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ABSTRACT Open-source libraries form the backbone of modern software systems, making software
composition analysis (SCA) a vital part of the software development cycle. Despite its importance, current
SCA methods, primarily focusing on open-source component issues, lack comprehensive analysis of these
components’ integration into the software system. This paper proposes an advanced SCA approach that
simultaneously considers open-source component issues and their integration into a software system.
We introduce a novel meta-model that links a library with its source code dependencies and enables a unified
analysis, irrespective of the originating package manager or open-source repository. The proposed approach,
instantiated through a code analysis tool and adapters for major package managers and repositories, was
applied to over 200 popular GitHub projects. Results confirm that the impact of open-source component
issues largely depends on their integration level in the software system, validating our assumption that
effective risk management requires understanding of the open-source component use within the system.
Our work, therefore, provides an enriched methodology for SCA.

INDEX TERMS Inspect, dependency, library, age, vulnerability.

I. INTRODUCTION
Open-source libraries and frameworks are at the core of any
modern software system. However, the software engineering
community has growingly become aware that the usage of
open-source components comes with significant risks, the
most important one being vulnerabilities that allow attackers
to harm the systems by using vulnerable components. Many
vulnerabilities are caused by a project relying on an outdated
version of an open-source component, which is sometimes
caused by negligence, but other times it is caused by being
stuck with an old library that was modified and on which
many other modules depend, which makes it hard to upgrade
the library, an issue known as theEvolution Trap. Licensing is
another concern when using open-source libraries. Licenses
can be more permissive or more restrictive. The restrictive
ones, copyleft licenses as they are known, might bring
problems in a system. Copyleft is a method for making
a software program free, requiring that all modified and
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extended versions of the program to be also free and released
under the same terms and conditions.

In this context, Software Composition Analysis (SCA) is
increasingly playing an important role in the development
cycle of software systems, as it can detect important issues
like security vulnerabilities, licensing problems or outdated
library versions. Although there are tools which offer
solutions, in most cases, each concern is treated separately,
leaving a gap within the information about the analyzed
libraries. Moreover, in order to accurately assess the risks
incurred by these issues on a specific software system,
it is equally important to understand the extent to which
the system depends at the code level on these open-source
components. Unfortunately, current composition analysis
approaches are too much focused on the issues found in the
open-source component, and neglect to analyze where these
components are actually used in the software system that is
inspected.

In this paper we introduce an enhanced, tool-supported,
approach to Software Composition Analysis that aims to
contribute at addressing the aforementioned shortcomings.
The presented approach takes into account both the issues
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associate with the open-source component and the degree to
which an inspected software system relies on that component.
At the core of the approach is a meta-model for composition
analysis with two novel traits: (i) it associates a library with
its source code dependencies and (ii) it provides a unified
way of analyzing the wealth of information coming from
the different package managers, open-source repositories or
composition analysis tools that a software system may use.

To instantiate the model with data from a broad range of
projects we developed a code analysis tool (Inspector-Lib)
which contains adapters for fetching meta-data about open-
source components for several major package managers.
Inspector-Lib also contains a component that detects library
usages in source code files.

We applied this approach to over 200 popular open-source
projects from GitHub to test the feasibility of the data extrac-
tion tools on heterogeneous projects. We also conducted a
more in-depth study on a selected subset of 28 projects to
assess how much projects depend on open-source compo-
nents that present significant risks, which translates into the
maintenance effort that would be required to address the risks
from these open-source components.

The results show that the real impact of issues in
open-source components varies significantly depending on
the extent of the component’s integration into each software
system. This validates the assumption that in order to act
efficiently on the risks incurred by open-source components,
we must go beyond the analysis of the component itself,
and understand better how the component is used in a
software system. Hence, this paper contributes to software
composition analysis by providing a broader and more
comprehensive method for assessing and mitigating the risks
associated with the use of open-source libraries.

The remainder of this paper is structured as follows:
after presenting alternative approaches and their limitations
in Section II, we discuss our library assessment approach
in Section III and illustrate it on a running example.
In Section IV we present our two evaluation studies, and
then we present our conclusions and future work direction
in Section V.

II. RELATED WORK
A. APPROACHES
As previous research, which will be presented in this section,
has shown, knowing and understanding a system is very
important when it comes to maintaining and evolving it.
To help the system, wemust first understand it, how it is build,
what dependencies it has and what the risks are of having
them.

The biggest threat when it comes to third-party libraries
are vulnerabilities, which is a frequently discussed topic [1],
[2], [3], [4], [5], [6], [7], [8]. They are one of the most
pressing problems in open-source libraries. It may be difficult
to find and fix them. Also, they may propagate to other
packages, making them vulnerable too. Zapata et al. [1] offer

an interesting study of vulnerable dependency migrations
for npm packages. Developers are encouraged to maintain
and update any outdated dependency to remain safe from
potential threats including vulnerabilities. In their study
they manually inspected 60 client projects from three cases
of high severity vulnerabilities and investigated whether
or not clients are safe from these threats. Plate et al.
[2] propose a pragmatic approach to facilitate the impact
assessment, describe a proof-of-concept only for Java and
examine vulnerabilities as a case study. In their study they
analyze a Java system to see whether the affected class
(referenced to in the description of the vulnerability) is used.
Pashchenko et al. [3] present a methodology for a correct
allocation of development resources. They discovered that a
majority of vulnerable dependencies may be fixed by simply
updating to a new version, while only a small percentage of
vulnerable dependencies require a costly mitigation strategy.
Decan et al. [4] study vulnerabilities in npm packages. They
analyze how and when they are discovered and fixed, and to
which extent they affect other packages, providing guidelines
for package maintainers and tool developers to improve the
process of dealing with security issues.

Combining different libraries may also be a problem. Some
libraries may not be compatible with a certain version of other
libraries, as presented in [9], [10], [11], and [12]. In large
software systems, it is common practice to adopt third-party
libraries. Therefore incompatibility between library depen-
dencies may occur and complicate the system’s development
and maintainability. Yano et al. [9] present a tool that offers
an interactive data visualization of popular library version
combinations. Using the ‘‘wisdom of the crowd’’, Yano et al.
created a tool to assist system maintainers by offering data
visualization of the best library version combinations and to
help them make the best library usage decisions by showing
the ‘‘best-fit’’ result of library links. Decan et al. [10] use a
data set to carry out an empirical analysis of the similarities
and differences between the evolution of package dependency
networks for seven packaging ecosystems of varying sizes
and ages. They observe that the dependency networks tend
to grow over time, both in size and in number of package
updates (only a minority of packages are responsible for most
of the package updates), and that the majority of packages
depend on other packages. With their analysis they provided
important information about the update tendency and the
relations of different packages.

Also, when working on large software systems, developers
may be unaware of the risks the libraries hide in their system
[13], [14]. Studies show that developers don’t look at the
version of the library that they are using, leaving themwith an
old version which may be vulnerable. This is an unnecessary
risk, because the majority of vulnerable dependencies may be
fixed by simply updating to a new version.

Always having the latest version can help to get rid
of vulnerabilities. The system must be ‘‘fresh’’ to avoid
security risks. Systems using outdated dependencies are
four times as likely to have security issues as opposed to
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systems that are up-to-date. Cox et al. [15] introduce a
metric to quantify the use of recent versions of dependencies,
referring to it as the system’s ‘‘dependency freshness’’. They
validate the usefulness of the metric using interviews and
investigate the relationship between outdated dependencies
and security vulnerabilities. Their results show that systems
using outdated dependencies are four times as likely to have
security issues as opposed to systems that are up-to-date.

Wang et al. [16] conduct a library risk analysis, which
aims to quantify the potential risk of using outdated libraries
and the developer response to the risk. They conduct a
comprehensive study on third-party library usages, updates,
and risks in the Java ecosystem, offering practical insights
for developers, proposing a bug-driven alerting system for
informed decisions on library updates, and highlighting the
importance of addressing maintenance challenges in software
development.

B. TOOLS
The concerns presented in the previous subsection also
impact the industry. To detect such concerns, tools have been
developed for industrial use, to analyze the dependencies
of a system [17], [18], [19], [20]. There are several ones
which treat some parts of Software Composition Analy-
sis, such as vulnerabilities, licensing and version updates,
but each independent and being focused on particular
issues.

They find security vulnerabilities, eliminate the risk of
open-source license noncompliance, inspect the source code
but also the binaries and automatically monitor for new
vulnerabilities [17]. Or find and fix security vulnerabilities
in the code [18]. They keep your dependencies up-to-date
by looking in the dependency files and searching for any
outdated dependencies [19]. And they can automate the
process of open-source component selection, approval and
management, including security detection and remediation,
and compliance issues [20].
A summary of the tools and their functionalities can be

seen in Table 1.

TABLE 1. Tools.

C. LIMITATIONS OF THE STATE-OF-THE-ART
As presented earlier, the concerns are treated in isolation
(only vulnerabilities, only age), there is no unified way and
synergies between different parts of Software Composition
Analysis are not possible. It is very hard to make a decision
without having all the information of the dependencies in one
place. To better understand and to have a bigger picture of

the dependencies in a system, it is important to have all the
information together.

Evenmore, it is not only about risks and vulnerabilities, it is
also about productivity, about efficiency and how developers
spend their time managing dependencies. The emphasis
is on the libraries themselves, and less on their context
in the system. That is why the effort of maintaining the
dependencies is unknown, because it is difficult to know
something about it without looking at the actual ‘‘footprint’’
of the libraries in the system. To act properly, one needs to
understand the dependencies within the context of the system.

Knowing the age, or ‘‘the freshness’’, and the vulnera-
bilities of the used libraries is very important, but this is
not enough insight. To better understand a system and its
structure we have to look where these libraries are used,
which components of the system are vulnerable, which
file contains the vulnerable dependency, which parts of
the system are the ‘‘old’’ ones. The idea is to connect
the different worlds of Software Composition Analysis and
reduce the gap between them through an ‘‘end-to-end’’
approach to analyzing the dependencies of a software system
and providing a better decision-making process regarding the
system’s dependencies by understanding the ‘‘footprint’’ of
each dependency.

TABLE 2. Limitations in cross-examination.

III. INSPECTOR-LIB: THE ASSESSMENT APPROACH
This section will present Inspector-Lib, our tool-driven
approach that allows for a context-aware analysis of open-
source components. As shown in Figure 1, the approach
consists of three elements that will be introduced next: (i) the
meta-model which is the core of our approach as it specifies
the pieces of information that we analyze and how these
pieces are interconnected; (ii) the open-source component
profiler that identifies the open-source components used by
the analyzed system, fetches key information about these
components from the various package managers, repositories
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FIGURE 1. Inspector-lib system overview.

and/or composition analysis tools, and stores it in our model;
and (iii) the open-source code scanner, which searches the
entire codebase for ‘‘traces’’ of open-source components,
using a set of rules based on regular expressions.

A. MODELING OPEN-SOURCE COMPONENTS
Most software projects are implemented nowadays using
several programming languages; for instance a language like
Java for the backend, another language like JavaScript for
the frontend and a scripting language like Python as ‘‘glue’’
code. Each of these languages is managing its dependencies
in a different way, using a different package manager. This
raises a challenge when it comes to analyzing efficiently
open-source dependencies in multi-language projects. There-
fore, we designed a unified meta-model that will allow the
analysis of all the open-source dependencies of a project in a
unitary manner.

As depicted in Figure 2 this meta-model is based on
the idea of capturing the key elements that are relevant for
any open-source dependency regardless of the programming
language that it serves or the dependency manager that is
used by the project. Our meta-model captures four types of
information about each dependency used by the project:

1) Library Identifier: the dependency name, version
identifier, and a reference to its origin including
the providing package manager and the purl which
identifies each open-source package uniquely.

2) Library Meta-data: detailed descriptions, licensing
information, complete release histories (encompassing
version numbers and release timestamps), relevant
keywords, homepage URLs, and more. All these are
extracted from the package managers, based on the
basic information. Moreover, using the basic informa-
tion about the library we store in the model information
about the vulnerabilities that the dependencymay have.

The details about how the meta-data is fetched are
described in Section III-B2.

3) Code References: the list of fully qualified names of
source files that reference the open-source component.
This information is extracted using the automated
technique described in Section III-C.

4) Derived Metrics: By using the meta-data described
above we automatically compute several key metrics
that are used in the risk analysis described in Sec-
tion III-D. For the age of a library, we store the time
from current used library version to latest released
version, time from current used library version to
current date, and time from latest released version to
current date. Each duration is computed in months.
For vulnerabilities, we count how many vulnerabilities
each library has, compute the total and the average
vulnerability score for each library and save the
references for each found vulnerability.

The meta-model decouples the analysis part from the
heterogeneity of fetching the data from multiple sources,
allowing us to define any type of analysis in a unitary manner.
Moreover, this approach allows us to extend Inspector-Lib
towards more languages and more package managers, as the
extension would just require writing the adapters that extract
the meta-data, without requiring any changes to the risk
analyses themselves. This makes the approach easy to adapt
and scale.

B. PROFILING OPEN-SOURCE COMPONENTS
1) IDENTIFYING THE OPEN-SOURCE COMPONENTS
The dependencies must first be extracted from the analyzed
system. The used libraries can be found in the configuration
files of the package managers. The configuration files and the
way the dependencies are declared differs from one package
manager to another. For example, the configuration file for
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FIGURE 2. Inspector-lib model.

Maven is a XML file named pom.xml, and for Gradle it
is the build.gradle file, each package manager having its
own configuration file. The dependencies are extracted by
parsing these files. After the extraction is completed and the
dependencies are found, the model population step begins.
Here is an example of declaring dependencies in a pom.xml
file:

<dependencies>
<dependency>
<groupId>me.tongfei</groupId>
<artifactId>progressbar</artifactId>
<version>0.7.2</version>

</dependency>
</dependencies>

After parsing this pom.xml file the presence of the
me.tongfei progressbar library, version 0.7.2 can
be observed. The next step is extracting information about
the libraries found in the configuration files and populating
the model with data.

2) FETCHING OPEN-SOURCE META-DATA
Information about the found libraries must be extracted. This
is done by making requests and getting the data as a response,
which is parsed and added to the model. Each third-party
software repository has its own API. To get the information,
the correct URL must be created to obtain the data for each
found library.

The response obtained contains information about the
specific library which was requested, structured as a JSON.

The response is parsed and the model is populated with the
information from the request. For example, let us assume
we need information about tensorflow, an open-source
software library for high performance numerical computation
used in Python. To obtain the information about this library
a request to the Python Package Index (PyPI),1 the official
third-party software repository for Python, has to be made.
This will result in getting a response, as a JSON, containing
information like: description of the library, license, all
releases of the library (version and release time of each
version), keywords, homepage, name of the library, and so on.
After parsing the JSON response, the model will be populated
with the obtained information. The same approach is used for
libraries of different programming languages: make a request
to the third-party software repositories, obtain the response,
parse it and populate themodel with the obtained information.

To get details about vulnerabilities, Sonatype’s OSS Index
API is used. The OSS Index contains plenty of identified
vulnerabilities of open-source components from the NVD
(National Vulnerability Database) and other open-source
vulnerability databases. Sonatype OSS Index uses a package-
url specification to describe the coordinates of the com-
ponents / packages. So, to find a library, its package-
url must first be made to use it as a coordinate to get
information. The information is then parsed, the vulnerability
metrics (presented in the section above) are computed and
then added to the model. For example, the package-url

1https://pypi.org/pypi/tensorflow/json
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(purl) for the npm library foobar version 12.3.1 is:
pkg:npm/foobar@12.3.1.

C. OPEN-SOURCE CODE SCANNER
Generating rules helps in detecting where in the code and,
in which files, the libraries are used. The idea of the rules was
inspired fromMicrosoft’s Application Inspector.2 To find the
usage of the libraries, different patterns are generated in the
rules. For example, let us take a look at the rule generated for
the junit library.

{
‘‘tags’’: [ ‘‘testing’’ ],
‘‘patterns’’: [ {
‘‘pattern’’: ‘‘junit’’,
‘‘type’’: ‘‘substring’’,
‘‘scopes’’: [ ‘‘all’’ ]

} ],
‘‘applies_to’’: [ ‘‘java’’ ]

}

The rules are generated in JSON format and contain
three attributes: tags, patterns and applies_to. The
tags attribute is an array of strings representing keywords
or categories which correspond to the library. The patterns
attribute is an array of one or more pattern objects and
contains attributes like: pattern, type and scopes. The
pattern attribute is a string representing the pattern to match.
It is usually a regular expression, but can also be a simple
string. The format of the pattern is specified by the ‘‘type’’.
A type can be

• regex - pattern is a regular expression
• string - searches for the raw text on a word boundary
• substring - searches the raw text but does not look
for word boundaries

Also, scopes is a string array that specifies what part of
the file to search in. The scopes are:

• code - searches only the sections that represent
executable logic

• comment - searches in the non-executable documenta-
tion that is found in the file to explain the code

• all - searches everywhere in the file
Finally, applies_to is a string array containing what

languages a rule should be run on. If the applies_to attribute
is not defined or empty, then the rule is applied to every file
type.

So, for the example above, the rule has as a pat-
tern the name of the library, junit, it searches for this
pattern in the entire code (comments as well) and only in
Java files. If the pattern matches, then the file or files where
it matched will be returned and the user will know where the
library is used inside the system.

To see where exactly the library is used, adds a new
dimension to the Software Composition Analysis, by com-
bining the information about the library with the knowledge
of being aware where the library is used in the system,

2https://github.com/Microsoft/ApplicationInspector

making a transition from offering information ‘‘just about
the library’’ to offering a more comprehensive analysis about
‘‘my library’’, about the concrete library used, to determine
which actions or which future steps are best for the system,
in the context of its libraries.

D. RISK ASPECTS
The meta-data collected from the various sources and stored
in the model can be then used to identify a set of risk aspects
related to an open-source component that must be assessed.
To ensure an objective assessment for each, a metric must be
defined to measure the level of risk; also, a classifier must
be used to assign a metric value with a discrete level of risk,
based on a set of user-defined risks.

In this paper, we decided to focus on the following three
aspects:

1) Lag: a project using an outdated version of an open-
source component. In order to measure this, we define
theAge of Used Versionmetric as the number ofmonths
between the dates of the latest version and that of the
version used in the analyzed project, whereby a larger
value will indicate a case of a more severe case of Lag.

2) Operational Risk: a project depends on open-source
component that is not anymore maintained by its
developers. To quantify this aspect, we define the Age
of Latest Version metrics as the number of months
between the current date and the release date of the
latest version; again, the higher the value for this
metric, the higher theOperational Risk associated with
that open-source component.

3) Vulnerability: a project is depending on an open-source
component that has one ore more known security
vulnerabilities. To quantify the severity we will rely on
the Severity Level metric defined by Sonatype’s OSS
Index.

E. ILLUSTRATING THE APPROACH
After having described the major components of our
approach we will illustrate in this section the way it can
be used step by step to assess a system’s open-source
dependencies, based on a made-up example. However,
to make the example close to reality, we imagined the case
of a system that is using Java on the backend, managed using
Maven, and JavaScript on the frontend, managed using npm.

The first step in the assessment is to extract the
dependencies from the system as described in Sec-
tion III-B1. Inspector-Lib’s dependency scanner will search
for the specific configuration files of each package
manager. In this example, it will parse the pom.xml
files, for the Java/Maven, and the package.json,
package-lock.json files for the JavaScript/npm side.
Each configuration file is parsed and dependencies are
extracted. The result is a list of third-party open-source
libraries that are used in the system. Let’s assume that the
dependency extraction step has found the five dependencies
summarised in Table 3, specifically the library’s name and
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TABLE 3. Library meta-data for the running example.

its version number. This information is stored in the model
that instantiates the meta-model. Note that the information
is stored in a uniform manner although it comes from two
different dependency managers:Maven and npm.

The second step of the assessment is to collect relevant
information about each of these libraries, namely: the date
of the library’s latest release, the open-source license of that
library, and the set of known vulnerabilities associated with
the version of the library that our project relies on. This
information is fetched by making requests to the various
online databases that store and constantly update key facts
about open-source dependencies, as shown in Figure 1.
Again, the information is stored in our model in a manner
that is independent of the specific database from where the
information was fetched.

As a result of feeding the information into the model, and
computing the Age of Used Version and Age of Latest Version
metrics, as described in Section III-D, we end up with the
results summarised in Table 3.
By analyzing the results, we discover several concerning

facts: junit 4.7 is outdated bymore than 10 years and has
a known vulnerability; minimist 1.2.0 is also outdated
by more than 6 years and has one vulnerability. Next,
we discovered that mysql-connector-java 8.0.12
is outdated by more than 4 years, and has five vulnerabilities,
one of them being of high risk; moreover, the library
is released under a copyleft license, which means that
depending on how it is used in the analyzed project, the
project’s codebase might need to be released under a similar
copyleft license. This is a concerning finding as we keep our
project closed-source, meaning that we must either replace or
remove the library.

Despite the valuable insights found about these libraries,
we still don’t knowmuch about the effort that will be required
to address these issues. The uncertainty has a clear cause:
declaring an open-source dependency in a build configuration
file does not mean that it is actually used, nor does it
indicate how widespread that usage is. This is where the
differentiation aspect of our approach comes into play: we
use regular expressions tomatch each library to certain strings
that are specific to that library (e.g. full-path package names)
and then search for these library ‘‘fingerprints’’ across the
project’s codebase.

By doing this, in our example, we found that the
mysql-connector-java library was declared in the

pom.xml file, but it is currently not used anymore in the code.
This means that despite all the concerning findings that we
outlined earlier, there is no real risk for our system; and
all we need to do is to remove the declaration. By contrast,
we discovered that the minimist library is used widely
across our codebase, which means that updating it is a high
priority especially considering the vulnerabilities.

IV. EVALUATION OF THE APPROACH
The previous example has illustrated the need to know
how an open-source dependency is used in a codebase, and
the Inspector-Lib approach to address this need. However,
going beyond a running example, the point that needs to be
validated is this: does the case from our example occur in
real projects? In other words, how frequent are the cases
when open-source components with comparable issues (e.g.
vulnerabilities, lack of support, copyleft licenses etc.) have a
radically different impact in terms of the cost of remediation,
based on how much the analyzed project actually depends on
that component.

In this context, we will validate our approach by investi-
gating the following research questions:

• RQ1: Does Inspector-Lib provide the right level of
automation to handle a large variety of projects that are
written in wide range of languages and rely on multiple
dependency management systems?

• RQ2: Across real-life projects, how broad is the
range of maintenance effort that is required to address
open-source components that appear to pose a compara-
ble level of risk to the project?

A. FEASIBILITY OF DATA EXTRACTION
The first step of the evaluation was focused on addressing
RQ1, namely to asses if the Inspector-Lib tool-set is able
to deal with a wide range of projects, written in multiple
programming languages and having their open-source depen-
denciesmanaged bymultiple systems. To this endwe selected
200 projects,3 namely 50 projects for three languages and
four major dependency management systems: Java (Maven
and Gradle), JavaScript (npm) and Python. We selected only
open-source projects for two reasons: to ensure that we
have access to a large number of projects, and also make
the results of this study easier to replicate. We selected the

3The projects can be found in following dataset [21].
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projects from those that have the highest ratings on the
GitHub platform, namely the projects with the largest number
of stars, whereby a star is a sign of appreciation meaning
that projects with many stars can be regarded as being
very important to a wider community. Many of the selected
projects belong the major organizations like Google, Spring,
Apache, Facebook, Angular, VueJS, and Microsoft, but we
have also included project frommany other organizations and
individual developers.

For the projects containing Java code, we extracted 19,064
dependencies from 50 Maven and 1,152 dependencies from
the projects managed using Gradle. Due to the large number
of dependencies in the Maven projects we analyzed in
more detail 1,171 dependencies of five projects coming
from Google (3) and Apache (2). We found 42 libraries
having known security vulnerabilities, and 231 libraries
for which an outdated version was used (high Lag);
also, several used libraries have a high Operational Risk
as they were not been active in more than five years.
The 50 Gradle projects had 585 dependencies that were
outdated; and we detected that these dependencies contained
77 vulnerabilities.

For the 50 JavaScript projects, we successfully extracted
46,762 dependencies from the npm configuration file. Due
to the very large number of dependencies, similarly to
the Maven projects, we chose 15 projects to analyze their
dependencies thoroughly. We selected the projects so that
they are widely spread across the most mature organizations
(Facebook, Angular, Google, VueJS) to ensure that we
potentially capture a diverse range of patterns in handling
open-source dependencies. These 15 projects have a total of
2,482 dependencies. The number itself is surprisingly small:
although we selected 30% of the initial 50 project, they only
have 5% of all the dependencies. This may indicate that
more mature companies tend to have as few dependencies as
possible, although this is an assumption that would require
more analysis before it can stated as a fact. When extracting
the meta-data for these dependencies we discovered that
almost half of them (1,147) are outdated. Also, 41 libraries
have known vulnerabilities.

For the 50 Python projects, we extracted 721 dependencies.
From these dependencies only 12 have vulnerabilities and
291 are outdated.

This part of the analysis has revealed that even in highly
popular projects managed by mature companies the usage
of open-source components poses significant challenges.
Moreover, we noticed that the JavaScript dependencies tend
to be more affected by software composition issues, while the
Python projects tend to be affected less. For now this is just
a first impression that requires further investigation before it
can be validated.

As a conclusion, returning to the questions posed at the
beginning of the subsection, with our approach we were
able to extract dependencies from different projects and get
information about them, as well as computing their age, but
also to detect the usage of the libraries in the code with the

generated rules leading to an enhanced way of looking at the
dependencies of a system. The last question will be answered
in the next subsection.

B. RELEVANCE OF LIBRARY’S CODE ‘‘FOOTPRINT’’
The second part of the evaluation is focused on answering
the second research question, namely the extent to which
across real projects the risk and maintenance effort asso-
ciated with an open-source component varies significantly
depending on how much the assessed project depends on
that component. The evaluation was performed based on
28 open-source projects from GitHub, selected from the
larger set of projects analyzed during the first evaluation
stage. For this second stage, we selected a set of the ‘‘highest
rated’’ projects, based one their number of stars/up-votes
on GitHub, coming from three organizations: Facebook,
Google and VueJS. We selected 3 Maven, 3 Gradle, 4
Python and 18 npm projects. We based our decision to
select a higher number of npm projects on the observation
made during the first evaluation stage that npm projects
tend to have more dependencies compared to other types of
projects.

The evaluation is based on the following methodology:
we detected and classified automatically the cases of risks
associated with an open-source component itself across the
28 project, as presented in Section III-D. For the sake
of uniformity we decided to use a four-level classifier
on all risk aspects, based on the following set of three
thresholds:

1) Lag: risk is considered high when Age of Used Version
is at least 5 years (60 months), else it is medium if the
value is at least 2 years, and otherwise it is low if the
value if at least 12 months.

2) Operational Risk: risk is considered highwhen Age of
Latest Version is at least 3 years (36 months), else it is
medium if the value is at least 2 years, and otherwise it
is low if the value is at least 12 months.

3) Vulnerability: a high risk corresponds to a Severity
Level of at least 7, else the risk ismedium if the Severity
Level is at least 4, and, otherwise, it is low if the metric
has a non-zero value.

Then, we broke down those cases along a second,
orthogonal dimension, namely how much each of the
analyzed projects depends on that open-source component
with some intrinsic risks. To quantify this, we simply
counted the files that directly depend on an open-source
component, based on the results retrieved by theOpen-Source
Code Scanner described in Section III-C; and we used the
following thresholds to classify the values: a dependency on
an open-source component is considered widespread if at
least 100 files depend on it, else the dependency is considered
scattered if at least 40 files depend on that OS component;
if not, the dependency is considered ghost if no files
depend on the open-source component, or else it is classified
as sparse.
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FIGURE 3. Library concerns and their impact in the code.

1) DATA INTERPRETATION
The results are summarised in the matrix depicted in Figure 3.

For the cases of Lag we notice that while most cases are
sparsely used in the analyzed projects, there are nevertheless
24 cases of OS components (5 high Lag and 19 medium Lag)
that have a widespread presence in projects. Additionally,
there are 32 cases of OS components that are used in
over 40 files per project. The distribution of severe Lag
cases across the entire spectrum of project dependency
indicates that the level of maintenance effort required to
address high risk issues in open-source components can differ
based on the extent to which a project depends on that
component.

While there are fewer severe cases of OS components
with Operational Risk, the distribution is similar to the
Lag risk: there are many cases where OS components
that are inactive for many years have a wide ‘‘footprint’’
in a project’s codebase. This means that some projects
heavily rely on potentially unsupported libraries, which
pose significant operational risks. At the same time it is
worth noting that a higher number of severe cases (i.e.,
high and medium) are in ghost dependencies, namely the
library is declared in the project’s configuration file but it
is not used anymore in the code. This is to a large extent
a good sign suggesting that in these projects developers
were active in removing the dependencies on these unsup-
ported components and just forgot to remove the declared
dependency.

In terms of vulnerabilities, the overall number of cases
is significantly lower compared to the previous two types
of risks, which is expected given the high popularity of
these projects, and the very solid reputation of the three
organizations that have created them. Nevertheless, the

number of severe cases (i.e. high and medium) is almost
evenly distributed between the projects where the component
was used directly in at least 40 files (widespread and
scattered) compared to the projects where components with
severe vulnerabilities are only sparsely used in the code. This
demonstrates that also for the case of vulnerability risks,
estimating the actual risk and the effort required to address
the risk varies widely based on how deeply embedded in the
code the dependency is.

In conclusion, the data tends to validate the assumption
that measuring how much a codebase depends on an OS
component offers valuable insights regarding the actions
that must be taken, the priority in which open-source
related issues must be addressed, and the level of effort
required to remediate the identified concerns; for instance,
when an OS component with high Lag has a widespread
code dependency, we will know that a major part of
the system relies on outdated libraries; and therefore a
comprehensive update strategy targeting these widely used
libraries becomes imperative to ensure overall system
integrity.

2) MANUAL INSPECTION OF FINDINGS
In addition to the high-level, quantitative analysis of the data,
we manually inspected a large number of cases, starting
from the most relevant ones, namely the cases of OS
components that have one or more severe risks and have a
wide dependency in certain projects. For projects where such
strong cases exist, we also searched complementary cases,
namely components of relatively similar risk, which are less
widely used in the same project; or cases where the same
open-source component is less widely used in other projects.
We discuss next the most interesting discoveries.
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1. vue-cli (VueJS): The project has a widespread depen-
dency on library ejs 3.1.64 and has one high vulnerabil-
ity (score 9.8). This means that although the low Lag would
suggest that an upgrade to the latest version should be easy
andwould remove the vulnerability, due to its scattered usage,
updating the library may impact the system’s functionality as
it may have been relied upon in specific ways or for specific
functionalities.

2. react-native (Facebook): the typescript 4.1.34

component exhibits one high vulnerability, but the project
only uses the component sparsely. By contrast, in another
project (jest) from the same organization (Facebook), there is
a widespread dependency on typescript 4.7.3 but the
version used here has no vulnerabilities. This suggests that
organizations tend to pay more attention in upgrading their
OS dependencies when the project has a wider dependency
on a library. We also noted that in the jest project, multiple
versions of typescript are used in parallel in different
parts of the system, likely due to the modular nature of the
components.

3. react-native versus flux (Facebook): the library
react 15.4.14 has a high Lag and has a widespread
usage, which means that upgrading it to the latest version
may introduce functional changes in the system or impact the
components where it is utilized. By contrast, in flux an even
older version of the same library is used (15.0.2) but this
time the library is only sparsely used; therefore, an upgrade is
expected to have less impact compared to the system where
react is heavily used.

4. react (Facebook): Theelectron 11.1.04 has three
high and three medium vulnerabilities. It is used in a limited
number of files, indicating its relatively low importance
in the system. Considering the number and severity of
vulnerabilities, it prompts an evaluation of the necessity of
this dependency in the system.

5. guice (Google) vs. stetho (Facebook): The library
junit 4.114 is widespread throughout the guice system,
while in stetho junit 4.12 is only sparsely used.
Although both versions of junit have a medium vulner-
ability, the effort of upgrading to the latest version where
the vulnerabilities are solved is much smaller in the case of
stetho.

6. guice (Google): The servlet-api 2.54 library
is scattered throughout the system, impacting more than
40 files, it has a high Operational Risk and is licensed under
a GPL 2.0 license, which is copyleft. While this may not
pose a problem for an open-source system like this, it could
be problematic for commercial or private systems, as the

4https://www.npmjs.com/package/ejs; https://www.npmjs.com/package/
typescript; https://www.npmjs.com/package/react; https://www.npmjs.com/
package/electron; https://mvnrepository.com/artifact/junit/junit; https://
mvnrepository.com/artifact/javax.servlet/servlet-api;
https://mvnrepository.com/artifact/com.google.protobuf/protobuf-
javalite; https://mvnrepository.com/artifact/org.eclipse.jetty/jetty-server;
https://mvnrepository.com/artifact/io.netty/netty

copyleft license would require the system’s parts utilizing the
library to be made public.

7. ExoPlayer (Google): There are two high severity
vulnerabilities in protobuf-javalite 3.19.14; how-
ever, at a close inspection we noted that it is declared as
a dependency without being used at all in the code (ghost
dependency). This raises questions about why the library is
declared but not utilized, especially considering the presence
of vulnerabilities. It suggests either a potential oversight or
the library’s previous usage that was not removed from the
configuration files.

8. Druid (Apache): The project uses two libraries con-
taining vulnerabilities: jetty-server4 and netty4, but
analyzing the spread of their usage in the code reveals
differences: jetty-server was used in 34 files, out of
which 11 contain test code; and io.netty:netty is
accessed from 16 files, two of which contains test code. This
finding shows the importance of taking into account also the
nature of the files where these dependencies occur (e.g. test
vs. functional).

In conclusion, these examples highlight once more the
importance of understanding the usage and distribution of
libraries within a codebase. Knowing exactly where the
libraries are being used and the extent of their impact
across different components of the system, leads to a better
understanding of the system and its possible flaws. Therefore,
it plays a crucial role in decision-making processes related to
updating, removing, or changing libraries.

C. LIMITATIONS AND THREATS TO VALIDITY
While our approach provides valuable insights into the
libraries used in open-source projects, it is important to
acknowledge several limitations and potential threats to the
validity of our analysis.

1) EXTERNAL VALIDITY
In this category we group the threats to validity that deal
with the generality of our conclusions. First of all, the study
may be affected by a certain selection bias, as we focused
on projects that come from mature organizations and are
very much appreciated by the open-source community, which
means that we can expect these projects to exhibit a level of
library hygiene above average, as open-source projects that
are plagued with issues and lack quality are unlikely to gain
traction and widespread adoption. Thus, these projects might
not be representative of the entire open-source ecosystem and
may have different characteristics compared to projects from
other organizations or domains. Moreover, in our experience,
in commercial (‘‘closed-source’’) projects the focus is less on
the code itself and more on the functionality of the system.
Consequently, both in commercial project and in less popular
open-source projects we expect to see a lower level of library
hygiene. This means that, while results are expected to differ
from those presented in this paper, the relevance of the
approach presented here is in fact even higher in these other
projects.
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2) TEMPORAL VALIDITY
The analysis relies on the data available up until the
knowledge cutoff date, which in our case was January
26, 2023. Given that the software landscape is constantly
evolving, new libraries, versions, vulnerabilities, and best
practices might have emerged since then. This time gap
could impact the relevance and accuracy of the findings when
applied to the current state of software development.

3) CONSTRUCT VALIDITY
Our approach involves certain assumptions and simplifica-
tions to make the analysis feasible. For example, we assume
that the highest-rated projects on GitHub are representative
of well-maintained and widely-used projects. However, this
assumption might not always hold true, and there could be
other factors influencing a project’s popularity and quality.
These assumptions and simplifications should be taken into
account when interpreting the results.

4) INTERNAL VALIDITY
For the extraction of dependencies and gathering informa-
tion about libraries (licenses, vulnerabilities, release dates),
a manual verification process was conducted by examining
the configuration files and responses from requests. Although
efforts were made to ensure accuracy, manual verification
introduces the possibility of human error.

Considering these limitations and threats to validity is
crucial for understanding the scope and potential implications
of our analysis. They highlight areas that may require
further research and caution in applying the findings to other
scenarios.

V. CONCLUSION AND FUTURE WORK
The entire system developed offers a better perspective when
it comes to analyze a project’s dependencies. It offers a
view on the age of the dependencies, on the vulnerabilities a
dependency has, and also can help to understand the structure
of a system by simply seeing its dependencies and where they
are used.

Staying up-to-date is the most secure strategy and making
incremental changes beats having big-bang updates. That is
why analyzing projects is important, to always check the age
and see since when a dependency wasn’t updated.

Vulnerabilities can be very dangerous and using third-party
libraries increases the chances of having them in a system.
Having a look at the dependencies at any time, to verify the
existence of vulnerabilities, is very important for developing
it into a good and stable software system and maintaining it
in the future.

If a library has vulnerabilities, it doesn’t mean that the
entire functionality is vulnerable. It is possible that only a
method or a small part of it is vulnerable and the rest of it
works without putting the system in danger. Further research
in this direction is needed to tell exactly, if, despite having a
vulnerable library, the system really has flaws by using the
vulnerable part of it or not.

One priority, having the extensible model, would be
to analyze more dependency types, offering the software
community the possibility of analyzing multiple systems
which contain different library dependencies.

When analyzing systems, its history may offer even
more information about the libraries and their development
throughout the system. Therefore, to offer a more complete
Software Composition Analysis, we will try to enhance our
approach by looking at the history and the development of the
libraries.

In our future work, we plan to improve the dispersion
metric used in our approach. Instead of relying on absolute
thresholds, we will explore the possibility of implementing
relative thresholds. This adjustment will allow for a more
adaptable and dynamic assessment of library dispersion
within the code, taking into account the specific character-
istics of each project.

Currently, our approach identifies whether a library is
used, but further improvement can be made to specify
exactly which functionalities or components of the library are
utilized in the code. This would provide a more detailed and
fine-grained understanding of how the library contributes to
the overall system.

We will explore the aggregation of risks associated with
each library. By combining information on lag, operational
risk, and vulnerabilities, we can derive an overall risk score
for each library. Libraries that exhibit high or medium risks
across all three categories will be identified as ‘‘super-risks.’’
This prioritization strategy will help focus efforts on compo-
nents that require immediate attention and remediation.

Future work should also consider the inclusion of
embedded libraries in the analysis process. Currently, our
approach focuses on analyzing third-party libraries obtained
from external repositories. However, many software systems
incorporate embedded libraries, which are libraries included
within the system’s codebase. By incorporating the analysis
of embedded libraries, our approach would provide a more
comprehensive view of a system’s dependencies, covering
both externally sourced libraries and those embedded within
the codebase. This expanded scope would enable better
decision-making and provide a more accurate assessment of
the system’s overall health.

Also, while using the approach other questions have been
stated: Is the vulnerable code of the library actually used?;
What is the gap between declared dependencies and the
actual usages?; When did the vulnerable library appear in
the system, was it used from the beginning?; How have the
libraries evolved during the development of the system?,
which we would like to answer after further research.
Moreover, knowing where each library is used can show
information about the architectural perspective, seeing which
libraries are used together or if multiple libraries providing
the same functionality are used in the system. This is another
aspect worth exploring.

In conclusion, our approach, which emphasizes the impor-
tance of understanding the usage and distribution of libraries
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within a system, provides a better perspective for prioritizing
services and decision-making processes. By gaining insights
into where libraries are utilized and the extent of their
spread throughout the system, we offer valuable information
regarding the potential challenges associated with making
changes or updates related to these libraries. Furthermore,
by considering all available information about various
libraries, including their vulnerabilities and impact on the
system, we can effectively prioritize actions to be taken.
For instance, when faced with multiple libraries possessing
different vulnerabilities, we can determine which ones to
address first based on their prevalence across the system,
the number of vulnerabilities they possess, and the criticality
of these vulnerabilities. This approach enables to allocate
resources and efforts more efficiently, ensuring that the
most pressing library-related issues are tackled promptly.
Therefore, our approach can make an important contribution
in the process of evaluating the quality of software systems.
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