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ABSTRACT Reinforcement learning (RL) is a popular technique that allows an agent to learn by trial
and error while interacting with a dynamic environment. The traditional Reinforcement Learning (RL)
approach has been successful in learning and predicting Euclidean robotic manipulation skills such as
positions, velocities, and forces. However, in robotics, it is common to encounter non-Euclidean data such
as orientation or stiffness, and failing to account for their geometric nature can negatively impact learning
accuracy and performance. In this paper, to address this challenge, we propose a novel framework for RL that
leverages Riemannian geometry, which we call Geometric Reinforcement Learning (G-RL), to enable agents
to learn robotic manipulation skills with non-Euclidean data. Specifically, G-RL utilizes the tangent space
in two ways: a tangent space for parameterization and a local tangent space for mapping to a non-Euclidean
manifold. The policy is learned in the parameterization tangent space, which remains constant throughout
the training. The policy is then transferred to the local tangent space via parallel transport and projected onto
the non-Euclidean manifold. The local tangent space changes over time to remain within the neighborhood
of the current manifold point, reducing the approximation error. Therefore, by introducing a geometrically
grounded pre- and post-processing step into the traditional RL pipeline, our G-RL framework enables several
model-free algorithms designed for Euclidean space to learn from non-Euclidean data without modifications.
Experimental results, obtained both in simulation and on a real robot, support our hypothesis that G-RL is
more accurate and converges to a better solution than approximating non-Euclidean data.

INDEX TERMS Learning on manifolds, policy optimization, policy search, geometric reinforcement
learning.

I. INTRODUCTION
Non-Euclidean data, like orientation, stiffness, or manipula-
bility, are important in the field of robotics, as they are widely
used during learning and implementation processes [1].
To illustrate, consider real-world scenarios in robotics, like
assembly tasks, polishing and grinding, and the automation
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of industrial welding processes. In such contexts, acquiring
knowledge of non-Euclidean data, such as orientation and
impedance information, becomes pivotal. Such data have
special properties that do not allow the use of Euclidean
calculus and algebra. Despite this, they are usually treated
as Euclidean data, which demands pre- or post-processing
(e.g., normalizing orientation data) to conform to their non-
Euclidean nature. This process involves an approximation,
and with repetition, the approximation errors will accumulate
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FIGURE 1. Overview of the proposed framework for Geometric Reinforcement Learning (G-RL). Starting with the action from the RL algorithm, the
tangent space vector aP is transferred from the parameterization tangent space to the local tangent space through parallel transport. The vector is then
mapped onto the corresponding composite manifold to produce the desired action (e.g., orientation and impedance), then passed to the controller to
execute the action. The new state and the corresponding action are sent to the reward function to evaluate the quality of the current policy. This
evaluation is delivered back to the RL algorithm, along with the full observed state.

until it reaches a level that affects the learning process in
terms of accuracy and speed to reach the desired results. This
issue was noticed early in the field of statistical learning [2],
as determining the center of a non-Euclidean geometric data
set using normalization leads to an error in determining the
mean. In robotic manipulation, some data belong to different
Riemannian manifolds (e.g., 3-sphere manifold S3 where
the unit quaternions live which are possible representations
for orientation and Symmetric Positive Definite (SPD)
manifold Sd++ for stiffness and manipulability), and proper
mathematical tools need to be developed in order to avoid
approximations [3].

Nowadays, the practical applications of RL have become
many and span various fields [4], [5], [6] including
robotics [7]. In RL, a policy produces actions based on
the current state. When these actions and/or states have a
geometric meaning (manifold data) like orientation, stiffness,
or manipulability, it requires pre- and post-processing to
preserve and benefit from the data geometry; neglecting the
underlying constraints of the manifold of these data leads to
inaccuracy in both exploration and learning. This is valid for
deterministic and probabilistic RL approaches. Nevertheless,
a distribution is learned for probabilistic RL algorithms
instead of a single action. This adds more challenges when it
samples manifold data from a distribution like the Gaussian
distribution. For both cases, benefiting from Riemannian
geometry can potentially improve the quality of learned
policies.

In this paper, we propose a novel RL (Geometric
Reinforcement Learning (G-RL)) framework leveraging Rie-
mannian geometry to exploit the geometric structure of the
robotic manipulation data. This framework involves applying
policy parameterization on the tangent space of a base point
on the manifold, followed by using parallel transport to
transport the action in a tangent space that moves with the

active point. The result is then mapped to its corresponding
non-Euclidean manifold. We apply G-RL to learn and
predict actions, like orientation data represented as unit
quaternions or stiffness and manipulability data encapsulated
in SPD matrices. The proposed G-RL framework has been
applied to extend two prominent deep reinforcement learning
algorithms—Soft Actor-Critic (SAC) [8] and Proximal Policy
Optimization (PPO) [9])—to work with manifold data.
Furthermore, we have applied it to Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) [10] (which belongs to
the family of Black Box Optimization (BBO) algorithms).
CMA-ES can be used as a policy improvement method like
in [11]. An overview of G-RL is shown in Fig. 1.
To summarize, our work can be outlined by the following

contributions:

• A novel geometry-aware RL framework, namely G-RL,
that incorporates Riemannian geometry to enable agents
to learn robotic manipulation skills with non-Euclidean
data.

• Different instantiations of G-RL to extend popular
model-free RL approaches including:

– model-free RL algorithms (e.g., Policy learning by
Weighting Explorationwith the Returns (PoWER)),

– model-free deep RL algorithms (e.g., SAC and
PPO), and

– BBO algorithms (e.g., CMA-ES).

• Extensive evaluation and experimentation with simula-
tions and a physical robot, with comparisons to different
distributions and baselines.

The rest of the paper is organized as follows. Section II dis-
cusses related work; Section III provides a short background
about RL and Riemannian manifolds; Section IV presents
our proposed approach; Section V shows experimental results
from both simulation and a physical robot; Section VI
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discusses the results and the limits of our approach; and we
conclude the paper in Section VII.

II. RELATED WORK
Most conventional RL algorithms that utilize a Gaussian
distribution (e.g., [8], [9], [12], [13], [14], [15], [16], [17])
are not suitable for accurately learning non-Euclidean data.
This is because such data resides in a curved space rather
than a vector space and therefore requires a special treatment
to avoid approximation errors and to account for its unique
properties of that data. This has been approached in different
ways.

The Riemannian manifold, Riemannian metric, and tan-
gent space are mathematical concepts utilized in creating
geometrical tools for statistics on manifolds as in [2],
which have been used in different research works. Abu-
Dakka et al. [1] leveraged Riemannian geometry in the
context of learning robotic manipulation skills (e.g., stiffness,
manipulability, and covariance) using a kernelized treatment
in the tangent space. Huang et al. [18] proposed adapting
learned orientation trajectories to pass through via-points
or end-points while also considering the angular velocity.
Work done in [19] utilizes a variational autoencoder (VAE)
to learn geodesics on Riemannian manifolds using Learning
from Demonstration (LfD), which generates end-effector
pose trajectories able to dynamically avoid obstacles present
in the environment.

In contact-rich manipulation tasks, it is not safe to only use
position control. Research in [20] combines contact Dynamic
Movement Primitivess (DMPs) with SAC to adapt impedance
and learn both linear and orientation stiffness according to a
given force and position trajectories, which is then passed into
an adaptive admittance controller for robotic manipulation.
However, stiffness in their research is represented as a
diagonal matrix, whereas our approach can learn the full
stiffness matrix. Representing stiffness as a diagonal matrix
avoids computational complexity on account of accuracy.
But in some cases, such as examining stability properties,
it is important to note that the off-diagonal elements of
the stiffness matrix can have a direct impact. Disregarding
these elements may result in an imprecise assessment of
stability [21]. Additionally, the off-diagonal elements in
the stiffness matrix correspond to the interaction between
various degrees of freedom. If these elements are ignored by
employing a diagonalmatrix, it can result in an oversimplified
analysis, causing the loss of vital information. Off-diagonal
interactions can occur due to physical connections, inter-
dependencies among variables, or constraints within the
system. Utilizing the full stiffness matrix allows researchers
to precisely account for and assess these interactions.

Authors of [22] also employ a diagonal stiffness matrix
in the context of variable impedance, using Inverse Rein-
forcement Learning (IRL) to discover the reward function in
addition to the policy from an expert demonstration (LfD).
They proposed that their algorithm can be extended to the

full stiffness matrix using Cholesky decomposition. We used
Cholesky decomposition as a baseline, and our results show
that our algorithm outperforms this baseline.

In [23], authors studied the use of LfD for force sensing and
variable impedance control, with the proposed framework
able to use both Cholesky decomposition and Riemannian
manifold representations of stiffness. The main difference
from our work is that they did not use RL; their work was
instead based on LfD.

Although researchers in [24] proposed a method for online
selection of non-diagonal stiffness matrices for admittance
control using RL, they still learn to select from a few
previously defined full stiffness matrices. Our algorithm can
learn the full stiffness matrix online.

In the context of image segmentation, authors in [25]
proposed a method for 3D image reconstruction. They
achieved this by modifying the original CMA-ES to work
on Riemannian manifolds and applying optimization on the
tangent space. Unlike our approach of optimizing in the
parameter space where geometric data is parameterized using
Euclidean parameters, their technique optimizes geometric
data directly. In computer vision, parameterization on the
tangent space is commonly used to regress rotationswith deep
learning, as explained in [26].
In [27], the utilization of Riemannian manifolds with a

solitary optimized tangent space was employed to ensure
compliance of parameterization results with manifold geom-
etry. Our work, in contrast, proposes the utilization of two
tangent spaces: one for parameterization and another for
mapping in the exploration neighborhood. Specifically, our
approachmaintains proximity of the local tangent space to the
active exploration region of the manifold, resulting in more
effective utilization of the Riemannian geometry.

The authors of [28] proposed a policy equivariant to SO(2)
when the reward and transition functions are invariant to that
group. This work is interesting and makes the learning of
the elements of SO(2) faster. However, it does not discuss
how to treat orientation data while learning the policy. Our
work learns a policy (i.e., orientation) while considering the
geometry of manifold data.

Researchers have explored the application of optimization
algorithms on Riemannian manifolds. The authors of [29]
employedBayesian Optimization (BO) to optimize policy
parameters and introduced geometry-aware kernels. These
kernels enable proper measurement of the similarity between
Riemannian manifold parameters using Gaussian process
(GP). Another recent work, in [30], implemented the
geometry-aware Riemannian Matérn kernels in the domain
of robotics. These investigations consider non-Euclidean
manifolds’ geometry and propose a geometry-aware frame-
work. Given the advantages of Riemannian geometry in BO,
we endeavor to exploit it in the realm of RL.

Policy learning in SE(3) actions is proposed in [31],
achieved by factorizing high dimensional action spaces into
several smaller action spaces with progressively augmented
state spaces. Each action space is handled by its own neural
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network. This work is primarily focused on learning poses
by imitation of images. A limitation of this work is its use of
Euler angles to represent the orientations and being restricted
to ±30 degrees rotations out of the plane. The geometry of
the orientation data is also not considered, as there is no
explanation or discussion about it in the paper.

Although there are many existing works in the field of
LfD and supervised learning, Riemannian geometry has
not been exploited in RL. A recent work, Bingham Policy
Parameterization (BPP) [32], uses the Bingham distribution
as an alternative to the Gaussian distribution for learning
orientation policies. This choice was motivated by the
argument that unit quaternions can be directly sampled from
the Bingham distribution, unlike the Gaussian distribution,
where one must use normalization. Nevertheless, authors
in [32] reported that as their implementation uses several
neural networks, instability in the learning process could
occur if erroneous data is sampled from them. Furthermore,
our algorithm is not limited to a special distribution such as
the Bingham distribution, which is constrained to the sphere
manifold. As a result, it can effectively handle data from other
types of manifolds, such as Sd++. We experimentally compare
the performance of G-RL and BPP in Sec. V-A1.

III. BACKGROUND
A. REINFORCEMENT LEARNING
The general formulation of a typical RL problem is about an
agent at time t in state st selecting an action at according to a
stochastic policy

πθ (a|s) = Pr(a = at | s = st ), (1)

where θ ∈ Rn are the parameters of the policy and π is
the probability distribution of sampling action at in state st
at time t . Performing action at changes the world state to
st+1 and the agent receives a reward rt+1, associated with the
transition T (st , at , st+1). The agent’s objective is tomaximize
the expected return of the policy [33], i.e.,

max
θ

Eπθ
[R(s, a)] = max

θ
Eπθ

[∑
t

r(st , at )

]
. (2)

In this paper, we have used different RL algorithms
and a BBO algorithm for policy improvement to show the
versatility of our proposed approach. The used algorithms are
briefly reviewed as follows.

1) POWER
PoWER [13] is an RL policy search algorithm inspired by
expectation maximization in supervised learning algorithms.
It is designed for finite horizons with episodic restarts and
uses an average return as a weight instead of a gradient.

2) SAC
SAC [8] is an instance of entropy-regularized deep RL,
which aims to maximize the policy’s return while also
maximizing entropy. An entropy coefficient is used to control
the importance of entropy and is adjusted during training.

FIGURE 2. (a) The gray surface represents a manifold M, and the red
plane represents the tangent space TXM. The exponential/logarithmic
mapping tools between the two spaces are shown. (b) Sampling an
S1 manifold from a Gaussian distribution, where the mean is on S1, but
the drawn samples may not be, like the points in p(x, y ).

3) PPO
PPO [9] is a deep RL policy gradient optimization algorithm
that clips policy gradient updates to a narrow interval,
ensuring the new policy is not too far from the existing one.

4) CMA-ES
CMA-ES [10] is a derivative-free method for non-linear
or non-convex BBO problems in the continuous domain.
Instead of using gradient information, CMA-ESmakes use of
evolutionary computation and an evolution strategy to solve
the optimization problem.

B. RIEMANNIAN MANIFOLD
A Riemannian manifold M is an n-dimensional smooth
differentiable topological space equipped with a Riemannian
metric that locally resembles the Euclidean space Rn. The
locally Euclidean tangent space TXM can be constructed
around any pointX ∈M. The Riemannian metric, defined as
the positive definite inner product, can be used to generalize
the notion of the straight line between two points in Euclidean
space by defining the shortest curve between two points in a
manifold, which is denoted as a geodesic.

In order to go back and forth between a manifoldM and
a tangent space TXM, we require two distance-preserving
mapping functions (operators). These operators are (i) the
exponential map ExpX : TXM → M, and its inverse
(ii) the logarithmic map LogX : M → TXM as depicted
in Fig. 2 (a). It is possible to show that exponential and
logarithmic maps are (locally) bijective [34], which makes
it possible to do the calculations about the non-Euclidean
manifold space on the tangent space and project back the
results. Another essential concept in differential geometry
is parallel transport 0X→Y, allowing for calculations and
comparisons of vectors located on different tangent spaces
to be carried out by moving vectors through a connecting
geodesic. This method preserves the inner product between
transported vectors.
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A Gaussian distribution on Riemannian manifolds is
defined as in [3]

NM(Q|X, 6) =
(
(2π )d |6|

)− 1
2 eLogX(Q)6−1LogX(Q), (3)

where X ∈ M, the covariance 6 is defined on TXM and
Q ∈ M. For more details about Gaussian distributions on
manifolds in the context of robotics, we refer the interested
reader to [3].

IV. POLICY PARAMETERIZATION ON TANGENT SPACE
Recently, the topic of learning using Riemannian geometry
tools has become the focus of researchers in the field of
robot learning [1], [3], [35], [36]. An example of this is
when considering a robot’s operational space, where its
end-effector pose consists of a Cartesian position (Euclidean
part) and orientation (non-Euclidean part). It is common to
apply learning in this space since it allows for kinematic
redundancy and the ability to transfer a learned policy from
one robot to another robot with different anatomy [37].

Gaussian policy parameterization has a limitation when it
comes to representing non-Euclidean data like orientation,
stiffness, or manipulability, as the distribution parameters
(both mean and covariance) do not always obey the nature of
the manifold’s curvature space. The problem with sampling
non-Euclidean from a Gaussian distribution is illustrated
in Fig. 2 (b) for the S1 manifold, i.e., the circumference
of the unit circle. Picking a point on the manifold to be
the mean of the normal distribution, samples can still be
drawn from outside the manifold, as illustrated in the figure.
Normalization of the sample can map it back to the unit
circle manifold at the cost of accuracy. The same argument is
applicable to other manifolds likeS3 embedded inR4. To this
point, using Gaussian policy parameterization like SAC [8]
or PPO [9] on non-Euclidean manifold data like quaternions
will require normalizing the predicted profiles. This kind of
post-processing is an approximation that could affect learning
accuracy.

Having a framework allowing for well-established and sta-
ble learning algorithms on Euclidean space to be transferred
to other geometrical spaces with relative ease and reasonable
computational costs is beneficial. This enables part of the
achievements and progress that have been made on Euclidean
space to be directly applicable to non-Euclidean spaces.G-RL
is based on applying parameterization on a constant tangent
space, where there is no need to parallel transport the policy
being learned from one tangent space to another. Doing
so is not trivial for some parameterization schemes. At the
same time, we must obey the formulation of the Riemannian
geometry, which is locally bijective.

Thus, let us consider M and N as two Riemannian
manifolds, where MP,ML ∈M and NP,NL ∈ N . Concep-
tually, when G-RL is used to learn data that correspond to a
Riemannian manifoldM, we utilize the tangent space in two
ways: a constant tangent space TMPM for parameterization,
and a local tangent space TMLM for mapping to manifold
actions. The manifolds’ data which are indexed with P

represent the data points where the parameterization tangent
spaces are established, and the ones indexed with L represent
the data points where the moving local tangent spaces are
established.

In the case where consecutive actions i and i + 1 are
local to one another (such as learning a smooth trajectory
of orientations), the local tangent space is situated on the
previous action (e.g., predicting the orientation at time
i + 1 means situating the local tangent space on the
predicted orientation at time i). Parallel transport must then
be employed to move the parameterized vectors to the local
tangent spaces. But in the case where the rollout consists
of a single action and the different rollouts are independent
of each other (e.g., Wahba problem), we locate both the
parameterization tangent space and local tangent space onto
the same point. Note that the parameterization tangent space
is never moved itself; the policy is learned on a fixed, constant
tangent space. In either case, we map the result back to the
manifold once the vector is moved to the local tangent space.

In the general setting of learning a manipulation task,
it is common to have state and action data from different
manifolds, in other words, having a composite manifold,
which is defined as the Cartesian product of the manifolds.
For example, the state s ∈ M × N and the action
a ∈M×N .
The parameterization tangent space of the composite

manifold is represented as P: T(MP,NP)(M × N ), while the
local tangent space of the composite manifold is represented
by L: T(ML ,NL )(M×N ).
The state at time t as a composite manifold state is

represented as follows:

st = (SM,t ,SN ,t ), (4)

where SM,t and SN ,t are the state parts that belong to each
of the two manifoldsM andN , respectively. The action aP,t
on the composite parameterization tangent space at time t is
represented as follows:

aP,t = [aPM,t∥aPN ,t ], (5)

while the action aL,t on the composite local tangent space is
given by

aL,t = [aLM,t∥aLN ,t ], (6)

where the subscriptsM,t and N ,t denote the part of the action
coming from manifolds M and N , respectively. The [·∥·]
is a concatenation operator. Intuitively, the prediction on the
tangent space allows us to ‘‘stack’’ different manifolds into
a unique vector. Afterward, we use the parallel transport
operator to transport the action vector from P to L at t as

aL,t = 0P→L(aP,t ). (7)

Subsequently, we project this local action vector to the
composite manifold as follows

at = (AM,t ,AN ,t )

= (ExpML,t
(aLM,t ),ExpNL,t

(aLN ,t )). (8)
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Algorithm 1 Geometric Reinforcement Learning (G-RL)
Input: initial state s0, initial parameters θ , MP,M0 ∈ M,
NP,N0 ∈ N , where MP, and NP are the centers of the
composite parameterization tangent space. M0, N0 are the
centers of the initial composite local tangent space and the RL
algorithm α.
1: while !stop_condition(α) do
2: πθ (aP|s)← get_policy(θ , α) ▷ eq. (9)
3: R(s, a)← 0 ▷ cumulative reward
4: for t = 0, . . . ,T − 1 do
5: st ← (SM,t ,SN ,t ) ▷ state composition (4)
6: aP,t ∼ πθ (aP,t |st ) ▷ tangent space action (10)
7: aP,t =

[
aPM,t∥aPN ,t

]
▷ act. concatenation (5)

8: aL,t ← 0P→Lt (aP,t ) ▷ act. par. trans. (7)
9: aL,t =

[
aLM,t∥aLN ,t

]
▷ act. concatenation (6)

10: at ← (ExpML,t
(aLM,t ),ExpNL,t

(aLN ,t )) ▷

manifold act. (8)
11: (Mt+1,Nt+1)← (SM,t ,SN ,t )
12: st+1← execute_on_robot(at)
13: R(s, a)← R(s, a)+ r(st , at )
14: end for
15: θ ← improve_policy(θ , R(s, a), α)
16: end while

The policy πθ predicts the action on the parameterization
tangent space aP according to the current state s as follows:

πθ (aP|s) =
[
πθM

(
aPM |SM

)
∥πθN (aPN |SN )

]
(9)

where θ = [θM∥θN ] is the concatenation of parameters for
the manifolds, respectively. At each time t , an action aP,t =

[aPM,t∥aPN ,t ] is drawn from the policy (9) as

aP,t ∼
[
πθM

(
aPM,t |SM,t

)
∥πθN (aPN ,t |SN ,t )

]
. (10)

The action aP,t is converted in a manifold action at
using (8), and the agent performs the resulting manifold
action on the environment. This causes the state to transition
from st to st+1. The expected return captures the expected
quality of the policy

Eπθ

[∑
t

r(st , at )

]

= Eπθ

[∑
t

r((SM,t ,SN ,t ), (AM,t ,AN ,t ))

]
. (11)

As shown in Algorithm 1, the initial state, the centers of
the composite of two tangent spaces, and the RL algorithm
are used as input. In line 2, the RL algorithm generates a
policy structure πθ (a|s) with the current parameters θ . This
policy operates in the composite parameterization tangent
space established at the composite point (MP,NP) given as
input to the RL algorithm. The parameterization is based on
the composite current state in line 5, as it is passed to the
policy in line 6 to sample the composite action aP on the
parameterization tangent space. This action (defined in line 7)

is parallel transported to the current local composite tangent
space (line 8) and gives the action vector defined in line 9.
Line 10 maps the composite tangent space action into the
composite manifold. After that, the local composite tangent
space is updated to the current composite state (line 11),
the action is executed by the agent, and the state is updated
(line 12). At each step in the rollout, the total reward is
updated by accumulating the immediate rewards (line 13).
After one rollout is finished, the quality of the policy is
measured using the rollout total reward, which is passed to
the RL algorithm to proceed with learning (line 15). This
procedure is repeated until the stopping criteria, depending
on the used RL algorithm, is met (line 1).

A. LEARNING ON THE S3 MANIFOLD
Orientations are commonly represented using rotation matri-
ces, Euler angles, or unit quaternions. Euler angles are
a minimal orientation representation (requiring only three
parameters) but suffer from the singularity problem [38]. Unit
quaternions hold an advantage over rotation matrices due to
requiring fewer parameters (4 instead of 9) and are therefore
commonly used to represent rotation in robotic applications.
The unit quaternion representation belongs to the 3-sphere
manifold, denoted as S3 [38]. Therefore, applying current
reinforcement learning algorithms designed for Euclidean
space to learn an orientation policy is not straightforward
as it normally involves approximations to account for the
underlying manifold structure.

In this section, we focus on orientation learning repre-
sented by unit quaternions. A quaternion, denoted as Q, is a
tuple (v,u) composed of a scalar v and a three-dimensional
vector u = (x, y, z). Unit quaternions have a norm of one
and belong to S3. The hypersphere S3 has a double-covering
of SO (3), meaning that for every rotation in SO (3) there
exist two quaternions that can represent it (Q and−Q). In this
section, actions can be represented as unit quaternions, and
the learning is carried out on a single hemisphere; in case
we have a prediction Q on the other hemisphere, we flip the
prediction by using −Q.
In order to effectively utilize Gaussian distribution calcula-

tions for unit quaternions, it is necessary to take into account
their geometric properties. The objective is to maximize the
expected reward as defined in equation (11).
In this context, we define M ≡ S3, and con-

sider unit quaternions Q = (v,u), Q1 = (v1,u1),
Q2 = (v2,u2) ∈ S3, and q, u ∈ TQS3 The logarithmic map,
denoted as LogQ1

(·) is redefined to map Q2 into TQ1S
3

e.g., LogQ1
(·) : S3

7→ R4 [39] as

LogQ1
(Q2) =

Q2 − (Q1
⊤Q2)Q1

∥Q2 − (Q1
⊤Q2)Q1∥

d(Q1,Q2), (12)

where ∥ · ∥ defines the norm of a vector, and the distance
between two unit quaternions is defined as follows

d(Q1,Q2) = arccos(Q1
⊤Q2), (13)
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For example, if the reward function is exp(−d), where d is
the distance between two unit quaternions, then equation (13)
is used to calculate the distance on the tangent space.

In (8), the exponential map, denoted as ExpQ1
(·), is rede-

fined to project actions from the current local tangent space
into the hypersphere S3, e.g., ExpQ1

(·) : R4
7→ S3 [39]

ExpQ1
(q) = Q1 cos(∥q∥)+

q

∥q∥
sin(∥q∥). (14)

Parallel transport in (7) is redefined as in [39]:

0Q1→Q2 (q) =
(
−Q1 sin(∥u∥)u⊤ + u cos(∥u∥)u⊤

+

(
I− uu⊤

))
q (15)

with u = u
∥u∥ , and u = LogQ1

(Q2).

B. LEARNING ON THE Sd
++

MANIFOLD
Data such as stiffness, manipulability, and covariance ellip-
soids/matrices play a vital role in robotic manipulation.
Such data belong to the space of SPD matrices. However,
effectively learning these data using RL algorithms is
challenging due to the need for approximations to conform to
the manifold geometry. Typically, Cholesky decomposition
is employed to guarantee that the predicted matrix remains
SPD [23].

A matrix 6 belongs to the space Sd++ if it satisfies
two conditions: symmetry (i.e., 6 = 6⊤) and positive
definiteness v⊤6v > 0, ∀ nonzero vectors v. To express
manifold operators for SPD matrices as outlined in [40] and
[41], we introduce the notation 61, 62, W ∈ Sd++ and
w ∈ T6Sd++. The exponential map, denoted as Exp6(·)
in (8), is redefined to project actions from the current local
tangent space to the Sd++ manifold

Exp6(w) = 6
1
2 expm

(
6−

1
2 w6−

1
2

)
6

1
2 (16)

The logarithmic map, denoted as Log6(·), is redefined to map
W to T6Sd++

Log6(W) = 6
1
2 logm

(
6−

1
2W6−

1
2

)
6

1
2 (17)

Parallel transport is defined as

T61→62 (w) = 6
1
2
2 6
−

1
2

1 w 6
−

1
2

1
⊤6

1
2
2
⊤ (18)

The distance between two SPDmatrices is defined as follows

d(6,W) =
∣∣∣∣∣∣logm (

6−
1
2W6−

1
2

)∣∣∣∣∣∣
F

(19)

where || · ||F is the Frobenius norm.
An important feature of Sd++ is that it has no cut locus,

resulting in a bijective mapping over the entire manifold
space [40].

When parameterizing SPD matrices, two approaches were
used: vectorization via both Cholesky factorization and
Mandel notation. In the Cholesky factorization approach,
an SPDmatrix6 is represented as the product of its Cholesky
factor L and its transpose, i.e., 6 = L⊤L. The vectorization

FIGURE 3. Quaternion Wahba domain results for SAC and PPO using
Gaussian Policy Parameterization (GPP), G-RL, and BPP. The mean (solid
lines) and the standard deviation (shaded regions) are calculated over
five different seeds.

is then performed on the upper triangle elements of L
for learning purposes. Alternatively, in the Mandel notation
approach, an SPD matrix 6 can be defined using a specific
vector representation. For example, in the case of 3× 3 SPD
matrix [6] = [611, 622, 633,

√
2623,

√
2613,

√
2612]⊤.

In G-RL implementation for SPD data, we utilized the
Mandel notation to reduce the dimensionality of the data.
Additionally, we used Mandel notation as a baseline, referred
to as ‘‘Mandel,’’ where we find the nearest SPD matrix to the
predicted symmetric matrix.We experimentally evaluate both
vectorization approaches in Section V-A2 and Section V-A4.

V. EXPERIMENTAL RESULTS
Experiments have been carried out in simulated environments
(Wahba [42] and trajectory learning problems), as well as a
real setup involving a physical robot performing the Ball-in-
a-hole task. Several RL and policy improvement algorithms
have been tested:

• deep RL algorithms like SAC [8] and PPO [9],
• the expectation-maximization inspired PoWER
algorithm [13], and

• the BBO-based CMA-ES algorithm [10].

Our research question is about the gains of considering the
geometry of non-Euclidean data (e.g., orientation, stiffness,
or manipulability) in RL algorithms based on Gaussian
distributions and how they compare with the common
approximation solutions (e.g., normalization and Cholesky
decomposition) or solutions based on other distributions like
Bingham.

A. SIMULATION EXPERIMENTS
1) QUATERNION WAHBA PROBLEM
The Wahba problem, first proposed by Grace Wahba in
1965 [42], is about finding the best rotation between two
Euclidean coordinate systems that aligns two sets of noisy
3-dimensional vector observations. The original motivation
for this problem was to estimate satellite altitudes using
vectors from different frames of reference, but it was later
applied to other research fields as well.

The cost function defines attempts to minimize the
difference between sets of vectors (yi ∈ Y , zi ∈ Z ) by finding
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FIGURE 4. Four instances of the variation of the Wahba problem with
different sizes (complexity) solved by the PoWER algorithm. The size for
each is (a) 10, (b) 12, (c) 14, and (d) 16. The mean (solid lines) and the
standard deviation (shaded regions) are calculated over five different
seeds.

a rotation R ∈ SO (3)

J (R) =
1
2

N∑
k=1

ak∥zk − Ryk∥2. (20)

where ak are the weights for each observation. In our
case, orientation is represented by unit quaternions. Our
experiments use a set of random 3-dimensional vectors and
their corresponding rotated ones as the state. The predicted
unit quaternion Q̂ is compared to the original rotation Q
with a reward given by r = −d(Q, Q̂) as in Fig. 3, or by
r = e−d(Q,Q̂) as in Fig. 4 and Fig. 5, where d(Qt , Q̂t )
is the distance between two unit quaternions as given by
equation (13).

Figure 3 shows the results of learning the orientation
represented as a unit quaternion using Gaussian Policy
Parameterization (GPP), Geometric Reinforcement Learning
(G-RL), and Bingham Policy Parameterization (BPP) [32].
The quality of the learned policy using G-RL was better than
GPP for both SAC [8] and PPO [9], while compared to BPP a
slightly better policy was learned for SAC and a comparable
policy was learned for PPO.

We also used a less complex variation of the Wahba
problem by limiting the number of learning orientations to
10, 12, 14, and 16 for PoWER and CMA-ES. As shown in
Fig. 4 and Fig. 5, our goal from these experiments is to show
the importance of avoiding approximation (normalization)
when learning unit quaternions. The results of G-RL are
significantly better than the GPP results.

2) SPD MATRIX WAHBA PROBLEM
In addition to quaternions, the Wahba problem was also
implemented with SPD matrices manipulating a set of
random 3-dimensional vectors. One can think of this problem
as a spring system, where the SPD represents the stiffness
coefficient of spring and the vector set represent positional

FIGURE 5. Four instances of the variation of the Wahba problem with
different sizes (complexity) solved by the CMA-ES algorithm. The size for
each is (a) 10, (b) 12, (c) 14, and (d) 16. The mean (solid lines) and the
standard deviation (shaded regions) are calculated over five different
seeds.

FIGURE 6. Illustrates the quality of learning a policy, utilizing SAC on the
left and PPO on the right, in solving a variation of the Wahba problem.
The policy’s objective is to predict SPD matrices that represent the
stiffness coefficient of spring, as well as a set of vectors representing
positional displacements. By manipulating the vector set with the SPD
matrices, the spring force is determined for each displacement. The
resulting curve of our G-RL approach is in blue, while the resulting
baseline curve, using Cholesky decomposition, is in red. The solid lines
indicate the mean performance across five different random seeds, while
the shaded regions represent the standard deviation.

displacements. Manipulating the vector set with the SPD
provides the spring force at each displacement.

The reward for this version of the problem is given by r =
−d(W, Ŵ), where d(W, Ŵ) is the affine invariant distance
between the original SPD matrix W and the predicted SPD
matrix Ŵ given by equation (19).

Fig. 6 shows the progression in the quality of learning
a policy (specifically, a variation of the Wahba problem)
over time. This is depicted using SAC on the left and PPO
on the right. The policy in question predicts the SPD that
represents the spring’s stiffness coefficient, which operates
on a vector set that represents positional displacements. The
force of the spring at each displacement is derived when the
vector set is manipulated with the SPD. In order to ensure
a comprehensive comparison, the Cholesky decomposition
method, represented in red, is applied as a baseline against
our G-RL approach, which is illustrated in blue. Both the
mean values (denoted by the solid lines) and the standard
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FIGURE 7. The PoWER algorithm is employed to solve four instances of a
variation SPD Wahba problem, each with a different size indicating
varying levels of complexity. The sizes of the instances are (a) 3, (b) 6,
(c) 9, and (d) 12. The solid lines represent the mean performance across
five different random seeds, while the shaded regions indicate the
standard deviation.

deviation (shown via the shaded regions) are computed over
five different seeds. As depicted in the figure, the quality
of applying RL algorithms (SAC and PPO) using G-RL is
obviously higher than what is achieved using Cholesky.

Testing a simpler version of this problem allows for
the opportunity to also evaluate alternative parameterization
methods for SPD data, including using Cholesky factoriza-
tion and Mandel’s notation, both of which were evaluated
against tangent space parameterization. As seen in Fig. 7 and
Fig. 8, PoWER and CMA-ES show that G-RL holds a slight
advantage against these other parameterization methods,
except for more complex CMA-ES problems where G-RL
learns significantly better. Problem sizes 9 and 12 were
evaluated under more rollouts to ensure the significance of
the comparison.

3) ORIENTATION TRAJECTORY LEARNING PROBLEM
Some manipulation learning problems require learning a
desired trajectory of the end-effector pose. In this section,
we focus on learning a trajectory of orientations where a
policy is trained to follow a well-defined trajectory. The
current state (orientation) at time t is an input to the policy,
and the policy decides what the next (state) orientation at
time t + 1 should be. The reward captures how close the
learned trajectory is to the target one, r =

∑T
t=1e

−d(Qt ,Q̂t ),
whereQt is the target orientation at time t , Q̂t is the predicted
orientation at time t , and d(Qt , Q̂t ) is the distance between
two unit quaternions as given by equation (13).
Fig. 9 demonstrates the process of learning a policy

for regenerating an orientation trajectory for a specific
manipulation task, utilizing both PoWER and CMA-ES
algorithms. This orientation is denoted by unit quaternions.
In the top figure, each unit quaternion is embodied as a
4-dimension vector, each dimension of which records its
trajectory through a separate curve. The ultimate policy

FIGURE 8. The CMA-ES algorithm is employed to solve four instances of a
modified SPD Wahba problem, each with a different size indicating
varying levels of complexity. The sizes of the instances are as follows:
(a) 3, (b) 6, (c) 9, and (d) 12. The solid lines represent the mean
performance across five different random seeds, while the shaded
regions indicate the standard deviation. Note: the number of rollouts in
(c) and (d) is increased to 1500 rollouts to show the significance of the
difference between the proposed algorithm and the baseline.

found using the PoWER algorithm is depicted on the top
left. The ground truth is represented with a black dashed
line, the normalized baseline is a red solid line, and the
G-RL is shown as a blue solid line. Alternatively, the top
right portrays the optimal policy identified by the CMA-ES
algorithm, displaying the ground truth as a black dashed line,
the normalized baseline as a red solid line, and the G-RL as a
yellow solid line. In the middle, the figure measures the error,
determined through the quaternion distance equation (13),
comparing the divergence between the trajectories produced
via the RL learned policies and the actual ground-truth.
Finally, the figure at the bottom signifies the average reward
correlated to the number of rollout trials. We observe that
the G-RL error is substantially smaller than the baseline
error. When employing the PoWER algorithm, the advantage
of using G-RL becomes more apparent. However, in both
cases, the algorithms’ performance significantly improves by
applying G-RL compared to the conventional solution, which
is the baseline. This shows that utilizing G-RL on a task that
involves a trajectory is advantageous because our suggested
algorithm predicts the action within the parameterized
tangent space and subsequently parallel transport it to the
local tangent space that moves over time. This transition
within the tangent spaces assures that we optimally utilize
Riemannian geometry. It situates the transported action in
close vicinity to the origin of the local tangent space (mapped
to the local neighborhood of the origin of the tangent space),
thereby providing the most suitable configuration.

4) SPD MATRIX TRAJECTORY LEARNING PROBLEM
As with the Wahba problem, the trajectory learning problem
was also replicated using SPD matrices as well, adjusting
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FIGURE 9. Both PoWER (left) and CMA-ES (right)algorithms are used to
learn a policy for orientation trajectory tracking, represented as unit
quaternions, in a manipulation task. Top: The quaternion tracking
response of our G-RL approach is compared with the baseline and
ground truth. Middle: represents the error, computed using (13), between
the trajectories generated by the RL learned policies and the ground
truth. Bottom: The average reward is plotted with respect to the rollout
number, demonstrating the learning progress of the algorithms over time.

the policy to learn a trajectory of SPD matrices instead of a
trajectory of orientations (quaternions).

The reward for the full trajectory in this problem is given
by r =

∑T
t=1 e

−d(Wt ,Ŵt ) where Wt is the target SPD matrix
at time t , Ŵt is the predicted SPD matrix at time t , and
d(Wt , Ŵt ) is the affine invariant distance between both SPD
matrices given by equation (19).
In similar context with the orientation trajectory learning

problem, and as depicted in Fig. 10 and 11 both CMA-ES
PoWER are used, but the problem here is to regenerate
manipulability ellipsoids from [43]. The figures showcases
various trajectories: the ground-truth SPD trajectory illus-
trated with gray ellipsoids, a Cartesian trajectory represented
by black dots, two baseline methods - Cholesky-based SPD
trajectory illustrated with green ellipsoids (left top), Mandel-
based SPD trajectory with red ellipsoids (middle top) -
and the proposed G-RL based SPD trajectory shown with
blue ellipsoids (right top). Fig. 12 demonstrates the same
data with respect to time. Back to Fig. 10 and 11 The
middle of the figure showcases the error between the RL
learned policies’ generated trajectories and the ground-truth
values based on the affine invariant distance equation (16).
At the bottom portion of the figure, we see an illustration of
the average reward in correlation with the rollout number.
At first glance at these figures, one can observe that the
manipulability ellipsoids generated by G-RL are tracking

FIGURE 10. Illustrates the learning of a policy using CMA-ES to
regenerate the manipulability ellipsoids, adopted from [36]. Three
different approaches are compared: two baselines (Cholesky-based and
Mandel-based) and our proposed G-RL approach. Top: Show the response
of tracking a C-shape trajectory in Cartesian space (black dots). Gray
ellipsoids represent the ground truth, Cholesky-based ellipsoids are in
green, Mandel-based ellipsoids are in red, and our G-RL-based ellipsoids
are in blue. Middle: Represents the error, computed by (19), between the
trajectories generated by the RL learned policies and the ground truth.
Bottom: Shows the average reward with respect to the rollout number,
indicating the learning progress of the algorithms over time.

the ground truth much better than Cholesky and Mandel,
and this is quantified by the error figure. Furthermore, the
G-RL approach learns faster and converges to a significantly
better solution than the commonly used algorithms (Cholesky
and Mandel). As we point out about the results of the
experiments of the quaternions trajectory learning, applying
G-RL on a problem involving a trajectory is most beneficial
because our proposed algorithm predicts the action on the
parameterization tangent space, then parallel transport it to
the local tangent space. Thismoving tangent space guarantees
that we are using the Riemannian geometry in the most
appropriate configuration, where the predicted action is
located in the close neighborhood of the origin of the local
tangent space.

B. REAL EXPERIMENTS (BALL-IN-A-HOLE)
The Ball-in-a-hole problem is a new benchmark proposed
in this paper inspired by the Ball-in-a-cup [43] and the ball
balancing [44] problems. The problem setup is as depicted in
Fig. 13, where a plate with a hole in the middle is attached to
the end-effector of the TM5-900 Collaborative Robot (cobot).
A camera is also attached to the robot’s end effector and is on
a stand to always face the surface of the plate. A ping-pong
ball is present on the plate, which has its position tracked
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FIGURE 11. Illustrates the learning of a policy using PoWER to regenerate
the manipulability ellipsoids, adopted from [36]. Three different
approaches are compared: two baselines (Cholesky-based and
Mandel-based) and our proposed G-RL approach. Top: Show the response
of tracking a C-shape trajectory in Cartesian space (black dots). Gray
ellipsoids represent the ground truth, Cholesky-based ellipsoids are in
green, Mandel-based ellipsoids are in red, and our G-RL-based ellipsoids
are in blue. Middle: Represents the error, computed by (19), between the
trajectories generated by the RL learned policies and the ground truth.
Bottom: Shows the average reward with respect to the rollout number,
indicating the learning progress of the algorithms over time.

by the camera. The robot’s end-effector position is fixed,
with only its orientation being changed. The state [sM --sR]
includes the current orientation of the end-effector (manifold
data sM) and the current position of the ball on the plate
(Euclidean data sR). On the parameterization tangent space,
we concatenate the Euclidean part with the manifold part and
deliver it to the policy. The reward is represented by exp−d ,
where d is the distance between the center of the ball and the
center of the hole measured using the vision system. As this
is a challenging problem (lightweight ball, noise in the vision
system, and with position control), we decided to start each
rollout with the ball in the same initial position.

Regarding the TM5-900 cobot limitations, real-time com-
munication is not guaranteed as all communications pass
through the TM-Flow software using a Position, Velocity,
Time (PVT) function. No variable impedance control or
admittance control is possible as of writing this paper.
Therefore, we had to split the trajectory from one rollout into
a number of steps. After each orientation change, the ball’s
location was immediately read and included in the terminal
reward (used to guide the RL algorithm).We used the PoWER
algorithm to learn a policy that moves the ball into the hole,
with Fig. 14 showing the experiment results. The algorithm
eventually converged to a local policy, where it learned how

FIGURE 12. Illustrates learned policies quality using CMA-ES to
regenerate the manipulability ellipsoids from [36], the ground-truth is
depicted as the gray ellipsoids, the proposed G-RL approach is depicted
as the blue ellipsoids (top) and two baselines (Cholesky is depicted as
the green ellipsoids (middle) and Mandel is depicted as the red ellipsoids
(bottom)). The shown trajectories are over time.

to place the ball in the hole via a single axis, as seen in the
demonstration video.

VI. DISCUSSION
As noted in the experimental results (Sec. V-A), as the
complexity of the problem increased, the advantage of
using G-RL over regular approximation approaches is more
significant. This allows us to conclude that in moderately
complex problems, the error caused by normalization is
significant enough to affect the quality of the solution, and
there is a clear advantage in using the proposed G-RL.

As already noted in [32], BPP parameterization relies on
the prediction from multiple neural networks, which may
introduce significant approximation errors. This culminates
in an unstable learning process unlike GPP and G-RL.
We have experimentally observed this problem of BPP, and
several attempts weremade before representative results were
achieved with this approach. On the contrary, the stability of
G-RLwas on par with GPP and better than BPP, verifying that
the one-to-one mappings between the manifold and tangent
space are stable.

We experimentally observed that the average computa-
tional overhead of G-RL over GPP is about 3% for SAC and
6% for PPO. These results were expected as the mappings
between the tangent space and manifold are not computa-
tionally expensive and it is straightforward to implement.
This contrasts with BPP, for which we have observed an
average overhead of about 33% for SAC and 118% for
PPO. Moreover, BPP involves modifying the distribution and
customizing the algorithm to fit. Therefore, we conclude
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FIGURE 13. (a) Ball-in-a-hole problem setup. A plate with a hole in the middle is attached to the robot’s end-effector. The plate’s circumference is
surrounded by cardboard so the ball does not fall outside the plate. A ping pong ball is located on the top of the plate. A camera is also attached to the
end-effector in order to measure the distance between the center of the ball and the center of the hole. (b) shows the plate view using the top camera
and the data captured from both the vision system and the robot controller.

FIGURE 14. The expected return of the learned policy in the
Ball-in-a-hole evaluation averaged over five runs.

that G-RL can provide a noticeable improvement in solution
quality over GPP at the cost of a small performance penalty
and that it can deliver at least equal results to BPP while
performing much faster.

Despite the improvement in accuracy, in the case of
parameterizing in a single fixed tangent space, where
the parameterization and the local tangent spaces to be
established at the same fixed point like in theWahba problem,
it would be most beneficial where data points are in the
neighborhood of the origin of the tangent space. This is due to
the tangent space projection that locally preserves distances
near the origin, while distances measured away from the
origin are less accurate. Furthermore, this fixed tangent space
should be established on or very close to the mean of the
data; otherwise, the algorithm’s accuracy can be significantly
affected.

While this work is limited to the S3 and Sd++ manifolds,
it has the potential to be extended to other non-Euclidean
manifolds with the proper investigation and analysis.
We leave this as future work.

VII. CONCLUSION
Applying RL algorithms on geometric data like orientation,
manipulability, or stiffness is common in robotics, and these

algorithms usually perform better when considering the
unique structure of these data. The current study was gener-
ally dedicated to this topic and showed howRL can be applied
to learn geometric actions in the task space (i.e., orientation
represented by unit quaternions, and stiffness represented by
SPDmatrices); parameterization and optimization are carried
on the tangent space, and the policy evaluation is carried on
the corresponding manifoldM. We found that adapting the
Gaussian distribution, which is simple and powerful, to the
geometry of non-Euclidean data makes it competitive with
alternative distributions (e.g., Bingham). Empirical results
on both the simulation and the physical robot reflect the
importance of considering the geometry of non-Euclidean
data and how the performance and accuracy of the overall
learning process are consequently affected. This research
holds promising potential for broader applications in the
future. The methodology can be adapted to extend to various
other manifolds. Moreover, its applicability in specialized
areas such as industrial manipulation tasks, e.g., polishing
applications, further highlights the versatility of this work.

As a future work, the focus will shift to augmenting this
framework in the context of model-based RL algorithms.
This requires a deeper investigation and the development
of a novel approach to efficiently represent the stochastic
transition dynamics on different manifolds.
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