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ABSTRACT AdvancedDriver Assistance Systems (ADAS) are becomingmore andmore important in recent
years. All relevant manufacturers equip their cars with various safety features and in some locations it is even
mandatory to do so. One of such systems is Automatic Headlight Control (AHC) algorithm that prevents
from accidental dazzling of other road users. Recognizing vehicle lights with high accuracy is crucial in this
algorithm. Any improvement can result in the limitation of car accidents and dangerous situations on the
road. The paper introduces a novel visual descriptor that describes previously binarized blob shapes of the
analyzed objects.We also present our referencedAHC system that operates not only on the images but also on
the set of other visual features. Adding new feature leads to the improvement of around 1.5 percentage point
of vehicle lights classification accuracy (21% reduction of incorrectly classified light sources). It can also
replace the already used features (four-time reduction from 32 to 8 feature values) and keep the classification
accuracy at the similar level. The proposed solution has been tested with an extensive set of video sequences
(total duration exceeding ten hours) under diverse weather conditions and from different types of roads. The
proposed descriptor is shown to be far less computationally complex, and it is proved that it can outperform
other state-of-the-art descriptors when analyzed individually.

INDEX TERMS Adaptive headlight control, automatic headlight control, computer vision, high beam
control, night time vehicle detection, shape description.

I. INTRODUCTION
In recent years, in the automotive industry one can observe
a dynamic development of active safety (AS) systems. For
new vehicles offered to the market it became a standard
to equip them with various functions belonging to ADAS
systems. This trend is followed due to the fact that, as shown
by numerous analyses, the human error is one of the
main contributory factors in more than 90% of all motor
vehicle crashes [1]. As a result, the EU Commission, for
example, introduced regulations so that selected ADAS
functions are mandatory equipment for all new cars sold
in Europe [2]. Such solutions may, for example, warn
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the driver about unintentional lane departure or exceeding
currently applicable speed limit. In more advanced cases,
such systems may also take over the control over the vehicle.
For instance, they can trigger immediate emergency braking
or appropriately modify the car’s trajectory in order to avoid
an oncoming collision.

One of the examples when the car drivers may benefit from
computer aid are systems capable of controlling headlights,
while traveling at night. Such functions, denoted as AHC,
are currently developed in many research centers around the
world. It is caused by dynamic expansion of AS / ADAS
sector.

Nowadays, the vehicles are equipped with various types
of lights so that the road can be sufficiently illuminated
under different weather and lighting conditions. Headlights,
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in general, operate in two modes. They can generate low and
high beams. In some countries low beams are mandatory
during the day. They are also useful at night when there
is other traffic present. It is because they produce less
illumination and thus do not generate a risk of blinding other
road users. Otherwise, in case of the absence of other road
users, the high beams should be activated. Unfortunately, a lot
of drivers do not operate the lights properly. Some drivers use
low beams for most of the time and turn on the high beams
only occasionally. This leads to unsafe situations when the
road is not lit enough or the high beams are switched on too
late. As a consequence, the driver’s visibility is reduced and
the ability to react on time is decreased. This might happen,
for example, in case of sudden dangerous events such as
appearing pedestrians or obstacles on the road. On the other
hand, some drivers keep the high beams on for too long or
simply forget to turn them off. This leads to unintentional
dazzling of other drivers with an excessive glare and may
result in the distraction of driver’s perception. In a worst case
it might cause temporal blindness which can create hazard on
the road.

In order to diminish such dangerous situations, an auto-
matic control of the vehicle headlight intensity can be
realized. This might decrease the chances that other drivers
from oncoming and preceding cars will be subjected to
excessive glare levels. The main task for such a system is
to detect the vehicles ahead with high accuracy. It should
be taken into account that the system is intended to operate
mainly at night or under insufficient lighting conditions.
Therefore, it is necessary to find special characteristics that
can help with the detection of vehicles moving at night time.
It is possible to analyze such conditions and additionally try
to detect the whole vehicles with the use of deep learning
methods [3], [4], [5]. However, this may be restricted due
to the fact that typical appearance features such as color or
shape are effective only during the day. Hence, the most
reliable features for the detection of vehicles at night time
are their lights. This covers the recognition of the headlights
from the oncoming vehicles and the taillights of the preceding
vehicles.

In this work, we present a new descriptor that can be
used as one of the input features of the already used neural
network [6] for application in high-beam control algorithms.
The descriptor is able to characterize, in a relatively simple
way, shapes of selected objects (e.g. light blobs) derived
from the images captured by the camera mounted inside the
vehicle. It was used in the task of distinguishing lights of other
vehicles from lights of stationary objects around the road
as well as various light reflections. Additionally, since the
ADAS functions need to operate in real-time [7], we needed
to optimize the proposed descriptor in terms of computational
complexity.

In this paper, at the beginning we try to familiarize the
reader with an overview of already existing approaches used
in AHC algorithms. This includes both commercial and
academic solutions. Then, we present the characteristics of

our referenced AHC system which is based on two CNN
classifiers. The input to these networks consists of images
of two different dimensions (in order to focus on the light
itself as well as on its surrounding) and a set of visual features
calculated on the smaller images. However, the main accent
is put on the new visual descriptor which was additionally
provided as the input to the already used AHC classifier that
improves the classification accuracy.

It is worth mentioning that for the evaluation of the
proposed method, we use our own image dataset that covers
various lighting and weather conditions. Our AHC system
was designed in order to provide automatic high beam control
in trucks. This use case justifies the need for the creation
of our custom dataset. To the best of our knowledge, all
publicly available datasets that could be used in vehicle
lights detection contain images that were captured by cameras
mounted in typical cars or traffic cameras being a part of
an urban or highway infrastructure [8], [9]. Besides, the
images from our dataset were acquired from the videos of
total duration exceeding 10 hours which guarantees a good
representation of potential light sources.

The main highlights and contributions presented in this
paper consist of:

1) a novel Binary-Directional Shape descriptor:
• it improves the vehicle lights classification accuracy
by over 1 pp (percentage point) when added to the
already used set of features

• it can replace other state-of-the-art visual descriptors
(8 values of the proposed descriptor instead of
32 features already used in the system) and keep the
classification accuracy at a similar level

• simple calculation of its values
• low computational complexity
• its elements might be stored as eight 8-bit values

2) a double CNN-based classifier that operates on the
images of two dimensions and a set of visual features

3) the evaluation of the presented scheme was performed
with the use of videos of total duration exceed-
ing 10 hours covering various lighting and weather
conditions

The paper is organized as follows. The following section is
dedicated to the state-of-the-art, covering both existing AHC
solutions and visual descriptors used in light spot classifi-
cation. Section III presents the methodology and workflow
for vehicle lights detection and classification. Section IV
describes new type of visual shape descriptor. Section V
contains the experimental results. Finally, SectionVI presents
the conclusions and potential future work.

II. STATE-OF-THE-ART STUDY—AHC FUNCTIONS AND
DESCRIPTORS USED IN LIGHT SPOT CLASSIFICATION
A. SOLUTIONS FOR AHC FUNCTION
In this Section we present existing solutions for the AHC
function seen either from scientific or commercial side.
It may be somewhat artificial to strictly distinguish between
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these two groups. Commercial solutions are usually based on
previous scientific investigations.

The problem of detecting vehicles at night can be addressed
in two ways - by using image-based or sensor-based
approach. The former is usually selected since camera-based
solutions are much more effective and precise in comparison
to other sensors.

1) IMAGE-BASED APPROACH
The most common approach is the use of a series of frames
captured by a camera at night time. Such sequence of frames
is then analyzed in order to detect the presence of vehicles.
This can be realized by performing the following steps:

a: LIGHT SPOTS DETECTION
The light spots detection methods are typically based on a
fixed thresholding [10], [11], [12] or adaptive thresholding
[13].

b: PAIRING
If the lights are grouped in pairs, this usually can help
in distinguishing vehicle lights from other light sources.
As described, for example, in [14], [15], and [16], when
certain rules are satisfied, one can state that the detected light
spots are paired together. It is based on geometrical, statistical
and motion information measures of vehicle lights [17], [18].
The general rules for pairing are the following:

• vertical and horizontal positions should be taken into
account – e.g. the spots should have similar vertical
coordinate and they should be positioned close to each
other,

• spots should have similar size,
• the width of the bounding box that encloses two spots
should be greater than its height,

• area (measured in pixels) of both spots ought to be
similar,

• shape of both lights should be also similar
• a symmetry condition has to be satisfied.
• motion information from the tracker is consistent
• correlation level between histograms of vehicle lights is
sufficient

It is not always possible to meet all of the above conditions
at the same time. It happens that the illumination of both
lamps differs for various reasons (damaged bulb, obstruction,
etc.). Thus, it is necessary to find features that allow for an
effective classification of individual light spots.

c: TRACKING
It provides motion-related data and therefore, it is useful
in the identification of vehicles at night time [19]. In night
time detection, headlights and taillights are tracked. The
most common method relies on the use of Kalman filter
[11], [13] or the nearest neighbor matching [20]. However,
the use of these methods is limited to linear systems. For
non-linear scenarios the Extended Kalman Filter which relies

on linearization of non-linear functions can be applied [21].
Another alternative approach is using the Particle Filter which
handles the non-linearity by representing the probability
distribution of the state variables with a set of particles that
can effectively approximate complex non-linear relationships
in the system [22].

d: CLASSIFICATION
Currently, the most popular approach for classification is
based on machine learning. The most common solutions use
AdaBoost [10], [12], Support Vector Machine (SVM) [12],
[13] and neural networks [9], [23], [24], [25].
Each type of classifier requires a specific input vector.

Usually it consists of various types of features. The most
common state-of-the-art features, used in such algorithms,
may be divided into several categories [12]:

• Position features – they include the x and y coordinates
of the center of gravity of a light spot. This is motivated
by the fact that the lights from the vehicles (both
oncoming and preceding) and from the street lamps are
generally located in different regions of the input image,

• Brightness features – they include the average and the
variance of intensity calculated for all the pixels within
a light blob. Typically, the objects far away or the
reflected objects are less bright than the ones which are
nearby. Additionally, headlamps are generally brighter
than taillamps,

• Shape features – they describe the characteristics of
the blobs, such as their area (number of pixels), major
and minor axes (or their aspect ratio), the relation
between the blob’s area and the size of its bounding box,
an inclination angle of the blob, sizes of the, so called,
halo and the proportion of the blob’s halo to its area,

• Spatial relation features – they describe the spatial
arrangement between light blobs. This is connected with
the fact that headlights and taillights usually exist in
pairs, while the street lights are normally situated along
the side of the road. Thus, the horizontal and vertical
positions of the neighboring blobs are analyzed,

• Color features – they can refer to the dominant hue,
average saturation and average value calculated for each
blob. It is observed that each type of the light source
usually has its concrete dominant color – headlights
are usually white, taillights are reddish and street lights
might be green or yellow,

• Motion features – they describe the trajectory of each
blob from frame to frame. It is observed that each
type of light generally has a given movement direction.
For instance, headlights move towards the observer,
taillights can move away or get closer but usually they
are more in front, while street lights generally move
outwards.

In particular approaches reported in the literature, the
features presented above are used in different way in the AI
algorithms responsible for the classification of light spots.
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In [10], except for the binary and intensity features, they
also utilize color information and features that measure the
ratios between monochrome and red pixels. Their image
sensor provides 75% of monochrome pixels and 25% of red
pixels.

Another method was presented in [11] where a single
camera module is used but it operates in two different modes
for frame capturing – low exposure and auto exposure. For
low exposure images a fixed thresholding is applied, while
Laplacian of Gaussian (LoG) filtering is applied to auto
exposure images, so that relevant features of images can
be selected. Besides, their system takes into account lane
detection information that limits the area of interest for the
auto exposure images. This prevents potential false positive
detections.

In [13] the input vector is mainly composed of intensity
and binary features. Besides, they observed that one specific
feature of headlights and taillights is the halo effect. It does
not occur in passive lamps, such as street lights, and nuisance
artifacts. For the detection of the lights’ halo, they proposed
the black hat transformation. This transformation is defined
as the difference between the morphological closing and
the input image. The top-hat transformation is a powerful
operator that enables the discerning of contrasted objects on
non-uniform background.

Similarly, in [14], they try to consider the information
about the blobs’ position. The preliminary step is to filter
out all non-vehicle light objects by rejecting the blobs located
above the one-third of the vertical y-axis. However, such an
assumption may lead to drastic reduction of the detection
range distance and makes the system more prone to potential
errors in hilly areas.

In contrast to the previously discussed solutions which
operate on visible light images and focus on the detection of
vehicle lights at night, recently also other approaches were
proposed. The first group consists in an analysis of the scene
captured by the infrared camera. In [26] the authors use a fast
saliency map to select the areas where potential pedestrians
or vehicles are present. Then, amulti-feature fusion algorithm
combined with SVM classifier is used to determine whether
the extracted target area really includes pedestrians or
vehicles. In [27] the input images are preprocessed using
various infrared-visible bimodal image fusion algorithms.
In the next step, the four parameters (standard deviation,
information entropy, mean gradient and spatial frequency)
of the fused images are quantitatively analyzed. In [28] the
authors combine image registration from visible light and
near-infrared (NIR) band using SURF feature, pixel-level
fusion based on YUV color space and the discrete wavelet
transform (DWT) and transfer learning with YOLOv4model.
Another interesting approch entails the image enhancement
thanks to Generative Adversarial Network (GAN). In [29]
the GAN network is used for image translation from the
nighttime image to the corresponding daytime image. Then,
Faster R-CNN and YOLOv5 algorithms are used for vehicle

detection. Similarly, in [30] a GAN-based network, called
EnlightenGAN, is trained for enhancing the low-light image.

2) SENSOR-BASED APPROACH
An alternative way to detect vehicles at night and auto-
matically control the vehicle’s high beams is by utilizing
a light sensor which provides the information about the
light intensity. Based on its measurements, one can estimate
whether some vehicles are present in the scene or not.
The sensor is usually a photo sensitive device. In [31] and
[32] LDR (Light Dependent Resistor) is used to analyze
the light from oncoming vehicles. Then, they compare the
measured light intensity with a predefined threshold value.
In [31] if it exceeds this threshold, an excessive glare event
is detected and a request to reduce the intensity of headlights
is transferred via an XBee module to an oncoming vehicle.
In contrast, in [32], the headlights are dimmed in the vehicle
where the glaring event was detected.

For the completeness of the state-of-the-art presentation,
it is also necessary to refer to the existing commercial
solutions. Several automobile manufacturers have proposed
their own solutions for the AHC functions, briefly described
below.

3) SMARTBEAM
SmartBeam developed by Gentex [33] uses a camera
mounted in the rear-view mirror together with automatic
decision-making related to vehicle’s high beam control. The
system aims at the optimization of lights’ usage with regard
to the current traffic conditions so that they provide the best
possible road illumination in glare-free manner. Specifically,
the system detects oncoming or preceding vehicles and
dynamically controls special shutters, that the headlamps are
equipped with. This way some portions of assisted vehicle’s
light are blocked in order to prevent other road users from
being dazzled. As a result, the road safety is increased and
the sufficient forward illumination is provided.

4) INTELLIGENT HIGH-BEAM CONTROL
Intelligent High-BeamControl (IHC) developed byMobileye
[34] processes the frames captured from the camera mounted
on the windshield. When the headlights from another vehicle
are detected at a distance of less than 800 meters or there is a
preceding vehicle in front of the host vehicle at a distance of
less than 400 meters, the system switches off the high beams.
The same happens when the vehicle enters a well-lit area.
Only in case of the absence of street lights and no traffic
detected, the high beams are automatically activated.

5) MULTIBEAM LED HEADLAMPS
Multibeam LED headlamps developed by Mercedes [35]
utilize light gridding for high beam control. Each headlight is
equipped with 84 independently activated high-performance
LEDs which prevent other road users from being blinded and
provide sufficient level of illumination of the road surface.
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TABLE 1. Summary and comparison of other AHC-related methods and our referenced AHC system.

A grid light source allows for dynamic and adaptive control
of the light distribution from left and right headlamps under
given traffic conditions. This enables the illumination of
separate areas of the road with high precision and brightness.

6) INTELLIGENT HEADLIGHT CONTROL
Intelligent headlight control developed by Bosch [36] ana-
lyzes the ambient brightness and estimates the distance to
the vehicles in front based on the video sequence captured
by the camera. It utilizes headlamps that are swivel-mounted
vertically and horizontally or full LED headlights which
enable the light to be distributed in particular segments in
a controlled manner. This assures that other road users are
not exposed to an excessive glare while the remaining area of
the road can be optimally illuminated by the vehicle’s high
beams.

The system proposed by Bosch also uses a video camera.
It analyzes the lighting conditions and when they are
not sufficient, it activates the headlight control module.
Headlights of oncoming vehicles and taillights of preceding
vehicles are detected and based on this information, the
headlights of the assisted vehicle are controlled in order to
avoid dazzling other drivers.

B. EXISTING DESCRIPTORS AND USED APPROACHES
Since the topic of our work is related to descriptors used in
the process of classifying light objects using neural networks,

it is also necessary to present the state-of-the-art study in the
area of the descriptors themselves.

1) HISTOGRAM OF ORIENTED GRADIENTS (HOG)
HOG [37] is a feature descriptor used in image processing for
object detection tasks. In the HOG descriptor, the histograms
of oriented gradients are used as features. The magnitude of
gradients is large nearby edges and corners that carry much
more information about the object shape than flat regions.

2) LOCAL BINARY PATTERN (LBP)
LBP [38] is a type of texture descriptor used in computer
vision for image classification. LBP labels each pixel by
comparing its gray component value with the neighboring
pixels and then assigning a binary number. When all the
pixels are labeled, the histogram of all LBP codes is
constructed as LBP feature.

3) SIFT (SCALE-INVARIANT FEATURE TRANSFORM)
SIFT [39] is a feature extraction method broadly used in
object recognition and point matching between different
views of 3D objects. The SIFT descriptor is invariant to
translation, rotation and scaling transformations and robust
to illumination fluctuations, noise, partial occlusion and
moderate viewpoint changes. In this method, the SIFT
keypoints of objects are firstly extracted from an image. Then,
a histogram of image gradients is calculated for each selected
keypoint to describe the local image region around it.
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4) SURF (SPEEDED UP ROBUST FEATURE)
SURF [40] is a local feature detector and descriptor. It is
inspired by SIFT descriptor to some extent. As in case of
SIFT descriptor, the points of interest are firstly selected and
for each of them feature description is performed. SURF
algorithm is several times faster than SIFT and it is also
more robust against different image transformations. Both
operations of keypoint detection and feature description are
performed faster thanks to the use of integral images which
reduces the computation complexity. SURF descriptor is
based on the sum of Haar wavelet responses around the points
of interest.

5) INTENSITY FEATURES
Intensity features [13] – this group covers all the measures
related to intensity, for example moments, hat value which is
an indicative parameter of the lights’ halo based on the black
hat transformation and other statistical measures like mean
and maximum values or standard deviation.

6) COLOR INFORMATION
Color information [10] – this refers to various information
related to color presence, dominance and distribution in
the image, for example the ratio between the mean of
monochrome level and the mean of red level.

III. METHODOLOGY AND WORKFLOW FOR VEHICLE
LIGHTS DETECTION
A. BASICS
The referenced AHC system is based on two CNN classifiers,
containing 1 and 3 convolution layers, respectively. The
12 × 12 pixel image and 32 feature values calculated for
such a patch are the input for the first neural network.
The 22 × 22 pixel patches and 60 values that come
from one of intermediate layers of the first CNN are
the input to the second network. The outputs from both
networks are added together and form the final model
output. Both neural networks were implemented with the
use of PyTorch library in Python [41]. The small images
carry the information about the light itself while the bigger
images also hold some information about the surrounding
of the light. This dual analysis enabled the improvement
of the classification accuracy by a few percentage points.
Similarly, the use of a set of visual features brought further
improvement. Obviously, this entails a trade-off between
higher computational complexity and more satisfying results.
The detailed architecture of the referenced AHC classifier is
presented in Fig. 1.

B. HYPERPARAMETERS SELECTION
Although the main emphasis in this paper is put on the
visual features used as an input for the CNN, it is still worth
mentioning other factors that can have some impact on the
final classification accuracy of vehicle lights. Apart from the
network architecture, in order to reproduce the results of our

TABLE 2. Hyperparameters used for training of the models.

AHC scheme, one should be also aware of the right selection
of hyperparameters. The most relevant hyperparameters that
were used during training were presented in Table 2.

C. SIGNAL PROCESSING FLOW IN THE PROPOSED AHC
FUNCTION
The implemented AHC functionality consists of a few stages
which are briefly presented below.

1) IMAGE PREPROCESSING
At this stage standard image processing techniques are used,
such as image smoothing, noise cancellation, etc. An original
camera image (I1) is the input for this stage and an enhanced
image (I2) is produced as its output.

2) LIGHT SPOTS SEGMENTATION AND DETECTION IN
CAMERA IMAGE
Algorithms used at this stage receive as an input the I2 images,
being an output from the previous stage. The aim of these
algorithms is to localize the light sources and crop the part of
the images where they were found. The result of the signal
processing carried out at this stage is a set of images, I3,k ,
with predefined size, e.g. 15 × 15 (odd version) or 16 × 16
(even version) pixels, which are resized parts of the I2 image.
As a result, in the I3,k images the center of the detected light
blob more or less overlaps with the center of a given image
I3,k . The k index indicates consecutive light blobs found in
the given image frame.

3) COMPUTATION OF DESCRIPTORS
At this stage, various image descriptors are calculated for
I3,k images in order to extract specific features of particular
light spots. The list of state-of-the-art descriptors that may be
applicable in AHC functionality is presented in Section II-B.

4) CLASSIFICATION OF LIGHT SPOTS BASED ON AI
ALGORITHMS
The feature values, together with the images they were
calculated on at the previous stage, are taken as the input for a
CNN classifier. The light spots can be assigned to one of the
three classes: ‘‘headlights’’, ‘‘taillights’’ and ‘‘other’’.

The flowchart for the AHC system is shown in Fig. 2.

D. INPUT IMAGE DATASET
The image dataset has been divided into two subsets: a
training dataset and a validation one. The training set contains
over 3 million samples that were extracted from several
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FIGURE 1. Architecture of the neural network used for AHC classification.

FIGURE 2. Architecture diagram of the referenced AHC scheme.

TABLE 3. Class representation in training and validation sets.

thousand video files of total duration of more than 10 hours.
The validation dataset consists of almost 200,000 samples
that were extracted from about 300 video logs of total length
of 45 minutes. Such a large dataset is necessary to satisfy
the safety requirements of our system. Videos were recorded
in diverse weather conditions, including: clear sky, rain and
snow with different intensities. In addition, three different
types of roads were considered: highways, urban and rural
roads. Such a variety of road and weather scenarios is highly
required in both training and testing datasets in order to
guarantee generalization that further leads to better reliability
and robustness to varying conditions on the road [42]. In each
video, all the light sources have been labeled with predefined
classes. The exact numbers of samples for each class in both
datasets are presented in Table 3.
In order to make the training set more balanced, undersam-

pling of samples from the ‘‘other’’ class was performed. The
resulting numbers are presented in brackets.

E. FEATURE DESCRIPTORS INCLUDED IN THE TRAINING
The features that had already been analyzed in the system
can be grouped into three main categories: the intensity and
the color features (INTCOL), e.g. the average and variance of
intensity of all pixels within the blob, HOG feature, in which
only some of its components are used and other various
features (VAR), which include the measures that describe
local surrounding of the detected light spots.

In order to improve the accuracy of the classifier some new
types of features have been added and investigated:

• Gray and red blob properties – the imaging sensor from
the referenced system produces two-channel images
with gray and red components. As it might be seen in
Fig. 3, in both gray and red channels, it is possible
to observe characteristic features for all three classes
of lights in the patches in which they are present.
Therefore, we decided to analyze diverse features of
light spots and check how this information affects the
classification accuracy when it is provided as the input
to the neural network. The image patches are binarized
with the use of Otsu’s method [43]. Among various blob
properties, the following have been selected for further
processing: area, major axis, minor axis, axis ratio,
circularity, eccentricity, equivalent circular diameter,
orientation and perimeter. The calculations of these
properties were performed with the use of OpenCV
library in Python [44].

• Binary Directional Shape (BDS) descriptor – it is a
feature that consists of 2N (N = 2, 3, . . .) values that
describe the shape of the binary blob. The algorithm
is currently protected by US patent [45]. Some sample
variants of the feature as well as its calculation method
are presented in detail in the following section.

F. IMPLEMENTATION CHALLENGES
There are three implementation levels in our system:

I. Implementation of our new descriptor: no challenges,
it is a simple and repeatable process (as shown in the
following section)

II. CNN design: trade-off between the number of input
features and the model performance

III. whole AHC system: ability to distinguish between
vehicle lights and other lights

Especially, the third level sometimes might be tricky
because it involves candidate lights detection, pairing,
tracking and classification. However, the former three aspects
are out of scope of this paper since we focused mainly
on the classification step. Therefore, the main challenge
is to select an optimal set of features to provide an
acceptable computational complexity and satisfying model
performance.
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FIGURE 3. Patches of light sources. From left to right: headlights, taillights and other. Top row shows gray channel, bottom row shows red channel.
Each column corresponds to a single light spot sample.

IV. PROPOSED DESCRIPTOR
A. AN OVERVIEW
Taking into account all the considerations and discussions
presented in previous sections, in this paper, we propose a
novel type of descriptor which, after being applied, leads to a
significant improvement of light spot classification. This fact
was verified during experimental tests of the referenced AHC
function. The aim of the proposed solution was guaranteeing
low computational power demand, which makes this method
useful in the situation when the hardware resources are
limited.

The carried out investigations indicate that the application
of the proposed descriptor allows to replace or eliminate
some number of remaining descriptors, while keeping or even
improving the classification accuracy. Since the eliminated
descriptors are more computationally complex, this translates
into substantial reduction of the computation time.

B. ALGORITHMIC PROCEDURE
The proposed descriptor is applied at the 3rd stage described
in Section III-C3 above. The procedure may be divided into
steps presented below.

Step 1: Centering the light spots in the I3,k images. The
proposed descriptor already receives roughly centered spots,
using other state-of-the-art methods.

Step 2: The processed I3,k images with the light spots
are firstly binarized with an appropriate threshold, adaptively
adjusted according to brightness distribution, e.g. using
Otsu’s method [43]. It is illustrated in Fig. 4, for selected
typical situations. This operation helps to focus, in subse-
quent steps of the algorithm, only on the contours of the
spot. The binarization is used to strongly reduce the amount
of data necessary to unambiguously classify the spot to one
of the three categories. After the binarization only one bit
is required to store a single pixel. Additionally, we propose
a solution, in which we skip a separate step, in which the
overall image is binarized and then stored in the memory.
Instead, we propose an approach, in which the binarization is
performed ‘‘on the fly’’ (OTF) over only selected pixels. That
simplifies the overall operation.We binarize only those pixels
that are involved in the computation (counting operation) of
new descriptors in the 4th step of the algorithm, as described
below.

The binarization of the overall image requiresmn iterations
with a thresholding operation, where m and n are the sizes
of the I3,k images. In the OTF approach, on the other
hand, the binarization is performed only on those pixels
in the I3,k images, which are overlapped by particular
directions as described in Step 3 below. This is one of
the advantages of the proposed OTF approach. This also
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FIGURE 4. Selected light spots and their binary representation.

FIGURE 5. Directions used in the proposed descriptor.

reduces memory requirements that is an additional asset
here.

Fig. 4 presents several typical cases that are encountered
during the computations. Diagrams (a) and (b) present
more regular spots usually associated with vehicles’ lights.
Diagram (c) shows a situation, in which a square spot is
rotated to some degree. The (d) – (h) diagrams illustrate less
regular spots. Such spots are usually associated with other
light sources, however sometimes due to a fuzzy effect they
may be also provided by car lights.

Step 3: Selection of the number of directions along which
the light pixels are counted in the proposed descriptor.
Directions in this case mean lines that concentrically diverge
from the center of an image I3,k to its borders, as shown in
Figs. 5 and 6, for a sample case of a square (m = n = 15).
Fig. 5 illustrates potential directions in the whole frame,
whereas Fig. 6 shows detailed options in a single quadrant.

The number of used directions may vary, depending on
how precisely the spots need to be described. The higher the
angular density of the directions is, the more details of the
shape of the spots may be distinguished. Although, increasing
the number of directions increases the memory usage, as well
as the time needed to compute the descriptor, the increase in
these values is not substantial.

A different number of directions may be used, depending
on the level of details and parameters of the processed
light spots. Fig. 6 presents several cases. To maintain
symmetry, we consider cases with 4, 8, 16 and 32 directions.
Corresponding binary descriptors are denoted as BDS4,
BDS8, BDS16 and BDS32, respectively. Particular directions
are presented in diagrams (b) – (f) for a single quadrant in
Fig. 6. This allows to illustrate, in detail, which pixels are
taken into account for all the variants. The same indexing
approach is used in remaining three quadrants.

The BDS4 descriptor uses only four directions, two vertical
(N, S) and two horizontal (W, E) ones. Diagram (b) presents
selected (N and E) directions used in this case.
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FIGURE 6. Selected directions used in proposed descriptors – one
quadrant view: (a) directions for all described descriptors (BDS4, BDS8,
BDS16 and BDS32), (b) directions used in BDS4 descriptor, (c) additional
directions used in BDS8 descriptor, (d) additional directions used in
BDS16 descriptor, (e, f) additional directions used in BDS32 descriptor.

FIGURE 7. Problems with reflections, resulting in not regular shape of the
spot – here a reflection from a water.

The BDS8 descriptor uses the same directions as BDS4,
with additional four diagonal directions: NW, NE, SE, SW.
It is illustrated in diagrams (a) and (c).

The BDS16 descriptor, in the comparison with the
BDS8 one, additionally uses intermediate directions denoted
as: NNE, ENE, ESE, SSE, SSW, WSW, WNW and NNW,
as illustrated in diagrams (a) and (d).

In the BDS32 descriptor, 16 additional directions are
additionally applied, as presented in diagrams (e) and (f).

Step 4: Counting the light pixels along particular direc-
tions, starting from the center of the spots (I3 images). The

FIGURE 8. The way of describing particular directions in the proposed
descriptors: (a) counting of the pixels (BCD approach) (b) counting of the
pixels with detection of a discontinuity (BCD_CUT approach) (c) direct
representation of pixels (BIN approach) (d) direct representation of pixels
with detection of a discontinuity (BIN_CUT approach).

counting may be performed using the Binary Coded Decimal
(BCD). On the other hand, a direct binary representation
(BIN) may be used which entails reading values 0 and 1 from
the center outwards where the first value will be associated
with the least significant bit of the resulting descriptor value.
Each of these approaches offer some advantages. In the
BCD code the memory usage is smaller, however we lose
the information about the distribution of light pixels in
particular directions. The BIN representation is more suitable
for describing concave objects, in which discontinuities may
appear in bright areas when looking in particular directions.

The counting operation may be performed also with an
assumption, that it stops after reaching a first dark pixel in a
given direction. This may allow to roughly filter out a noise,
that, for example, may be caused by reflections of irregular
surface, as seen in Fig. 7.

All the above-mentioned variants are illustrated in Fig. 8,
for a sample concave spot, as follows:

Diagram (a) illustrates the BCD approach, in which all
bright pixels in particular directions are counted. In the
presented example, the result for the NE direction is 3, as the
pixel inside an object visible in the upper right corner, stuck
to the regular part of the spot, is also taken into account.

Diagram (b) illustrates the BCD_CUT approach, in which
the pixels are counted in a given direction until a dark pixel
is encountered. The remaining pixels are in this case cut-off,
independently of their values.

Diagram (c) presents results obtained in direct BIN
approach.

Diagram (d) illustrates the impact of detecting a disconti-
nuity (a first dark pixel) in particular directions (BIN_CUT
case).

Step 5: An issue is the way how the descriptor is stored in
the memory. The sizes of the I3,k images are usually small,
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not exceeding 32× 32. This results in maximum 16 pixels in
each direction. In this case only several typical 32-bit integer
variables are sufficient to describe the spot. The number of
integer values equals the number of directions divided by 2,
for example 2 for BDS4, 4 for BDS8, etc.

C. IMPLEMENTATION OF THE PROPOSED DESCRIPTORS
In the proposed descriptor, the number of directions
may differ, as mentioned above and shown in Fig. 5.
Every increase of the number of directions allows for
more detailed description of the light spot. More com-
plex variants of the proposed descriptor help in distin-
guishing other characteristics of the spot, as summarized
below.

One of the issues is a way of efficient indexing over the
two-dimensional input matrix (image I3,k ). To illustrate it, let
us assume a square image I3,k with the sizem×n,m = n = 15
(an odd case). In the presented example, we assume that the
coordinates of the top left corner of the image are (0, 0),
while of the bottom right corner are (M ,M ), where M =

m − 1, in this case. The pixels to be considered in particular
directions are selected based on the Bresenham’s algorithm
[46], as illustrated in Fig. 6 (b – f). In the proposed solution,
the Bresenham’s algorithm may be simply implemented in
the proposed feature. Indexing over the matrix of pixels in
particular directions is performed as presented below. In this
sample case, the coordinates of the central point of the image
are equal to: cx = M/2; cy = M/2;

1) BINARY DESCRIPTOR WITH FOUR DIRECTIONS (BDS4)
The BDS4 descriptor may be expressed as follows:

Direction :

N : IDx = cx; IDy = cy − [0, . . . ,M/2];

S : IDx = cx; IDy = cy + [0, . . . ,M/2];

W : IDy = cy; IDx = cx − [0, . . . ,M/2];

E : IDy = cy; IDx = cx + [0, . . . ,M/2]; (1)

where cx , cy - coordinates of the central point of the
image IDx , IDy - coordinates of pixels for which
the binary values should be read

The BDS4 descriptor does not allow to distinguish a
circle from a square, and a rectangle from an ellipse.
However, it allows to distinguish an ellipse from a circle,
and a rectangle from a square. It does not allow to
determine if the mentioned geometric figures are rotated
either. While rotating a square object, in each of the four
directions there are equal numbers of pixels. However,
while rotating the object, the number of pixels in each
direction equally increases, reaching their maximum values
for rotations by 45, 135, 225, 315 degrees. In case of
rotating an ellipse or a rectangle objects, the BDS4 descriptor
allows to determine if the object is oriented vertically or
horizontally. However the rotation angle is not possible to be
determined.

2) BINARY DESCRIPTOR WITH EIGHT DIRECTIONS (BDS8)
The BDS8 descriptor uses the same directions as in
BDS4 case, with additional diagonal ones:

Direction :

NW : IDx = cx − [0, . . . ,M/2];

IDy = cy − [0, . . . ,M/2];

NE : IDx = cx + [0, . . . ,M/2];

IDy = cy − [0, . . . ,M/2];

SW : IDx = cx − [0, . . . ,M/2];

IDy = cy + [0, . . . ,M/2];

SE : IDx = cx + [0, . . . ,M/2];

IDy = cy + [0, . . . ,M/2]; (2)

In case of the BDS8 descriptor, vertical, horizontal, as well
as diagonal directions are used. It allows to distinguish such
shapes as circles, squares, rectangles, ellipses and other more
irregular objects. In this case it is also possible to say if a
regular object is rotated.

3) BINARY DESCRIPTOR WITH SIXTEEN
DIRECTIONS (BDS16)
The BDS16 descriptor uses the same directions as in BDS4
and BDS8 cases, with additional intermediate ones:

Direction :

NNE : IDx = cx − [0, . . . ,M/2] ≫ 1;

IDy = cy − [0, . . . ,M/2] ≫ 0;

ENE : IDx = cx + [0, . . . ,M/2] ≫ 0;

IDy = cy − [0, . . . ,M/2] ≫ 1;

ESE : IDx = cx − [0, . . . ,M/2] ≫ 0;

IDy = cy + [0, . . . ,M/2] ≫ 1;

SSE : IDx = cx + [0, . . . ,M/2] ≫ 1;

IDy = cy + [0, . . . ,M/2] ≫ 0;

SSW : IDx = cx − [0, . . . ,M/2] ≫ 1;

IDy = cy − [0, . . . ,M/2] ≫ 0;

WSW : IDx = cx + [0, . . . ,M/2] ≫ 0;

IDy = cy − [0, . . . ,M/2] ≫ 1;

WNW : IDx = cx − [0, . . . ,M/2] ≫ 0;

IDy = cy + [0, . . . ,M/2] ≫ 1;

NNW : IDx = cx + [0, . . . ,M/2] ≫ 1;

IDy = cy + [0, . . . ,M/2] ≫ 0; (3)

In case of the BDS16 it is possible to describe and
distinguish the spots visible in Fig. 4. However, in many
practical situations such detailed information is not required.

D. VERIFICATION—APPLICATION OF THE PROPOSED
DESCRIPTORS IN AHC FUNCTION
In case of the AHC applications, there is a strong need to
distinguish street lamps from vehicle lights. In this case the
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BDS8 descriptor is usually sufficient. The AHC function
requires also distinguishing head and tail vehicle lights.

The method after an additional adaptation may also be
used in traffic sign recognition (TSR) functions to distinguish
digits on traffic signs. In North America region, for example,
there is a need to distinguish the number 0 and 5 at the second
position in speed limit traffic signs (e.g. 20 and 25 mph).
In this case BDS16 or BDS32 descriptors may be required.

V. EXPERIMENTAL RESULTS
When the classifier already provides high classification
accuracy, it is more difficult to make a significant progress
and obtain better results. However, it is possible to measure
the strength of each feature, by using each group of features
separately in training, without patch information. This way,
one can determine how much valuable information each
group carries. Except for the new features proposed in
this paper, all three original groups of features: INTCOL,
HOG and VAR have been tested. The results are shown in
Table 4. This table compares the classification accuracy of the
proposed descriptors with other state-of-the-art descriptors
used in the same applications.

In addition, the information about the number of features
in each group, the average calculation time of a single value
and total memory occupancy for each group is provided.

T1 and T2 refer to two training repetitions, performed with
particular groups of features. The mean accuracy is presented
in the last column.

One can observe that features that describe the neighbor-
hood of the detected light spots, as well as those related to
intensity and color information provide satisfactory results.
Gray Blob features may contribute to headlights detection
while Red Blob features handle well in case of taillamps.
Proposed BDS feature turns out to be beneficial for the
detection of all categories of lights at the same time being
computationally very cheap – taking into account both
calculation time and memory usage.

Table 4 shows that in comparison with the proposed BDS
descriptors, the INTCOL and VAR ones offer more accurate
results. However, firstly, it is worth highlighting that VAR,
INTCOL and Gray/Red Blob features are groups of descrip-
tors that consists of 12, 14 and 9 values, respectively. Each
value is calculated by using a different formula, which makes
these four groups computationally muchmore complex. They
require such operations like multiplications, divisions, square
rooting, histogram calculation, etc. Secondly, when they are
considered individually, they do not allow to achieve the
performance of the classifier as good as in case of BDS
solution. Moreover, in case of 16 × 16 patches, a single
BDS descriptor value might be stored on 8-bit variable only.
In turn, HOG features consist of only 6 floating point numbers
but selected from 32, which need to be calculated for each
data sample since they represent a histogram of gradient
orientations in four image quadrants. Therefore, this group
is also quite heavy computationally. It might be observed
that Gray/Red Blob features provide similar results as these

FIGURE 9. Training and validation accuracy vs. training epoch for the best
performing model with BDS feature added to the input for the classifier.

FIGURE 10. Training and validation loss vs. training epoch for the best
performing model with BDS feature added to the input for the classifier.

obtained by using the HOG feature. However, the proposed
BDS feature leads to much better accuracy when analyzed
separately.

The results shown in Table 4 for the proposed BDS
descriptor (last four rows), are for all four variants: BDS4,
BDS8, BDS16 and BDS32. Admittedly, BDS may contain
a comparable number of values. However, the key factor
here is the computational complexity for computing the
values that belong to particular groups. In this context, the
BDS feature is much simpler. It requires only some basic
preprocessing of the input image and then its values are
easily returned by following the steps described in Section IV.
It can be noticed that BDS8 might be a reasonable choice
in vehicle lights classification since using more complex
variants (BDS16 and BDS32) does not lead to better results.
It might be also observed that, for instance, in case of BDS8
variant, the average time to calculate a single feature value is
approximately 37, 16, 31 and 4 times faster and occupy 3.25,
5.875, 3 and 3.5 times less memory than VAR, INTCOL,
HOG and Gray/Red Blob groups, respectively.

Each proposed feature was considered independently by
adding it to a list of features already used in the system
and performing the training and testing phases from the
beginning. Selected results are presented in Table 5. The first
row shows the referenced accuracy for the original dataset
including VAR, INTCOL and HOG. And the following six
rows present the results obtained after adding Gray Blob, Red
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TABLE 4. Comparison of the proposed solution with other state-of-the-art descriptors.

FIGURE 11. Confusion matrix for the best performing model with BDS
feature added to the input for the classifier.

Blob and all four variants of BDS features, respectively. The
best performing model is the one where the proposed BDS
descriptor consisting of 32 values was added to the input data
for the classifier.

Tables 4 and 5 show that BDS8 is a good trade-off
between satisfying classification accuracy and the number of
features needed to be calculated - BDS16 and BDS32 provide
quite similar results (only 0.09 pp better in case of BDS32)
but require additional calculation time: 216 µs (BDS8) vs.
315.2 µs (BDS16) and 502.4 µs (BDS32). That is why, BDS8
seems to be optimal variant in vehicle lights classification.
For this case, in Fig. 9 the graph depicting the training and
the validation accuracy is presented. In addition, the training
and the validation loss is shown in Fig. 10. Furthermore, the
confusion matrix that shows how well particular classes are
recognized is depicted in Fig. 11.
The presented results demonstrate that adding new features

bring slight enhancement in terms of classification perfor-
mance. This is especially the casewhile applyingBDS feature
which gives an improvement of around 1.5 pp in classification
accuracy. This result may seem to be a minor improvement,

TABLE 5. Classification accuracies after adding one feature.

however, in this case, the system investigated was already
achieving a performance close to 95%. In such a case, the
improvement of over 1 pp in accuracy is noticeable.

One of the important aspects is to assess the stability
in terms of complexity. In our work, the proposed feature
operates on the 12 × 12 image patches. Calculation of
particular values of the descriptor consists in binarization
of the image (only in the selected directions) and then
reading the pixel values. It’s a simple and repeatable process.
Thus, the complexity is low and stable when the processing
of a single patch is taken into account. In contrast, regarding
the referenced AHC system, the complexity and the workload
of operations depends on the number of detections found by
the system in particular frames. However, the processing of a
single detection is always constant as mentioned above.

VI. CONCLUSION AND FUTURE WORK
In this work, we presented a new, computationally efficient,
BDS descriptor that in a simple way enables a description
of selected characteristics of light spots registered in video
streams captured by vision sensors installed in the vehicle.
The new descriptor can be used as a component of a
training dataset for neural networks, the role of which is
to classify light spots registered during night time driving.
The motivation behind the investigations undertaken was an
attempt to improve the effectiveness of the AHC algorithms.
These algorithms belong to a group of modern ADAS
algorithms.
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The new feature descriptor was proved to contribute to the
classification accuracy improvement in the task of vehicle
lights recognition. It seems to be a beneficial complement
for the already used CNN classifiers in the referenced AHC
system. This is due to the fact that it provides satisfying
results in comparison with solutions in which other types of
descriptors are applied. Additionally, the proposed descriptor
is computationally inexpensive, which is a paramount feature
in real time systems operating on platforms with limited
computational resources. Furthermore, it may become a
promising solution in other ADAS algorithms, e.g. in Traffic
Sign Recognition. Due to its flexibility and a range of variants
proposed in this paper, the presented visual descriptor may
be easily adjusted to various, even specific, tasks in order to
describe the shape of the analyzed object with sufficient level
of details.

It is worth highlighting that the referenced AHC system is
a commercial solution and it was designed, tested and verified
to satisfy a lot of strict requirements. Therefore, it is hard to
indicate any relevant limitations. Themain challenge which is
presented in the paper is finding an optimal set of features that
are provided as the input to the classifier. Eventually, it only
serves to enhance the system even more and make it more
robust.

The conducted research shows that the use of the proposed
BDS descriptor increases the number of light spots correctly
classified by the neural network by around 1.5 pp. This may
seem to be a small number. However, it should be highlighted
that these results are for the overall performance of the AHC
algorithm with the accuracy at the level of 93 – 94%, i.e.
in a situation where up to 7% of light spots are wrongly
assigned to specific data classes. As a result, it can be
said that the number of light spots incorrectly assigned to
individual classes was reduced by about 21%. It is also worth
adding that the AHC algorithm in which the new descriptor
was used, was trained and then tested with a relatively
large dataset containing more than 300 thousand light spot
samples.

Further works in the presented topic will include an
application of amodifiedBDS descriptor in the determination
of the central point of the processed light blob. It could be
an additional step, performed before feature calculation, that
can lead to better description of light spots and in the end to
increased classification accuracy of the CNN classifier.

REFERENCES
[1] National Safety Council: Safety Topics. Accessed: Sep. 17, 2023. [Online].

Available: https://www.nsc.org/road-safety/safety-topics
[2] European Commission: Road Safety—Press Release. Accessed:

Aug. 17, 2023. [Online]. Available: https://ec.europa.eu/commission/
presscorner/detail/en/IP_22_4312

[3] K.-F. Lee, X.-Z. Chen, C.-W. Yu, K.-Y. Chin, Y.-C.Wang, C.-Y. Hsiao, and
Y.-L. Chen, ‘‘An intelligent driving assistance system based on lightweight
deep learning models,’’ IEEE Access, vol. 10, pp. 111888–111900,
2022.

[4] A. M. Ibrahim, R. M. Hassan, A. E. Tawfiles, T. Ismail, and
M. S. Darweesh, ‘‘Real-time collision warning system based on computer
vision using mono camera,’’ in Proc. 2nd Novel Intell. Lead. Emerg. Sci.
Conf. (NILES), Oct. 2020, pp. 60–64.

[5] M. M. Faisal, M. S. Mohammed, A. M. Abduljabar, S. H. Abdulhussain,
B. M. Mahmmod, W. Khan, and A. Hussain, ‘‘Object detection and
distance measurement using AI,’’ in Proc. 14th Int. Conf. Develop. eSyst.
Eng. (DeSE), Dec. 2021, pp. 559–565.

[6] P. Bogacki and R. Dlugosz, ‘‘Selected methods for increasing the accuracy
of vehicle lights detection,’’ in Proc. 24th Int. Conf. Methods Models
Autom. Robot. (MMAR), Aug. 2019, pp. 227–231.

[7] H. Gholamalinejad and H. Khosravi, ‘‘Vehicle classification using a real-
time convolutional structure based on DWT pooling layer and SE blocks,’’
Expert Syst. Appl., vol. 183, Nov. 2021, Art. no. 115420.

[8] C. J. Rapson, B.-C. Seet, K. J. Lee, N. A. Naeem, M. Al-Sarayreh, and
R. Klette, ‘‘Reducing the pain: A novel tool for efficient ground-truth
labelling in images,’’ in Proc. Int. Conf. Image Vis. Comput. New Zealand
(IVCNZ), Auckland, New Zealand, Nov. 2018, pp. 19–21.

[9] A. Bell, T. Mantecón, C. Díaz, C. R. Del-Blanco, F. Jaureguizar, and
N. García, ‘‘A novel system for nighttime vehicle detection based on foveal
classifiers with real-time performance,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 6, pp. 5421–5433, Jun. 2022.

[10] P. Sevekar and S. B. Dhonde, ‘‘Nighttime vehicle detection for intelligent
headlight control: A review,’’ in Proc. 2nd Int. Conf. Appl. Theor. Comput.
Commun. Technol. (iCATccT), Jul. 2016, pp. 188–190.

[11] S. Eum and H. G. Jung, ‘‘Enhancing light blob detection for intelligent
headlight control using lane detection,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 14, no. 2, pp. 1003–1011, Jun. 2013.

[12] Y. Li, N. Haas, and S. Pankanti, ‘‘Intelligent headlight control using
learning-based approaches,’’ in Proc. IEEE Intell. Vehicles Symp. (IV),
Jun. 2011, pp. 722–727.

[13] P. F. Alcantarilla, L. M. Bergasa, P. Jiménez, I. Parra, D. F. Llorca,
M. A. Sotelo, and S. S. Mayoral, ‘‘Automatic LightBeam controller for
driver assistance,’’Mach. Vis. Appl., vol. 22, no. 5, pp. 819–835, Sep. 2011.

[14] Y.-L. Chen, ‘‘Nighttime vehicle light detection on a moving vehicle using
image segmentation and analysis techniques,’’ WSEAS Trans. Comput.,
vol. 8, pp. 506–515, Mar. 2009.

[15] S. Zhou, J. Li, Z. Shen, and L. Ying, ‘‘A night time application for a real-
time vehicle detection algorithm based on computer vision,’’ Res. J. Appl.
Sci., Eng. Technol., vol. 5, no. 10, pp. 3037–3043, Mar. 2013.

[16] J. Wang, X. Sun, and J. Guo, ‘‘A region tracking-based vehicle
detection algorithm in nighttime traffic scenes,’’ Sensors, vol. 13, no. 12,
pp. 16474–16493, Dec. 2013.

[17] K. Gunasekaran and S. Padmavathi, ‘‘Night time vehicle detection for real
time traffic monitoring systems: A review,’’ Int. J. Comput. Technol. Appl.,
vol. 5, pp. 451–456, Jan. 2014.

[18] T.-A. Pham and M. Yoo, ‘‘Nighttime vehicle detection and tracking with
occlusion handling by pairing headlights and taillights,’’ Appl. Sci., vol. 10,
no. 11, p. 3986, Jun. 2020.

[19] P. Sevekar, ‘‘Night-time vehicle detection for automatic headlight beam
control,’’ Int. J. Comput. Appl., vol. 157, no. 7, pp. 8–12, Jan. 2017.

[20] A. Fossati, P. Schönmann, and P. Fua, ‘‘Real-time vehicle tracking
for driving assistance,’’ Mach. Vis. Appl., vol. 22, no. 2, pp. 439–448,
Mar. 2011.

[21] A. Jahantighy, H. Torabi, and F. Mohanna, ‘‘Multiple targets video
tracking based on extended Kalman filter in combination with
particle swarm optimization for intelligent applications,’’ Social
Netw. Appl. Sci., vol. 5, no. 3, Mar. 2023. [Online]. Available:
https://www.proquest.com/openview/ebf50a6ce1a9ef5b2eb2db64b25e4
2b6/1.pdf?pq-origsite=gscholar&cbl=5758472

[22] N. A. Valente, A. Sarrafi, Z. Mao, and C. Niezrecki, ‘‘Streamlined particle
filtering of phase-based magnified videos for quantified operational
deflection shapes,’’ Mech. Syst. Signal Process., vol. 177, Sep. 2022,
Art. no. 109233.

[23] L. Ewecker, E. Asan, L. Ohnemus, and S. Saralajew, ‘‘Provident vehicle
detection at night for advanced driver assistance systems,’’ Auto. Robots,
vol. 47, no. 3, pp. 313–335, Mar. 2023.

[24] Y. Liu, T. Qiu, J. Wang, and W. Qi, ‘‘A nighttime vehicle detection method
with attentive GAN for accurate classification and regression,’’ Entropy,
vol. 23, no. 11, p. 1490, Nov. 2021.

[25] S. Huang, Y. He, and X.-A. Chen, ‘‘M-YOLO: A nighttime vehicle
detection method combiningMobileNet v2 and YOLO v3,’’ J. Phys., Conf.
Ser., vol. 1883, no. 1, Apr. 2021, Art. no. 012094.

[26] T. Xue, Z. Zhang, W. Ma, Y. Li, A. Yang, and T. Ji, ‘‘Nighttime pedestrian
and vehicle detection based on a fast saliency and multifeature fusion
algorithm for infrared images,’’ IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 9, pp. 16741–16751, Sep. 2022.

109526 VOLUME 11, 2023



P. Bogacki, R. Długosz: BDS Descriptor for the Enhancement of Real-Time AHC Function

[27] Z. Wu, X. Miao, W. Li, and H. Yu, ‘‘Deep learning based nighttime target
enhancement detection algorithm for intelligent vehicles,’’ in Proc. 6th
CAA Int. Conf. Veh. Control Intell. (CVCI), Oct. 2022, pp. 1–6.

[28] L. Deng,M. Pan, R. Jin, and Z. Xie, ‘‘Night target detection approach based
on near infrared image fusion on vehicles,’’ in Proc. 5th Int. Conf. Pattern
Recognit. Artif. Intell. (PRAI), Aug. 2022, pp. 755–759.

[29] U. N. Nisha and G. Ranjani, ‘‘Deep learning based night time vehicle
detection for autonomous cars using generative adversarial network,’’ in
Proc. Int. Conf. Augmented Intell. Sustain. Syst. (ICAISS), Nov. 2022,
pp. 336–341.

[30] C. Nie, S. Zhou, H. Zhang, and Z. Sun, ‘‘Monocular vision based
perception system for nighttime driving,’’ in Proc. 8th Int. Conf. Control,
Autom. Robot. (ICCAR), Apr. 2022, pp. 258–263.

[31] A. K. Tripathy, D. Kayande, J. George, J. John, and B. Jose, ‘‘Wi
lights—A wireless solution to control headlight intensity,’’ in Proc. Int.
Conf. Technol. Sustain. Develop. (ICTSD), Feb. 2015, pp. 1–5.

[32] M. Alsumady and S. Alboon, ‘‘Intelligent automatic high beam
light controller,’’ J. Active Passive Electron. Devices, pp. 1–8,
2013. [Online]. Available: https://www.researchgate.net/publication/
296183467_Intelligent_Automatic_High_Beam_Light_Controller
and https://www.ijcaonline.org/archives/volume157/number7/26841-
2017912737 and https://iopscience.iop.org/article/10.1088/1742-
6596/2325/1/012001/meta

[33] Gentex Corporation. Smartbeam. Accessed: Aug. 17, 2023. [Online].
Available: https://www.gentex.com/products-technology/automotive/
digital-vision/

[34] Mobileye: Intelligent High-Beam Control. Accessed: Aug. 17, 2023.
[Online]. Available: https://static.mobileye.com/manual/me8/

[35] Mercedes-Benz: Multibeam LED. Accessed: Aug. 17, 2023. [Online].
Available: https://media.mercedes-benz.com/article/6d30c3b6-9875-
4663-8418-1a14adea6b91

[36] Bosch: Intelligent Headlight Control. Accessed: Aug. 17, 2023. [Online].
Available: https://www.bosch-mobility-solutions.com/en/products-and-
services/passenger-cars-and-light-commercial-vehicles/driver-assistance-
systems/intelligent-headlight-control/

[37] N. Dalal and B. Triggs, ‘‘Histograms of oriented gradients for human
detection,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Jul. 2005, pp. 886–893.

[38] T. Ojala, M. Pietikainen, and T. Maenpaa, ‘‘Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002.

[39] D. G. Lowe, ‘‘Object recognition from local scale-invariant features,’’ in
Proc. 7th IEEE Int. Conf. Comput. Vis., Feb. 2001, pp. 1–12.

[40] H. Bay, T. Tuytelaars, and L. Van Gool, ‘‘SURF: Speeded up robust
features,’’ in Proc. 9th Eur. Conf. Comput. Vis., vol. 3951. May 2006,
pp. 404–417.

[41] PyTorch Library. Accessed: Aug. 17, 2023. [Online]. Available:
https://pytorch.org/

[42] J. J. Anaya, A. Ponz, F. García, and E. Talavera, ‘‘Motorcycle detection for
ADAS through camera and V2V communication, a comparative analysis
of two modern technologies,’’ Expert Syst. Appl., vol. 77, pp. 148–159,
Jul. 2017.

[43] N. Otsu, ‘‘A threshold selectionmethod from gray-level histograms,’’ IEEE
Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62–66, Jan. 1979.

[44] OpenCV Library in Python. Accessed: Aug. 17, 2023. [Online]. Available:
https://pypi.org/project/opencv-python/

[45] P. Bogacki and R. Długosz, ‘‘Methods and systems for object detection,’’
U.S. Patent 11 562 575 B2 , Feb. 17, 2021.

[46] J. E. Bresenham, ‘‘Algorithm for computer control of a digital plotter,’’
IBM Syst. J., vol. 4, no. 1, pp. 25–30, 1965.

PIOTR BOGACKI was born in Kraków, Poland,
in 1989. He received the B.E. and M.S. degrees
in telecommunications engineering from the AGH
University of Science and Technology, Kraków, in
2012 and 2014, respectively, where he is currently
pursuing the industrial Ph.D. degree in computer
science and telecommunications.

He participated in the Erasmus exchange pro-
gramme, within which he spent the last academic
year (2012 and 2013) with Universitat Politecnica

de Valencia, Valencia, Spain. In 2014, he realized a professional internship
with Capgemini Company, Valencia, where he developed database and
business intelligence systems. From 2014 to 2018, he was a Software
Engineer with Samsung R&D Poland, where he was responsible for the
development of 4G and 5G systems. Since 2018, he has been an Expert
Algorithm Development Engineer in automotive sector with Aptiv Poland,
Kraków, where he has been responsible for the development of active safety
vision features. Since 2011, he has been involved in seven research projects.
His research interests include image processing and video analysis.

RAFAŁ DŁUGOSZ received the M.S. and Ph.D.
degrees from the Poznan University of Tech-
nology, Poland, in 1996 and 2004, respectively,
and the D.Sc. degree from the Technical Uni-
versity of Łódź, Poland, in 2016. Since 2014,
he has been with Aptiv automotive company.
He is currently a Professor with the Bydgoszcz
University of Science and Technology, Poland. His
research interests include design and optimization
of low power microelectronic circuits and systems,

including filters, analog-to-digital converters, artificial neural networks, and
fuzzy systems implemented at the transistor level. He specializes in hardware
algorithmic solutions, implemented as parallel and asynchronous application
specific integrated circuits (ASIC) in the CMOS technology. He also
specializes in signal processing algorithms for automotive industry (Aptiv
company), proposing solutions for image and radar data processing, and data
fusion. He has published more than 200 research papers, including interna-
tional patents and book chapters inmentioned research areas. Hewas a fellow
of several national and international scholarships, under the framework of
which he spent over five years with the University of Alberta, Canada, Swiss
Federal Institute of Technology (EPFL), Lausanne, Switzerland, and the
Innovation for High Performance (IHP)Microelectronics Institute, Frankfurt
Oder, Germany.

VOLUME 11, 2023 109527


