SPACE
From (1), it is clear that the kinematic parameters, i.e., link
offset di, link length ai, link twist αi, and twist angle βi,
of the MD-H model for the tandem rotary joint robot are all
constants, with only the joint angle θi being a free variable.
Therefore, the positioning errors caused by the kinematic
parameter errors can be viewed as deterministic functions
about the joint angle, reflecting in part the character of the
robot, its unidirectional repeatability is exceptionally precise.

Due to there exists a gap between the meshing gears, the
reverse motion of the joint will lead to the backlash [24], and
the actual joint angle deviates from the theoretical joint angle
for the same joint angle command. It is demonstrated that the
robot joint angle error is a function of the motion direction
and the theoretical joint angle, and is typically assumed to be
a constant error, i.e., of the same magnitude in forward and
reverse directions to the specified angle [25], so that the actual
joint angle can be expressed as:

θ̃i = θi + λibi(θi) (5)

with

λi =

{
1, forward motion

−1, backward motion

where λi, bi(θi) are the directional coefficient and the back-
lash error corresponding to the joint angle θi, respectively. It is
evident from the preceding analysis that the joint backlash
influences the TCP position by affecting the actual joint angle
of the robot. When the theoretical joint angle and direction
are comparable, the corresponding positioning errors are
similar. Thus, this article establishes an extended joint
space [θ1, · · · , θn, λ1, · · · , λn] by introducing the directional
coefficient of the joint angle in the joint space of a n-
degree-of-freedom serial robot in order to account for the
effect of rotating direction on robot accuracy, and enhance
its multi-directional positioning accuracy.

III. ERROR MODELING AND COMPENSATION
A. ERROR MODELING IN EXTENDED JOINT SPACE
In order to estimate the positioning error at any point in
the robot workspace, the standard Kriging method [26]
from spatial statistics is introduced to establish the mapping
relationship between joint angle and directional coefficient
and positioning error in the extended joint space using limited
measured data.

According to Kriging interpolation theory, given a set of
m samples in extended joint space, S = [s1, · · · , sm]T with
si= [θi1, · · · , θin, λi1, · · · , λin] ∈ R2n,and m responses 1 =

[δ1, . . . , δm]T with δi ∈ Rq. S,1 satisfy the normalization
conditions, i.e., µ(S:,j) = 0, σ (S:,j) = 1, j = 1, · · · , 2n,
µ(1:,k ) = 0, σ (1:,k ) = 1, k = 1, · · · , q. Then, the k-
direction positioning error δk can be expressed as:

δ̂k (s) = E(β:,k , s) + zk (s) (6)

In (1), the positioning error is composed of both mean
and stochastic errors, with the mean error E(β:,k , s) =

fT (s)β:,k =
∑p

i=1 fiβi,k is a regression model constructed
by user-selected basis functions fi. The basis functions fi are
usually in simple polynomial form, βi,k is the coefficient of
the i-th basis function. And zk (s) is the stochastic error with a
mean of 0. Its covariance between the si and sj sample points
can be expressed as:

Cov
(
zk (si) , zk

(
sj
))

= σk
2R̃k

(
ξ, si, sj

)
(7)

where σk2 is the process variance in the k-direction and R̃k
is the spatial correlation model with parameter ξ. Typically,
the correlation model in engineering problems is given the
following Gaussian form:

R̃k
(
ξ, si, sj

)
= exp

(
−

2n∑
k=1

ξk
∣∣si,k − sj,k

∣∣2) (8)

To facilitate analysis, assuming q = 1, i.e., β = β:,k ,
1 = 1:,k , consider the linear predictor:

δ̂(s) = cT1 (9)

where c is the weight coefficient vector for linear interpola-
tion. Therefore, the best linear unbiased estimate of δ is:

δ̂(s) = f T (s)β̂ + rT (s)R−1(1− Fβ̂) (10)

with

r(s) =

[
R̃ (ξ, s, s1) , R̃ (ξ, s, s2) , · · · , R̃ (ξ, s, sm)

]T
R =

 R̃ (ξ, s1, s1) · · · R̃ (ξ, s1, sm)
...

. . .
...

R̃ (ξ, sm, s1) · · · R̃ (ξ, sm, sm)


f (s) =

[
f1(s), f2(s), · · · , fp(s)

]T
F = [f1(s), f2(s), · · · , fm(s)]T

In (11), the least squares estimate ofβ can be expressed as:

β̂ =

(
FTR−1F

)−1
FTR−11 (11)
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The prediction variance of the target point s can then be
expressed as:

ϕ(s) = σ̂ 2
[
1 − rT (s)R−1r(s) +

(
FTR−1r(s) − f (s)

)T
(
FTR−1F

)−1 (
FTR−1r(s) − f (s)

)]
(12)

where σ̂ 2 is an estimate of the process variance σ 2 and the
maximum likelihood estimate of σ 2 is given as:

σ̂ 2
=

1
m
(1− Fβ̂)TR−1(1− Fβ̂) (13)

It can be seen from (11) and (13) that β̂ and σ̂ 2 are
dependent on the matrix R. After determining the form of the
regression model and the correlation model, the matrix R is
dependent on ξ, so the modeling process can be translated
into the optimization of the correlation parameter ξ. If ξ̂ is the
estimate of ξ with the maximum likelihood estimator, then ξ̂

can be expressed as:{
Minmize :ψ (ξ) = |R (ξ)|

1
m σ(ξ)2

Subjectto :ξ(i) ≥ 0
(14)

B. DYNAMIC KRIGING METHOD BASED ON BASIS
FUNCTION SELECTION
Assume that the set of candidate basis functions is made up
of polynomials and that the elements of the set are products
of extended joint space parameters [θ1, · · · , θn, λ1, · · · , λn]
in the form:

f =

[
1, θ1, · · · , λn, θ21 , · · · , λ

2
n, · · · , θ

η
1 , · · · , λ

η
n
]T
1×n1

(15)

where η and n1 = Cη2n+η are the highest order and the
number of candidate basis function elements, respectively.
In the process of constructing the surrogate model for the
standard Kriging model, the form of the basis function of
the regression model E in (6) is fixed, and the higher order
terms in the polynomial are typically regarded to predict the
nonlinear deterministic error.

Martin and Simpson [27] noted, however, that for highly
nonlinear problems, increasing the order of the basis function
may not enhance the accuracy of the surrogate model.
To improve the model’s fitting accuracy, a dynamic Kriging
approach was proposed [28], in which basis functions
were chosen from the candidate basis functions using a
genetic algorithm. However, with the purpose of improving
operational efficiency, the correlation parameter ξ are fixed
to constant values during the optimization process, which
reduces the accuracy of the surrogate model to some extent.
Meanwhile, the modified Hooke Jeeves (HJ) algorithm is
employed for optimization, it prioritizes solution efficiency
but, due to multiple input parameters in the expanded
joint space and high nonlinearity, can only find the local
optimum. However, accurately solving the optimal solution
of (14) is necessary to increase the accuracy of the surrogate

model [29]. In order to improve the operational efficiency and
accuracy of the surrogate model, this paper proposes a basis
function selection and fusionmethod based on PCC and PCA,
and uses the GPS method instead of the HJ algorithm to find
the optimal correlation parameters of the model accurately.

1) BASIS FUNCTION SELECTION AND FUSION
The PCC is a straightforward and effective method for deter-
mining the linear relationship [30] between two variables in
the higher-order Krigingmodels, making it an ideal technique
for choosing basis functions. For a test involving m samples,
the correlation between the i-th candidate basis function fi and
the response δ can be expressed as follows:

ρfi,δ =
cov (fi, δ)

√
var (fi) var(δ)

(16)

with

cov (fi, δ) =

m∑
j=1

(fi(sj) − f̄i)T (δj − δ̄)

var (fi) =

m∑
j=1

(fi(sj) − f̄i)T (f (sj) − f̄i)

var(δ) =

m∑
j=1

(δj − δ̄)T (δj − δ̄)

where cov(•, •) and var(•) are the covariance and variance
of the variables, and f̄i and δ̄ are the means of fi and δ,
respectively. The stronger the correlation, the closer the
correlation coefficient is to 1 (-1), and the weaker the
correlation, the closer the correlation coefficient is to 0.
To avoid the overfitting caused by a too-large set of basis
functions, the basis functions are ranked according to their
correlation, and the n2 basis functions with correlation values
greater than a threshold T are selected to form the set of initial
basis functions.

The set of initial basis functions can be viewed as a
high-dimensional multivariate matrix formed by the extended
joint space. Due to the curse of dimensionality and the high
correlation between basis functions, it is not appropriate
to input the above matrix into the Kriging model without
dimensionality reduction. PCA provides information on the
most significant variables, thereby describing the entire
dataset and enabling data reduction with minimal loss of
original data [31]. That is, few unrelated variables are used
to express the original information, which simplifies the
information and improves the fitting efficiency and accuracy
of the error model. Let the set of n2-dimensional initial basis
functions be denoted by u = [u1, u2, · · · , un2 ]

T . To avoid
the incomparability of basis functions due to the difference
in dimension, the z-score method is first used to normalize,
and then the covariance matrix of U is denoted as follows:

cov(U ) = E{[U − E(U )][U − E(U )]T } (17)

with

U = [u(s1), u(s2), · · · , u(sm)]T
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FIGURE 1. Schematic of the optimization process for the dynamic Kriging algorithm.

The eigenvalues of (17) are computed and arranged in
descending order: v1 ≥ v2 ≥ · · · ≥ vn2 ; the corresponding
orthogonal normalized eigenvectors are e1, e2, · · · , en2 ; the
i-th modified basis function can then be expressed as:

wi = uT ei (18)

with

ei=
[
ei,1 ei,2 · · · ei,n2

]T
In practical, the principle of selection is the proportion

of the first n3 (n3 ≤ n2) modified basis functions with a
cumulative contribution of 99%, as shown below:

γn3 =

n3∑
i=1

vi/
n2∑
i=1

vi (19)

Then the set of final basis functions can be expressed as:

w =
[
w1,w2, · · · ,wn3

]T (20)

2) CROSS-VALIDATION METHOD
The GPS algorithm is used to find an accurate opti-
mum for the correlation parameter ξ in order to build
the Kriging surrogate model. K-fold cross-validation is
then used to quantitatively compare the spatial interpo-
lation accuracy of the surrogate models fitted by differ-
ent sets of basis functions [32]. In detail, the data set
{S,1} containing m data points is divided into K subsets
{S1,11} , {S2,12} , . . . , {SK ,1K }, from which one subset
is randomly selected as the testing set and the remaining
subsets are used as the model’s training data. The procedure
iterates K times until all subsets have been used as validation
data sets once and a total of K validation results have been
acquired. The error vector of cross-validation can then be
expressed as:

ecv(i) = 1i − 1̂ (Si) (i = 1, . . . ,K ) (21)

Figure 1 depicts a summary of the proposed dynamic
Kriging algorithm. Firstly, the acquired robot joint angle and
SMR position sets were converted into the corresponding

FIGURE 2. Positioning error compensation process.

extended joint space and TCP positioning error sets. Then,
PCC was used to analyze the correlation between the
candidate basis functions and positioning errors, and the basis
functions with the highest correlation were chosen for the set
of initial basis functions. Again, PCAwas employed to reduce
the dimensionality of the set of initial basis functions, and the
modified basis functions with a cumulative contribution rate
of 99%were chosen as the set of final basis functions. Finally,
the error estimation models were established using different
Kriging methods, and their accuracy was compared using
K-fold cross-validation.

C. FEEDFORWARD ERROR COMPENSATION METHOD
As shown in Figure 2, first, the theoretical joint angle is calcu-
lated. Then, the extended joint angle [θ1, · · · , θn, λ1, · · · , λn]
is determined by comparing the joint angle θ with the
previous joint angle θb. Using the error model fitted in
Section III-B and the extended joint angle of the target
position Pd , the estimated positioning error is calculated.
According to the spatial similarity of positioning errors, the
TCP positioning errors corresponding to two sets of adjacent
joint angles are comparable. So the actual position of the
corrected position Pm can therefore be regarded as the target
position Pd :

Pm = Pd − δ̂ (22)
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FIGURE 3. Experimental setup.

IV. EXPERIMENTS AND RESULTS
As is shown in Figure 3, experiments are carried out on
a COMAU SMART5 NJ 220 industrial robot, which has
a repeatability of ±0.075 mm. API’s Radian Core laser
tracker, with a maximum permissible error of 15µm+5µm/m
for distance, is used to measure the TCP position. In the
experiment, the distance between the laser tracker and the
spherical mounted retroreflector (SMR) is less than 5 m.
The proposed dynamic Kriging is utilized to fit the TCP
positioning error, and the error is compensated by the
feedforward compensation method.

A. ROBOT FRAME IDENTIFICATION
1) BASE FRAME IDENTIFICATION
To measure the positioning error of the TCP, the base frame
is constructed using Polyworks, a spatial analyzer software
developed by InnovMetric, in coordination with the API
laser tracker. As shown in Figure 4, the transitional frame,
O1X1Y1Z1, is created using the circle-point-analysis (CPA)
method [33], [34], and the base frame,O0X0Y0Z0, is obtained
by translating 830 mm along the negative direction of the
Z1 of the transitional frame. The detailed procedure is as
follows:

1) The SMR I is mounted on the robot end flange, rotated
axis l as far as possible, and a set of SMR I positions
measured by a laser tracker is used to fit circle 1. Fixed
SMR II to robot linkage 2, axis 2 is then rotated as
much as possible while the position of SMR II is again
measured, and fit circle 2 in the same way.

2) The normal A0 of the circle 1 is designated as the Z1.
The common perpendicular line of normals A0 and
A1 is designated as the X1, and the frame O1X1Y1Z1
is defined using the right-hand rule.

3) The robot’s base frame, O0X0Y0Z0, is obtained by
translating the transitional frame, O1X1Y1Z1, along

FIGURE 4. Identification the base frame.

FIGURE 5. Identification the SMR offset relative to TCP.

the negative direction of its Z1 by the nominal offset
830 mm.

2) SMR OFFSET IDENTIFICATION
Typically, offline programming software generates machin-
ing trajectories with respect to the TCP, and there is an
offset between the SMR and TCP so as not to influence
the machining process, as depicted in Figure 5. Therefore,
in order to precisely determine the TCP positioning errors, the
offset of SMR relative to TCP must be precisely estimated.
Again, the CPA method is used to determine the SMR offset
by rotating joints 5 and 6, as described below:

1) The SMR is mounted to the robot’s end flange, and
the beginning position (A6 at 0◦) is recorded as Os.
Then, the SMR position is measured while the axis
A6 is rotated through 360◦, and the circle 6 is fitted
to the measurement data. Again, the SMR position is
remeasured while the axis 5 is rotated as far as feasible,
and circle 5 is fitted to the data.

2) The normal A6 of the circle 6 is defined as the Zt ,
the common perpendicular line of the Zt and the

109336 VOLUME 11, 2023
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TABLE 1. Range of motion for robot each joint axis.

FIGURE 6. The 300 random TCP positions.

normal A5 of the circle 5 is defined as the Xt , and
the Yt is determined by the right-hand rule. So, the
rotation matrix Rt from the laser tracker to the TCP is
[Xt ,Yt ,Zt ]. The TCP origin in the laser tracker is then:
Ot = O6−(d − d6)·Zt , whereO5 andO6 are the circle
center coordinates of circles 5 and 6, respectively, d is
the projection length of vectorO5O6 on the Zt , and d6 is
the nominal length of robot linkage 6.

3) Based on the TCP origin Ot and the transition matrix
Rt , it is possible to derive the coordinates of Os
in the TCP frame, i.e., the SMR offset: PSMR =

R−1
t (Os − Ot).

B. DYNAMIC KRIGING ALGORITHM VALIDATION
1) BASIS FUNCTION SELECTION
After the base frame and the SMR offset have been
determined, the SMR positions in the laser tracker frame are
transformed into TCP positions in the base frame. As shown
in Figure 6, 300 random target points were generated using
Latin hypercube sampling (LHS) in the robot workspace,
with joint angle range as the constraint (see Table 1). The
actual position of TCP is determined using a laser tracker,
and the positioning error of each point along the X0, Y0, and
Z0 axes is identified.
Figure 7 shows the Pearson correlation between the

TCP positioning error and the second-order polynomial
basis functions of the extended joint space parameters.
As observed, the base functions related to the directional
coefficient are ranked third, second, and fourth, respectively,
for the X0, Y0, and Z0 axes, indicating that the joint backlash
error has a significant impact on the robot’s positioning
accuracy. Moreover, the correlation ranking differences of

FIGURE 7. Pearson correlation matrix of candidate basis functions
[1, θ1, θ2, · · · , λn, θ2

1 , · · · , θ1λn, θ2
2 , · · · , λ2

n]1×91. (a) X0 axis. (b),Y0 axes.
(c) Z0 axis.

basis functions between the X0, Y0, and Z0 axes indicate that
the effect of the joint angle and rotation direction on the
positioning error in each direction is distinct. And the basis
functions with absolute correlation values greater than 0.1 for
each axis, i.e., thosewith a correlation about positioning error,
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FIGURE 8. Dimension reduction through eigenvalue decomposition.
(a) X0 axis. (b) Y0 axis. (c) Z0 axis.

are chosen to compose the set of initial basis functions for
further dimensionality reduction processing.

For the set of initial basis functions, PCA analysis was
performed, and the variance and explained variance from
PCA are depicted in Figure 8. It is obvious that the first few
modified basis functions with high variances preserve the
vast majority of the cumulative variances. Using the criterion
of retaining more than 99% of the cumulative variance, the
number of basis functions for the X0, Y0, and Z0 axes has been
reduced from 14, 28, 29 in the set of initial basis functions
to 10, 20, 19 in the set of final basis functions, effectively
reducing the complexity of basis functions.

2) ERROR MODEL FITTING
Four Kriging methods are utilized to model positioning errors
for the X0, Y0, and Z0 axes, respectively, and the accuracy
of the surrogate models is compared quantitatively using

FIGURE 9. Box plots of estimation errors in the 10-fold cross-validation.

10-fold cross-validation. In the first method, JS&HJ, the
HJ algorithm is used to determine the optimal correlation
parameters in the joint space; in the second method, EJS&HJ,
it takes a different strategy, that is, determining the optimal
correlation parameters in the extended joint space; in the
third method, EJS&GPS, the correlation coefficients ξ are
optimized using the GPS algorithm in the extended joint
space. In the fourth method, EJS&PCA, the dynamic Kriging
method is introduced to optimize the basis function based on
the EJS&GPS algorithm.

Figure 9 depicts box plots of estimation errors incurred by
10-fold cross-validation on 300 TCP error datasets using four
Kriging algorithms. The results indicate that the EJS&PCA
method obtained the best forecasting result compared to
the other techniques. That is, the algorithm for dynamic
Kriging was able to use the joint angle and directional
coefficient information for better error estimation results.
This is due to the fact that PCC and PCA effectively select the
error-related basis functions while discarding the information
overlap, which reduces the data dimensionality to prevent
overfitting and improves the efficiency of the error model
fitting, resulting in a more accurate surrogate model.

C. VERIFICATION OF THE ERROR COMPENSATION
After obtaining the surrogate model of the positioning error,
30 verification points in the robot’s workspace are randomly
chosen to validate the feasibility of the error feedforward
compensation method. Using the error model and the
feedforward compensation method proposed in Section III,
validation point errors are compensated. Figure 10 shows the
positioning errors of the verification points before and after
position error compensation, and the statistical results are
shown in Table 2.
The experimental results show that the maximum and

average positioning errors of the robot are reduced by
0.3471 mm and 0.1856 mm, respectively, after Kriging
interpolation in the robot’s joint space and feedforward
compensation, and further improve to 0.1848 mm and
0.1197 mm after adopting joint expanded space and dynamic
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FIGURE 10. Comparison of positioning errors before compensation and
after compensation.

TABLE 2. Statistical results of the positioning errors.

Kriging interpolation, corresponding to reductions of 46.7%
and 33.5%, respectively. This is due to the fact that the
multi-directional repeatability error induced by the joint
backlash is partially compensated, and the robot’s positioning
accuracy is enhanced.

V. CONCLUSION
A method for robot positioning error compensation based on
the robot’s extended joint space and the dynamic Kriging
method is proposed. Beginning with the robot’s kinematic
model, the concept of extended joint space is proposed
by introducing joint directional coefficients, and the spatial
similarity of robot positioning errors in the extended joint
space is then analyzed. Meanwhile, a new method called the
dynamic Kriging method is proposed to fit the error model
more accurately. In the dynamic Kriging method, an optimal
basis function set is obtained using the basis functions that are
selected and fusioned by PCC and PCA from the candidate
basis functions, and GPS is used to find an accurate optimum
for the correlation coefficient, and the positioning error is
compensated by error feedforward compensation.

It can be seen from the experimental results that after
Kriging interpolation in the robot joint space and feedforward
compensation, the maximum/average positioning error of the
robot improves from 1.5157 mm and 0.8562 mm before
compensation to 0.3471 mm and 0.1856 mm after compen-
sation, and further improves to 0.1848 mm and 0.1197 mm
after adopting joint expansion space and dynamic Kriging
method, which decreases by 46.7% and 33.5%, respectively.

This method effectively compensates the multi-directional
repeatability error introduced by the joint backlash and
improves the robot’s positioning precision. The method does
not require the robot controller to be open, as it uses the
spatial similarity of positioning errors in extended joint space
for error modeling and compensates for positioning errors
by adjusting the command point coordinates rather than
the controller settings. The technology is simple to adopt
in industrial applications because the robot is in open-loop
control and no external measurement equipment is needed.

Further, to improve the robot’s positioning accuracy under
heavy loads, it is important to take into account the effect of
load on the positioning error. This effect can be transformed
into the effect of joint torque on the flexible joint angle.
The calibration process is also upgraded to be integrated and
software-based to form a fast, convenient, stable, and reliable
system.
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