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ABSTRACT With the rapid development of autonomous driving, robotics, and intelligent transportation,
multi-sensor-based environment sensing technology for intelligent vehicles has become a popular research
direction. In order to better fuse the data acquired by multi-sensors, accurate external parameter calibration
becomes one of the critical issues. According to the method of external parameter calibration, this paper first
introduces the offline calibration technology based on target and targetlessmethods. However, once these two
methods change the relative position between the camera and the LiDAR, it can only be returned to the field
to re-calibrate. The computational complexity is high, which makes it necessary to use the online calibration
directly. Hence, this paper follows up with the introduction of online calibration technology based on deep
learning. Unlike previous methods that need to extract features from calibration boards or environments,
various types of networks can directly learn themapping relationship between images and point clouds, From
the calibration results, the average error of translation and rotation of traditional methods can reach 0.34cm
and 0.45◦, the average error of using deep learning networks such as LCCNet, which is the most widely
used in existing networks and has good calibration effect, can reach 0.297cm and 0.017◦. Compared with
the traditional method, the accuracy of online calibration technology is respectively improved by 12.6% and
96.2%, which shows the results of online calibration technology are better than the traditional offlinemethod,
and there are some recently proposed methods incorporate an attention mechanism and use an optimization
algorithm instead of a loss function to refine the outer parameters. From the review, learning the relative
relationships between sensors through neural networks works best, and the process is relatively free of human
intervention. Contrary to the existing reviews, this paper provides a general structure of calibration methods
universally used in various environments and compares various methods based on this general structure.

INDEX TERMS Multi-sensors, external parameter calibration, offline calibration, online calibration.

I. INTRODUCTION
The perception system in autonomous driving is one of the
critical technologies for realizing self-driving capabilities.
It allows vehicles to perceive the surrounding environment,
make subsequent decisions, and plan driving paths by ana-
lyzing and understanding the environment. Self-driving cars
rely on advanced perception systems to obtain accurate and
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comprehensive information about the surrounding environ-
ment. The research and development of perception systems
are crucial for advancing autonomous driving technology.
By continuously improving perception systems’ accuracy,
stability, and adaptability, we can achieve safer and more
efficient intelligent driving cars, bringing significant potential
benefits to society. Sensors, as the most reliable data sources
in perception systems, enable real-time understanding of road
conditions, obstacle positions, and motion states through
data fusion from different sensors, such as sensor-level and
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feature-level fusion. This allows intelligent driving decisions,
forming reliable environmental estimations that exceed the
sum of individual sensor data [1].
In recent years, with the rapid development of sensor tech-

nology, data fusion of multimodal sensors has been applied in
various fields such as fault detection [2], [3], remote sensing
technology [4], [5], robotics [6], Simultaneous Localization
and Mapping (SLAM) [7], and autonomous driving [8],
achieving significant results. However, in the process of
realizing these techniques, in order to get more accurate
fusion data, reducing the error of the calibration parameters
is one of the essential links. Multisensor calibration can be
categorized into intrinsic and extrinsic [9]. Intrinsic calibra-
tion determines the internal mapping relationships of sensors,
such as camera focal length, principal point coordinates,
pixel spacing, etc [10]. Extrinsic calibration defines the
relative position and orientation between multiple sensors.
Most intrinsic parameters are provided by manufacturers or
calculated, so the calibration primarily focuses on the external
parameters. By accurately calibrating sensors position and
attitude relationships, data from different sources can be
transformed into a common reference system required for
early-stage sensor fusion. This enables accurate transfor-
mation of perception data, such as conversion between the
world coordinate system and the camera coordinate system,
improvement in object detection and tracking accuracy,
and enhancement of environmental perception and map
construction reliability. Therefore, the accuracy and stability
of extrinsic calibration are crucial for successfully applying
autonomous driving technology.

Inspired by the tremendous success of data fusion, various
types of sensors have also witnessed rapid development in the
past few decades, primarily used for detection, segmentation,
recognition, and other purposes [11]. According to the data
source [12], External sensors can collect data about the
external environment in which the smart car is located, such
as on-board cameras, millimeter wave radar, LiDAR, etc.
Cameras can provide rich visual information including color,
texture and shape through light reflection, such as monocular
cameras, binocular cameras, depth cameras, etc [13], [14].
On the other hand, LiDAR utilizes laser pulses to measure the
time or phase differences of the returning beams, providing
high-precision distance and geometric information [15],
with examples like HDL-64E and MEMS LiDAR. The
combination of cameras and LiDAR has wide applications
in various scenarios and fields [16], playing a critical role
in perception tasks. Moreover, as advanced sensor config-
urations, they offer complementary information, enabling
better data fusion and enhancing system decision-making and
behavior.

Due to the use of multi-sensors and the proliferation of
various methods for externally parameters calibration, it is
becoming increasingly challenging to keep up with new
advances in neural network updates. Moreover, collecting
a comprehensive review focused explicitly on extrinsic

calibration is difficult. Therefore, there is an urgent need
to conduct a comprehensive review of existing work and
discuss potential directions for future improvements, it would
greatly benefit the community. In this paper, we focus on
an overview of the methodology for external parameters
calibration between cameras and LiDARs. To facilitate future
research in different subtopics, we categorize them based
on feature-based or learning-based approaches, including
target-based extrinsic calibration, targetless extrinsic calibra-
tion, and deep learning-based online calibration. Target-based
and targetless extrinsic calibration are collectively referred
to as feature-based extrinsic calibration, it primarily involves
calibration based on checkerboard patterns or unique environ-
mental features. Deep learning-based online calibration [17]
criteria focus on learning mapping relationships of outputs
through neural network models.

The organization of this paper is as follows. Section II
discusses the prerequisites and preparations for multisen-
sor extrinsic calibration. Sections III, IV, and V form
the core of this paper, where we summarize techniques
related to feature-based calibration using calibration boards,
environmental features, and various deep-learning models.
We also briefly introduce the recently proposed ATOP
methods, which are closely related to our topic and in line
with the latest technological trends. In the final section,
we provide conclusions, discuss future research directions,
and address challenges. Throughout this survey, We analyze
the methodology primarily through representative works
(early, seminal, novel, or illuminating works) and strive
to provide detailed coverage of various current techniques
within the constraints of limited pages.

II. PREREQUISITES AND PREPARATIONS
This section first discusses the prerequisites for calibrat-
ing external multimodal imaging sensors, including data
acquisition and processing, time synchronization, calibration
algorithms and tools, and motion compensation. These con-
ditions play a crucial role in achieving accurate calibration.
For example, data must be collected starting at a unified time,
and the accuracy of obtaining intrinsic parameters is crucial.
Otherwise, there will be data clutter and redundancy. Even
if an appropriate extrinsic calibration method is used later,
it will yield results far from the ground truth. Furthermore,
the principles of coordinate system transformation are
explained, including the world, camera, and image coordi-
nate systems. These are essential concepts in multimodal
sensor calibration, ensuring that sensor data can be trans-
formed into a unified coordinate system for alignment and
registration.

A. PREREQUISITES
In the process of external parameter calibration, in order to
make the external parameter calibration results more reliable
and constantly close to the ground truth, the following prior
conditions also determine the calibration results.
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1) DATA ACQUISITION SYNCHRONIZATION
Feature comparison and matching is an important component
in the calibration process and is needed to ensure that all
sensors are synchronized in time. This means that all sensors
collect data at the same time and that the timestamps of
the data can be aligned with each other [18], then they
can be matched and compared in the subsequent calibration
process. There are several methods, such as hardware
triggering, time synchronization protocols, and software
interpolation.

Lixin et al. [19] proposed using hardware signals or
triggers to synchronize the operation of data acquisition
devices. Specifically, by sending a synchronization signal
between the devices, it can be ensured that they start
collecting data simultaneously. This method requires that
the devices have hardware interfaces or synchronization
signal lines between them, and that the devices are able
to respond to external trigger signals. However, due to the
different sampling frequencies of each sensor, there is still
a delay in data transmission between sensors, and to solve
such a problem, they describe a simple synchronization
protocol that improves stability in various experimental
situations.

They observed the desirability of time synchronization
of devices using time synchronization protocols such as
NTP, PTP, etc., they use networks or dedicated hardware
devices to ensure that the clocks of individual devices
remain synchronized. High time accuracy and stability can
be achieved by connecting devices to a time server or
by time synchronization over the Internet. However, this
technique only manages to mitigate delays, and if the time
server itself is in error, it may still result in delays in data
transmission.

In addition to the methods mentioned above,
Römer et al. [20] proposed another approach for devices
lacking hardware synchronization capabilities. This method
involves using time interpolation to achieve time synchro-
nization. Specifically, it involves recording each device’s
sampling time and frequency information, using interpolation
algorithms to infer the timestamps for each device, ultimately
fitting them into a time curve. This method needs to
consider sampling frequency differences and delays between
devices to obtain more accurate time synchronization results.
However, if the frame rate is unstable, more sophisticated
schemes such as passive synchronization [21] are required.
In this section, by outlining the prerequisites of the

calibration process and comparing various types of meth-
ods for synchronizing data, we found that these works
initially explored the potential of applying network com-
munication and clock synchronization algorithms to data
acquisition. However, relatively little research has been
done on time interpolation and passive synchronization.
In future research, it is possible to explore how to combine
the hardware synchronization function with time interpo-
lation, and propose more effective clock synchronization
algorithms.

2) ACCURATE INTRINSIC PARAMETERS OF CAMERA AND
LIDAR
In the process of outputting the results of the external
parameters, it can be seen from Equation (5), it is necessary
to use accurate values of the internal parameters to carry
out the geometric correction and coordinate conversion of
the camera, so the accuracy of the external parameters
calibration results is largely dependent on the accuracy
of the internal parameters. The internal parameters are
the internal parameters of the camera, including the focal
length, principal point coordinates and aberration parameters,
describe the imaging characteristics and geometric aberra-
tions of the camera. According to Zhang [22], Accurate
internal parameters can provide accurate image geometric
information, so that the external parameter calibration can
more accurately calculate the position and attitude of the
camera and the relationship between the camera and the
scene, e.g., an accurate internal parameters can eliminate
image aberrations, correct the image coordinates and pixel
scales, and thus improve the accuracy and reliability of the
external parameters calibration.

3) MOTION DISTANCE COMPENSATION
In addition to the methods mentioned above, motion distance
compensation and other techniques play a significant role
in determining the accuracy of the extrinsic parameters.
In motion distance compensation, commonly used methods
involve utilizing the accelerometer and gyroscope data
from an Inertial Measurement Unit (IMU) to estimate the
object’s attitude changes, and then correct the sensor data.
Furthermore, iterative closest point (ICP) algorithms such
as the Velocity Iterative Closest Point (VICP) algorithm
proposed by Hong et al. [23], and the Approximate Nearest
Neighbor (ANN) algorithm proposed by Liu et al. [24] can
utilize visual or LiDAR data for feature matching and point
cloud registration. In recent years, motion compensation has
played a vital role in various fields, such as robot navigation,
virtual reality, augmented reality, and motion analysis.
Accurate motion compensation can improve subsequent data
processing and application outcomes.

This section provides insights into the preparation of
prerequisites for future calibrations, where the only way to
obtain ideal data is to choose a suitable calibration method
that satisfies the prerequisites as much as possible. In the
future, more attention should be paid to the prerequisites
section to consider how to ensure that the data are obtained
more realistically and reliably.

B. FUNDAMENTALS OF EXTRINSIC CALIBRATION
An object in three-dimensional space puts light into the
camera’s sensor by reflecting or bouncing light, and the
camera obtains an image of the object by saving the data
information on the sensor. In the imaging process, the spatial
transformation is divided into several different coordinate
systems. The points in the three-dimensional space are
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projected onto the image plane to form two-dimensional
pixels, so the imaging process can be simplified as the
conversion process from the world coordinate system to
the camera coordinate system, from the camera coordinate
system to the image coordinate system. From the image
coordinate system to the pixel coordinate system [25], and
the specific relationship between the conversion diagrams are
shown in Figure 1.

First of all, to clarify the conversion relationship from the
world coordinate system to the camera coordinate system,
when the coordinate system is rotated by θ along the z-axis,
only the values in the x-axis and y-axis direction will change
due to the change of angle. Similarly, when the coordinate
system is simultaneously rotated by ω along the x-axis,
rotated by ψ along the y-axis, and rotated and translated
along the z-axis, the rotation matrix (denoted as R) is as
follows [26]:

R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ×

1 0 0
0 cosω sinω
0 − sinω cosω


×

1 0 0
0 cosω sinω
0 − sinω cosω


=

R11 R12 R13R21 R22 R23
R31 R32 R33

 (1)

The translation matrix is:

T =

TxTy
Tz

 (2)

Therefore, we can obtain the homogeneous coordinates for
the transformation from the world coordinate system to the
camera coordinate system as follows:

xc
yc
zc
1

 =


R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz
0 0 0 1

 =

[
R T
0 1

] 
xw
yw
zw
1

 (3)

where R refers to the rotation matrix and T refers to the
translation matrix, which represents the external parameter
of the transformation between the world coordinate system
and the camera coordinate system. Secondly, in order
to get the principle of the camera space transformation
relationship, Hartley and Zisserman [27] using the pinhole
imaging technology and the similar triangle relationship, the
relationship between the image coordinate system and the
pixel coordinate system is:uv

1

 =

 1
dx 0 u0
0 1

dy v0
0 0 1

 xy
1

 (4)

Finally, the transformation relationship between the world
coordinate system and the pixel coordinate system is obtained

by using the above Equation (3) and (4):

Zc

uv
1

 =

fx 0 u0 0
0 fy v0 0
0 0 1 0

 [
R T
0 1

] 
xw
yw
zw
1

 (5)

The logic behind Equation (5) is not difficult to understand.
Set

K1 =

fx 0 u0 0
0 fy v0 0
0 0 1 0

 (6)

K2 =

[
R T
0 1

]
(7)

where K2 is the external parameter of the camera, which is
also a parameter to be solved, closely related to the relative
position of the camera and the lidar, and K1 is the internal
parameter of the camera, which is only related to the interior
of the camera. Since this paper focuses on the external space
conversion parameters between the lidar and the camera, it is
assumed that there are accurate internal parameters of the
camera.

This section outlines the relative relation of coordinate
systems in space transformation. In the subsequent work, cal-
ibration methods suitable for various environments should be
constantly selected to obtain the parameters in Equation (5),
and finally, the external parameters should be smoothly
returned.

III. TARGET-BASED CALIBRATION TECHNIQUES
A. CALIBRATION BOARD
So far, there have been many toolkits for calibrating LiDARs
and cameras, including the Autoware [28], the Apollo [29],
and the ‘‘LiDAR and Camera Calibration Toolbox’’ [30]. 3D
LiDAR can emit and receive multiple laser beams, allowing
for richer depth information, such as point normals [31].
3D LIDAR and camera calibration involve a six-degree-
of-freedom (DOF) problem with six unknowns. Each
observation of the board provides three constraints. Since
calibration over multiple observations can impact accuracy,
researchers have recently begun to pay attention to how to
obtain a more significant number of constraints in a single
shot. Different studies have evaluated the effect of different
calibration targets. A calibration board is an artifact used for
sensor calibration in a calibration target. It is usually a flat
or flat approximation of an object with a specific geometry,
pattern, or feature on the surface. The calibrationboard is
essential in the sensor calibration process. It is used as a
reference object to measure the correspondence between the
image or point cloud observed by the sensor and the actual
geometry.

Checkerboard or hole-patterned checkerboards, and their
combinations, are the most common designs for offline
calibration boards [32]. Table 1 compares the characteristics
of some typical calibration boards. As shown in Table 1,
typical features such as checkerboards have accurately
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FIGURE 1. Coordinate system transformation relationship.

detectable corners and intersections, and they offer high
flexibility [33], [34], [35]. Additionally, Zhao et al. [36]
used a calibration board composed of a rectangular plane
and ArUco markers for LiDAR-stereo camera calibration.
Domhof et al. [37] proposed an object that both LiDAR
and cameras can observe for calibration. Peršić et al. [38]
constructed another calibration target for the joint calibration
of LiDAR and cameras. The extrinsic parameters can be
determined based on constraints from points and lines on
these targets.

The table above summarizes different calibration targets
and their characteristics. We found that most calibration
targets, such as checkerboards and ArUco markers, are
composed of black-and-white alternating, regionally distinct
color blocks. Some calibration targets have prominent
geometric features on the outer edges, greatly facilitating
feature detection. But at present, some researchers in order
to overcome the traditional chessboard under the strong ring
light may produce uneven illumination on the calibration
target, leading to the failure of ordinary checkerboard
detection, An et al. [48] proposed using CharuCo as an
alternative, which can still be used for detecting the remaining
saddle points. In the future, we expect to see specific and
novel target boards emerging in 2D extrinsic parameter
calibration.

B. TWO-DIMENSIONAL TARGET CALIBRATION METHODS
Figure 2 shows the general process of target-based calibra-
tion, which can be used as the general structure of the off-line
external parameter calibration process. Mishra et al. [49]
proposed the most classical chessboard calibration method
for two-dimensional targets, mainly consisting of feature
extraction, feature matching, and regression of transforma-
tion matrices.

Firstly, point cloud data and RGB image features are
extracted. Since calibration boards or targets exist in the
scene, automatic detection and recognition of chessboard
corners can be achieved in the image. The main methods
for corner detection include Harris corner detection [50],
SURF corner detection [51], SIFT corner detection [52], and
other corner detection algorithms and corner descriptors. The
principle of the detector is based on the Hessianmatrix. Given
a point in the image I , the Hessian matrix is defined as
shown in Equation (8) [51]. Lxx(x, σ ) is the convolution of
the Gaussian second derivative d2g(σ )

dx2
on the point x of the

TABLE 1. Characteristics of typical calibration targets.

image I . The same is true for Lxy(x, σ ) and Lyy(x, σ ). The
position of corner points is determined by calculating the
response function of each pixel. This response function
measures the change of local pixel intensity by the sum of
squares of the difference after a small translation of the gray
value in the window around the pixel. It has the advantage
of simplicity and efficiency and has certain invariance to
the scale and rotation changes of the image. Therefore, it is
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FIGURE 2. General process of target calibration techniques relationship.

widely used in feature extraction and target tracking.

H (x, σ ) =

[
Lxx(x, σ ) Lxy(x, σ )
Lxy(x, σ ) Lyy(x, σ )

]
(8)

Secondly, for feature matching, as early as a decade ago,
Zhao et al. [53] and Scaramuzza et al. [54] proposed a
manual selection of 2D image features of the target board
and corresponding 3D target points for matching. However,
this method resulted in low accuracy and needed to be more
time-consuming. After repeated experiments, some ideas
of manual matching were acquired, Raguram et al. [55]
proposed a method based on geometric constraints, and
Nguyen et al. [56] proposed a method based on mutual
information for feature matching. These methods mainly use
geometric constraints or similarity between descriptors to
filter and validate the consistency of matched point pairs.
Compared to manual matching, these two methods achieved
relatively more automation. Since the general process is
similar for both target-present and target-absent cases, wewill
explain the ideas of feature matching in detail in the fourth
section.

Finally, the transformation matrix calculation is widely
applied, and the most accurate regression method is the
PnP (Perspective-n-Point) computationmethod [57]. The PnP
problem is a nonlinear optimization problem, and the
objective is to estimate the camera’s rotation and translation
transformations using known correspondences between 3D
points and their corresponding 2D image points (generally at
least three pairs) [58]. Its mathematical model is shown in the
following formula (9) [58], where p is the coordinates of the
point in the pixel coordinate system, PC is the coordinates
of the point in the camera coordinate system, PW is the
coordinates of the point in the pixel coordinate system, ω is
the depth of the point, K is the internal parameter matrix of
the camera, RCW and tCCW is the pose transformation from the
world coordinate system to the camera coordinate system.
Solution methods, such as P3P, involve using three pairs of
known 3D coordinates in the world coordinate system, and
the corresponding 2D coordinates of points projected onto
the camera’s normalized plane. The 3D coordinates of the
three points in the camera coordinate system can be obtained
by constructing equations. The problem is then transformed
into a 3D-3D ICP (Iterative Closest Point) problem. Since
solving the 3D-3D pose with matching information is

straightforward, this method is effective. However, when
there are more than 3 groups of matching points, the spatial
information points cannot be fully utilized.

ωp = KPC = K (RCWPW + tCCW ) (9)

Like P3P, Lepetit et al. [59] proposed the EPnP algorithm,
it utilizes more spatial point information and optimizes the
camera pose iteratively to minimize the influence of noisy
points compared to P3P. The main idea of both methods is
to obtain the coordinates of the corresponding points in the
camera coordinate system, converting the 3D-2D problem
into a 3D-3D problem and then solving it using ICP.

After solving the PnP problem, the matched point pairs
need to be further optimized to regress the specific external
parameter values. The specific methods mainly include
those based on linear equation-solving [60], [61], iterative
optimization methods (such as the Levenberg-Marquardt
algorithm) [62], and methods based on RANSAC [59].
Among them, the RANSAC method proposed by Jian
and Vemuri [63] is currently the most popular approach.
In addition to selecting the appropriate data and model, the
selection process of the number of traversals is derived from
the following Equation (10) [63], where p represents the
probability that the RANSAC algorithm results are useful,
and w is the probability that the data will be in the set
of internal points, so the result of k iterations satisfies
the Equation (11) [63]. Specifically, researchers project the
feature points onto the model obtained by PnP and calculate
their reprojection error. Feature points with reprojection
errors below a certain threshold are considered inliers, while
others are considered outliers. PnP replaces the complexity of
manual matching, It is commonly used in applications such
as camera pose estimation, camera calibration, and 3D object
pose estimation.

k =
log(1 − p)
log(1 − wn)

(10)

1 − p = (1 − wn)k (11)

The above Outlines the general calibration process of
the ordinary checkerboard. Compared with the ordinary
checkerboard, which only has the information of points and
edges, the checkerboard with holes increases the feature
of depth discontinuity. When the depth changes beyond
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the threshold, it is more likely to be the edge. Because
of its more distinctive characteristics, it has been widely
used in recent years. For example, Beltrán et al. [41] and
Vel’as et al. [64] proposed a chessboard pattern with circular
holes. They perform plane segmentation, target detection,
circle segmentation, and reference point estimation on the
point cloud data, use the depth discontinuity detectionmethod
to obtain the hole contour, and performArUcomark detection
and 3D pose estimation of the target on the image.

Figure 3 shows the schematic diagram of different stages
of reference point estimation. By finding the vertical plane
and setting the threshold, the non-plane points are removed
for the first time, and the point cloud is applied to the
edge point cloud to remove all points that are not plane
points. Then 3D-2D projection, while searching for the
corresponding circle, remove the inner point, and extract the
rectangular feature of the circle. If there is no matching center
point, this frame is abandoned. This method pioneered depth
information for calibration plates, after which researchers
used depth continuity or discontinuity to extract edges fully.

Apart from circular holes providing depth information,
chessboard patterns with holes come in various shapes. For
instance, Cai et al. [65] designed a novel checkerboard;
specifically, it has local gradient depth information and
central plane square corner information, select feature
points, and obtain their corresponding coordinates in the
LiDAR and camera pixel coordinate systems. The following
Equation (12) [65] is the coordinate solution of feature point
coordinates in the coordinate system of the calibration board,
and then the coordinate solution of the coordinate system of
the Lidar and camera, where xm1, xm2, xm3, xm4 represents
the coordinate of feature points, |MM | represents the distance
between two points, and L represents collinear conditions.
Secondly, the calibration experiment is carried out, and the
calibration results are verified by incremental verification and
reprojection error comparison. In addition to the mentioned
methods, there are other approaches for edge detection using
triangle-shaped holes [66] or rectangular-shaped holes [47].√

(xm1 − xm2)2 + (xm1 + xm2 − 10L)2 = |M1M2|√
(xm2 − xm3)2 + (−xm2 − xm3 + L)2 = |M2M3|√
(xm3 − xm4)2 + (−xm3 + xm4 − 24L)2 = |M3M4|

xm1 − xm2
xm1 + xm2 − 10L

=
xm1 − xm3

xm1 + xm3 + 7L
(12)

The above method is mainly for the experimental con-
ditions with fewer planes and simple environment, and has
certain limitations in the use conditions. To adapt to different
calibration requirements and special scenes, multi-plane
checkerboards can be placed at different angles and positions
to obtain calibration data from multiple perspectives. The
biggest advantage of multi-plane checkerboard is that even if
some planes are blocked or have problems, it can still use the
information of other planes for calibration. This work proves
the benefits of multi-planes in harsh environments. As shown

in Figure 4, the placement of the multi-plane checkerboard
and the test results of its corners.

Geiger et al. [43] proposed using four filter kernels to
exclude corner points. If any of the four filter kernels respond
weakly, it indicates a lower likelihood of being a corner
point. This method is crucial for removing non-chessboard
pattern corners from the hypothesis space as much as
possible. However, there are some problems with the layout
of this method, and the checkerboard layout is relatively
complex, especially in large-scale measurement systems,
which may require more time and effort to accurately place
the calibration board. Therefore, in future development, how
to ensure the detection effect and lightweight the calibration
board in the case of multi-plane placement has become the
key point of future optimization.

These works prove that different 2D calibration plates
can be applied in different environments to improve the
performance of various vision tasks. They make full use
of the information of corner points and edge points on
the calibration board to extract features, match features
by geometric or mutual information, and finally solve the
PnP algorithm to return the external parameters. From the
overview in this section, it can be concluded that although
the two-dimensional target is the most traditional calibration
method, it has some innovations in recent years, such as
multi-plane polygon, etc., but its performance is still not as
good as that of three-dimensional and non-target calibration
methods discussed in Section IV. One of the main reasons
is that since 2D calibration targets may be more susceptible
to occlusion, lighting changes, and image distortion, we also
expect better 2D architectures in the future.

C. THREE-DIMENSIONAL TARGET CALIBRATION
METHODS
The sphere target is the most commonly used 3D target in
3D object calibration, which is suitable for low-resolution
LiDAR data and can be detected from different angles.
Tóth et al. [67] and Kümmerle et al. [68] proposed using
spheres as calibration targets because the surface of a
sphere can be accurately detected in point cloud data.
In contrast, its contour can be precisely detected in camera
images. The calibration problem is defined as shown in
the following Equation (13) [68], and the transformation
T is found to minimize the sum of the squares of the
distances of all observations to P in the reference frame,
where T = T1,T2, . . . . . . ,Tn defines the pose of the sensor
in the reference frame, and P = P1,P2, . . . . . . ,Pm is the
observation of m pairs of time synchronization. Figure 5
shows the relative position relationship between the camera
based on sphere detection and the Lidar. The sphere’s center
point is calculated from the Lidar point cloud and the image
respectively. The center point of the ellipse is determined by
RANSAC and LSQ regression to the point cloud to obtain
the center point of the sphere further. However, compared
with the two-dimensional target board, the complexity of its
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FIGURE 3. The detection process for reference point estimation relationship [41].

FIGURE 4. Corner detection for multiple plane chessboard patterns [43].

operation is also apparent.

argmin
T

m∑
i=1

dist(Pi,T )2 (13)

In addition to using 2D and 3D calibration boards
separately, there are also improvements to combining 2D and
3D targets. These methods all utilize the common structure
of targeted calibration methods as shown in Figure 2. In this
section, by comparing different 2D and 3D targets and
different calibration methods, we find that the traditional
target-based off-line external parameter calibration technol-
ogy still has certain applicability in improving accuracy
nowadays, such as in relatively simple indoor environments.
However, when the environment is slightly complex, there
are some defects in wrong feature extraction and initial value
limitation.

Similarly, researchers have learned from target-based
calibration methods and can successfully extract features

in the environment. Therefore, with the development of
technology, in recent years, physical objects have been
gradually changed to target features in the environment,
which not only eliminates the difficulty of arranging scenes,
but also simplifies the calibration method. This paper will be
introduced in Section IV.

IV. TARGETLESS-BASED CALIBRATION TECHNIQUES
Some current studies learn from the experience of
target-based work and find that the target plate has a relatively
complex calculation defect, so they put forward the targetless
calibration technology, the overall calibration process is
similar to the target-based method, and the general structure
of target-based calibration pointed out in Section III is
also applicable in this section. However, different from the
target-based calibration method in Section III, the targetless
calibration method avoids the use of geometric components
such as calibration plates but extracts features directly from
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FIGURE 5. Estimation of relative attitude between camera and LiDAR
device.

the natural scene [69], including geometric structures like
edge lines, corners, and other characteristics [70]. It is worth
noting that it does not depend on the real object in the
scene, which makes the targetless calibration method more
general and flexible, and can be applied to various scenarios
and applications. Specifically, it is divided into information-
based, feature-based, and self-motion-based methods [71].
Below, for each class method, we introduce the fundamen-

tals of the method and further explore the differences between
them by specifying multiple implementation options. At the
same time, it is pointed out that the future development of
targetless technology should pay more attention to these three
methods, and it is expected that more reliable improvement
schemes will appear in the future.

A. INFORMATION-BASED METHODS
External parameter calibration excelses in targetless-based
methods, especially information-based methods, which esti-
mate external parameters primarily by maximizing the
similarity transformation between the liDAR sensor and the
camera, where similarity is measured by various information
measures. Specifically, the method based on information
theory consists of three steps, the first is the 3D-2D projection
of lidar points, It is the projection of three-dimensional point
cloud data into the image. The second step is a statistical
similarity measure, which measures the similarity between
the 2D projected image and the camera image based on
some features that share a similar distribution between the
sensor data acquired by the LiDAR and the camera. Finally,
the measure function is optimized, and the global optimal
solution is obtained by using the optimization algorithm for
the non-convex function of similarity.

There are various measures of similarity. For example,
Pandey et al. [72] and Wang et al. [73] consider that highly

reflective LiDAR data usually correspond to bright areas in
the projected image. Thus, reflectivity can be chosen as the
similarity index. Additionally, Taylor and Nieto [74] suggests
using the coincidence of LiDAR data with normal vectors
or gradient information in the image as similarity indicators.
Different methods can choose different shared features.
Below, we provide a detailed introduction to commonly used
attribute pairs.

Reflectivity and grayscale intensity are the most widely
used attribute pairs. Grayscale intensity represents the
brightness values of an image, where LiDAR points with
higher reflectivity correspond to higher pixel values in the
image, and points with lower reflectivity correspond to
lower pixel values in the image. Similarity measurement
can be conducted by comparing the consistency between
reflectivity and grayscale intensity. The measurement of
both attributes mainly depends on the surface properties
of objects [72]. In addition to reflectivity, other attribute
pairs can also be compared. For example, Zhao et al. [75]
proposed using reflectivity and hue, and Irie et al. [76]
suggested using reflectivity and color. All of these can
serve as indicators for the subsequent statistical similarity
measurement.

Although the above attribute pairs with reflectivity are
straightforward, they are relative values inferred from the
image rather than directly measured physical quantities.
This implies that they may be affected by environmental
conditions and lighting changes. To address the issues related
to reflectivity combinations, Jiang et al. [77] proposed using
3D and 2D semantic information as attribute pairs between
3D point clouds and 2D images. 3D semantic labels represent
the semantic categories of the point cloud, while 2D semantic
labels represent the semantic categories of pixels in the
image. By associating 3D semantic labels with corresponding
2D semantic labels through semantic segmentation meth-
ods [78], [79], a correspondence relationship is established.
Moreover, this correlation between 3D and 2D semantic
labels can play a significant role in various computer vision
tasks, such as scene understanding and object detection.
It enables a better understanding and analysis of scenes and
supports various visual applications.

According to relevant information, combining 3D-2D
attribute pairs can provide more comprehensive information.
In some methods currently used, it is shown that the com-
bination of multiple features is conducive to improving the
robustness of the algorithm to different environments [76],
It is because even if one part of the attribute pairs in the com-
bination is unstable under the influence of the environment,
the other part can work with complementary information.
This demonstrates the reliability of the combined properties.
For example, suppose we choose to combine 3D-2D semantic
information with other attributes. In that case, another set
can also be selected as reflectivity, surface normals, gradient
information, etc., to adapt and process the data in different
environments. With technology development and in-depth
research, the combined attribute pair will continue improving
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and perfecting to provide more accurate, efficient, and
reliable solutions.

After selecting the attribute pairs for LiDAR and camera,
we find that larger metric values indicate better correspon-
dence. Next, we need to use non-convex functions to statisti-
cally measure the similarity, which is challenging because it
requires suitable functions to evaluate correspondence qual-
ity. The most common method currently is based on mutual
information, proposed by Shannon [80], which measures the
statistical dependency between two random variables on a
given attribute pair. It can capture arbitrary relationships
between variables, including non-linear relationships. The
mathematical model of mutual information (MI) is defined
as the following Equation (14) [80], where H (X ) and H (Y )
are the individual entropy of random variables X and Y ,
H (X ,Y ) is the joint entropy of the two random variables,
pX (x),pY (y) and pXY (xy) represents the edge probability and
joint probability respectively.

MI (X ,Y ) = H (X ) + H (Y ) − H (X ,Y )

H (X ) = −

∑
x∈X

pX (x)logpX (x)

H (Y ) = −

∑
y∈Y

pY (y)logpY (y)

H (X ,Y ) = −

∑
x∈X

∑
y∈Y

pXY (x, y)logpXY (x, y) (14)

In order to prevent the mutual information method
from being affected by the total amount of information,
Li et al. [82] proposed normalized information distance,
alleviates the problem by standardizing the variables in
it. The NMI model can be defined as the following
Equation (15) [82], whose physical meaning is similar
to that of MI, mainly because the variable values are
different.However, besides mutual information, there are
many other statistical methods in practical applications.
For example, Guislain et al. [83] suggested using mutual
information and distance of gradient histograms. These
methods fully utilize the similarity or distance of matching
points for measurement. After multiple scene tests, we found
that while these methods effectively express the correlation
between variables, they may still suffer from issues such as
dimensional disaster and noise sensitivity.

NMI (X ,Y ) =
H (X ) + H (Y )
H (X ,Y )

(15)

Finally, we must use optimization algorithms to solve the
global optimal solution for non-convex functions. According
to the existing research data, the particle swarm optimization
(PSO) proposed by Shami et al. [84] is a heuristic opti-
mization algorithm, which regards the solution space of the
problem as the search space of the particle swarm. Each
particle represents a potential solution and searches for the
optimal solution by continuously adjusting its velocity and
position. The core idea of the algorithm is to allow particles
to update and adjust themselves based on individual and

collective experiences.The following Equation (16) [84] is
the core modeling part of the particle swarm optimization
algorithm. The first part represents the trust of the particle
to the previous state of its own motion; the second part
represents the distance and direction between the current
position of the particle and its own historical optimal position;
and the third part represents the distance and direction
between the current position of the particle and the historical
optimal position of the group.

vk+1
id = ωvkid + c1r1(pkid,pbest − xkid ) + c2r2(pkd,gbest − xkid )

(16)

Similarly, other optimization algorithms, such as the
gradient descent method proposed by Ruder [85],determine
the updating direction of parameters according to the gradient
direction of the objective function. The gradient indicates
the rate of change of the objective function at a particular
point, pointing toward the fastest increase in the function
value. Therefore, by iteratively adjusting the parameters in the
direction of negative gradient, the global optimal solution can
be gradually approached. The following Equation (17) [85]
should be repeated in gradient descent until the loss function
converges, where w represents the initial weight value, wi+1
represents the updated weight, and a represents the learning
rate, which must be an appropriate value.

wi+1 = wi − α ∗
dL
dwi

(17)

Additionally, Newton’s method can be used to solve the
minimization problem of the objective function. It is an
iterative method that uses the objective function’s second
derivative (Hessian matrix) to update parameters, thus
gradually approaching the optimal solution. However, while
Newton’s method has the advantage of fast convergence,
it may encounter numerical stability issues when performing
matrix inversion operations. To address this limitation,
subsequent papers such as Nocedal andWright [86] proposed
Conjugate Newton’s method, and Kelley [87] suggested
Quasi-Newton methods to ensure numerical stability. Table 2
summarizes some information-based calibration methods,
provides an overview of these methods based on the cor-
responding LiDAR attributes, image attributes, information
measurement, and optimization methods.

This section provides an overview of information-based
targetless calibration methods, which infer the external
attitude of the camera or sensor by analyzing features and
relationships in the image or sensor data. By comparing the
methods in the existing literature, we find that no special
calibration board or target is needed, and there are many
attribute pairs or combinations of attribute pairs to choose
from, which is easy to calculate and has certain flexibility.
However, it also has some limitations, such as accuracy
depends on data quality, and properties such as reflectivity
and gray intensity are more dependent on the environment.

Future research will depend on the progress of technology,
changes in application requirements, and the efforts of
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TABLE 2. Information-based targetless calibration techniques.

researchers, it may be necessary to combine spatial infor-
mation methods and select appropriate methods according to
specific scenarios and needs.

B. FEATURE-BASED METHODS
It can be seen from Section A that the information-based
method requires statistical attribute similarity. Unlike the
method based on information theory, the feature-based goal-
free calibration method directly extracts features from the
environment for matching and external parameter estimation.
Specifically, these features can be divided into three cate-
gories: Geometric features, semantic features, and motion
features that need to be acquired online from the LiDAR
point cloud and the surrounding environment of the camera
image. The general process is the same as the targeted
method, divided into feature extraction, feature matching,
and transformation estimation. Feature extraction aims to
automatically detect stable and unique features from point
clouds and images representing typical semantic or geometric
features in the environment (such as various types of vehicles,
telephone poles, pedestrians, etc.). Feature matching aims
to provide the correspondence of extracted features, and
some feature descriptors are needed to express their spatial
correspondence. Transformation estimation is the external
transformation parameters of LiDAR and camera based on
the corresponding feature matching relationship. Singular
value decomposition is a widely used algorithm to derive
external parameters.

Many existing studies have separated feature matching
and external pose estimation, which typically requires using
two or more algorithms to conclude. To reduce workload,
combining both calculations is crucial. Several recent works

propose integrating feature matching and external pose esti-
mation into a single step. For instance, Li et al. [91] proposed
using differential inertial measurement units to calculate
the external pose, Zhu et al. [92] proposed simplifying the
procedure by translating the calibration problem into an
optimization problem for a novel calibration quality measure
based on semantic features, which successfully and robustly
aligned a pair of time-synchronized camera and LiDAR
frames directly. In addition, many researchers are currently
exploring other merging methods to save computing time and
look forward to the emergence of better technologies in the
future. Next, we will introduce the existing research methods
in three steps.

In LiDAR camera calibration, we need a pair of feature
detectors for point clouds and images. Currently, there are
various categories of feature extractors. We will introduce
various feature extraction pairs according to the above
geometric, semantic, and motion features. For example,
Willis and Sui [93] proposed to use the intersections of
ground plane edge contours as features. One of the important
reasons is that the intersections have the characteristics of
all edges at the same time, and the intersections are more
real and reliable in the matching process than the points on
only one contour. However, in the process of selecting points
and edges, features need to be transformed by translation
and rotation, and distortion and other problems will occur.
Therefore, it is extremely important to introduce feature
operators. For example, the scale-invariant feature transform
(SIFT) proposed by Lowe [94] is a popular operator,
The following Equation (18) [94] is the process in which
SIFT algorithm adopts Gaussian kernel function to filter
when constructing scale space. It defines L(x, y, σ ) as the
convolution operation between the original image I (x, y) and
a variable scale 2-dimensional Gaussian function G(x, y, σ ).
(x, y) represents the pixel position of the image, which is the
scale space factor. A smaller value means that the image is
smoothed less and the corresponding scale is smaller, it can
extract features of interest points in point clouds and images.
Whether the original image or the projection map is scaled,
rotated or translated, the characteristics of the points will not
change, and it has strong stability. With the development of
technology, Some researchers later improved and accelerated
the original SIFT and proposed SURF, which was faster than
SIFT.

G(xi, yi, σ ) =
1

2πσ
exp(−

(x − xi)2 + (y− yi)2

2σ 2 )

L(x, y, σ ) = G(x, y, σ ) ∗ I (x, y) (18)

In addition to points of interest, edges are another
geometric feature widely used in LiDAR camera calibration.
These edges in point clouds and images contain geometric
information about the environment, and edge features are
particularly important in such environments when point
features show instability and are insufficient to describe the
environmental features.
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Using depth discontinuity to extract edge information in
point cloud is the most common method used by researchers
at present. The main principle is to set the depth difference
threshold between adjacent points, and retain the adjacent
point when the depth change of the adjacent point is greater
than the threshold, to filter out all points below the threshold,
to achieve the purpose of extracting edge information. This
idea has been widely used in various methods of point cloud
edge extraction. For example Ma et al. [95] successfully
extracted edge contours from point clouds by setting depth
thresholds, which is an effective approach in point cloud
processing.

Similar to edge extraction of point cloud, most feature
extraction of image is added with various image processing
operators. For example, the Sobel operator proposed by
Sobel et al. [96] uses the Sobel operator to detect the edge
of the image by calculating the change of the gray level of
the image and calculating the gradient value of the pixel. The
operator mainly consists of the following Equation (19) [96]
two matrices Gx and Gy, where the P matrix is the 3*3
matrix of the image. It is very sensitive to the change of
the high frequency of the image, but the noise in the image
will lead to false extraction. Therefore, it is necessary to
conduct pre-processing to remove noise before using Sobel
operator. In addition, there are Canny edge detection [97],
LSD algorithm can achieve edge extraction. These two
edge extraction methods can be directly operated on the
image.

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ P

Gy =

+1 +2 +1
0 0 0

−1 −2 −1

 ∗ P (19)

Canny edge detection is a multi-stage edge detection
algorithm, mainly including noise suppression, gradient
calculation, non-maximum suppression and other steps,
The basic idea is to find the position with the strongest
change in gray intensity in an image, which is called
the gradient direction. The following Equation (20) is the
boundary gradient and direction obtained according to the
first derivative Gx and Gy. Compared with Sobel operator,
Canny edge detection can weaken the noise edge, has strong
robustness, and is less affected by noise.

Edge_Gradient(G) =

√
G2
x + G2

y

Angle(θ ) = tan−1(
Gx
Gy

) (20)

On the other hand, the LSD algorithm [98] detects the line
segment by analyzing the change of pixel value in the image,
uses the direction and amplitude of the gradient to identify
the line segment, which mainly includes the steps of image
preprocessing, gradient calculation, edge direction analysis,
etc. The four pixels below the right of each pixel are used

for calculation to reduce the dependence on gradient, and
the linear direction and gradient changes are calculated by
the following formula (21) [98]. Compared with traditional
methods, the realization results show that the LSD algorithm
can deal with line fracture and noise interference well.

gx(x, y) =
i(x+1,y)+i(x+1,y+1)−i(x,y)−i(x,y+1)

2

gy(x, y) =
i(x,y+1)+i(x+1,y+1)−i(x,y)−i(x+1,y)

2

arctan
(

gx (x,y)
−gy(x,y)

)
G(x, y) =

√
g2x(x, y) + g2y(x, y) (21)

The above mainly outlines the extraction methods of
points and edges, but in recent years, with the development
of technology, there are also features extracted according
to the trajectory of the same object, semantic attributes
obtained by semantic segmentation, skyline poles, etc. For
example, Peršić et al. [99] proposed an unrelated calibration
trajectory association method that selected the trajectory in
the same time sequence as the feature according to the time
information. Liu et al. [100] employed the latest DNNmethod
to obtain semantic information as features, Ma et al. [101]
selected physical edges with apparent features, such as
electric poles. These methods have been fully utilized in
current research, and future research should focus more on
how to aggregate multiple classes of features together to
provide more convenience for subsequent steps.

The next step is feature matching. In order to establish
the corresponding relationship between points in Lidar
point cloud and pixels in image, the geometric constraint
or similarity between descriptors mentioned in Section III
calibration method with targets can also be used to match
feature points in non-target environment. For example, the
brute force matching method proposed by Li-Chee-Ming and
Armenakis [102]. Specifically, for each feature point in the
image, by calculating its Euclidean distance from all feature
points in the point cloud, the closest feature point is found,
It is the most similar feature point. However, such a method,
on the one hand, may cause mismatching problems.

On the other hand, there may be no point corresponding
problems, which is highly likely to cause interference.
Therefore, it is extremely necessary to introduce the ran-
dom sampling consistency random optimization algorithm
(RANSAC) mentioned in Section III, It can eliminate mis-
matched feature point pairs. RANSAC removes extraneous
points to get a more accurate mapping of feature points.
In addition, the matching strategy based on semantic relation
is also a commonly used matching method, aiming at
matching features at the level of semantic information as
much as possible. For example, Wang et al. [103] proposed
that after semantic segmentation in the image, points
reflecting vehicles in the point cloud can be matched with
pixels with vehicle semantic labels. The method of singular
value decomposition can be used for the regression of
external parameter. Table 3 summarizes the various targetless
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TABLE 3. Various targetless calibration methods.

calibration methods introduced above, and classifies them
according to different feature categories selected.

The feature-based matching method in this section intro-
duces the targetless LiDAR and camera parameter calibration
according to different feature types, feature extraction and
matching methods. In addition, semantic segmentation can
also be carried out only in the image, and only the semantic
mask in the image can be constructed. By comparing different
literatures, current research data and experimental results
obtained, we find that this part of the method is similar to the
part of the calibration method with targets, and the features
are also selected for relationship matching.

C. MOTION-BASED METHODS
The self-motion-based calibration method mainly utilizes
the motion of sensors installed on vehicles to infer the
external parameters. Currently, the existing methods mainly
involve matching correspondences between sensor trajec-
tories. Specifically, it includes odometry techniques, such
as visual odometry proposed by Ishikawa et al. [109] and
Park et al. [110], LiDAR odometry, GNSS odometry, and
inertial measurement units (IMUs), among others. Based on
the usage of self-motion information between sensors and
existing literature, self-motion-based methods can be mainly
categorized into hand-eye calibration and 3D structure-based
calibration.

1) HAND-EYE CALIBRATION METHOD
The hand-eye calibration is widely used in robot vision
applications, where the robot’s arm represents the ‘‘hand,’’
and the cameramounted on the arm represents the ‘‘eye.’’ The
transformation principle of hand-eye calibration is illustrated
in the following Figure 6.

FIGURE 6. The transformation principle of hand-eye calibration [109].

Translating this robotic problem into a calibration problem
between LiDAR and the camera, its mathematical expression
is as follows:

AX = XB (22)

Equation (5) directly represents the calculation formula
for hand-eye calibration, where and represents the motions
between the camera and the robotic arm. After transforming
it into a calibration problem between LiDAR and the camera,
they respectively represent the motions between the camera
and the LiDAR is the matrix to be solved for. Specifically, the
process of hand-eye calibration can be roughly divided into
three stages: estimating the motion of each sensor, estimating
the external parameters, and finally regressing the external
parameter matrix.

T iC =

[
RiC t iC
0 1

]
T iL =

[
RiL t

i
L

0 1

]
(23)

It is first necessary to obtain the position transformation
matrices T iC and T iL between the camera and the LIDAR
neighboring frames and respectively, both can be denoted
by the formula (23). For the LiDAR transform matrix,
Shi et al. [111] and Taylor and Nieto [112] suggested that
it can be obtained as accurately as possible by LiDAR
odometry with the ICP algorithm (iterative nearest point),
where the iterative nearest point algorithm proposed by Besl
and McKay [113] is suitable for motion estimation of a
point cloud, which relies on iteratively searching for the
nearest points of the previous and previous two sets of point
clouds, and then continuously minimizing the distance so that
the two sets of point clouds can be linked by transforming
the parameters, assume that the original point cloud is pi′

and the target point cloud is pi, and set the residual as
Equation (24) [113], subtract the transformed point cloud
and the target point cloud from the original point cloud.
The smaller the residual, the better the registration effect.
Also, the odometry can estimate the motion state of the
LiDAR [110]. For example, Zhang and Singh [114] proposes
that LOAM can select a pair of point clouds and images
from each trajectory, and use the pair to estimate the outer
parameters, where two algorithms are used, one algorithm
runs the odometry at a lower accuracy but uses a higher
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frequency, and the other algorithm runs the odometry at an
order of magnitude lower frequency but achieves an accurate
matching and point cloud alignment.

J =

∑
||pi− (R ∗ pi′ + T )||2 (24)

Similarly to Lidar odometry, the transformation matrix
for successive frames of the camera is obtained using the
camera’s visual odometry [115]. However, unlike the LIDAR
odometry in terms of the evaluation scale, there is a possibility
of image distortion and dimensional ambiguity for images
that are only purely visually estimated, so some additional
scales need to be added to the camera’s motion estimation for
the calculations, e.g., Inertial Measurement Units (IMUs) or
GPS or by the dimensions of the known objects in the scene.

Secondly, the external parameter estimation, because
the sensors work independently, can be calculated by
Equation (22) to calculate the external parameter, Tay-
lor and Nieto [116] proposed that hand-eye calibration,
in general, can be chosen to return to the rotation matrix
and translation matrix respectively, and then according to
Equation (25) [116] will be obtained by substituting the
rotation and translation matrices, as long as the matrix of RT

is obtained, then by the transformation matrix X =

[
R T
0 1

]
in

Equation (22) can be returned to the external parameter.

RiC tT − ItT = RT t iL − t iC (25)

Many different expressions can return the outer parameters
transformation matrix, for example, the rotation matrix (3*3)
can be uniquely defined for 3D rotations. Park et al. [110]
recently proposed to output the rotation matrix by finding
correspondences from the time trajectory. However, it is
independent of the order of the rotations, there are sin-
gularities and ambiguities in the parameterization of the
Euler angles of the rotation matrix. For example, problems
such as the gimbal lock problem and gimbal ambiguity can
lead to complexity in the parameterization and resolution of
the rotation matrix. In order to alleviate such problems of
computational complexity, Taylor and Nieto [117] proposed
the use of axis-angle representation of the rotation relation;
specifically, it parameterizes the rotation by two parameters:
a unit vector (i.e., the axis of rotation) pointing in the direction
of the rotation, and an angle indicating the magnitude of
the rotation along that axis. For example, if there is a
vector v in 3D space, u is the unit vector in the same
direction as the rotation axis, and θ is the Angle at which
v passes around the right hand direction of u, then the
rotated vector v′ is represented by (26) [117]. The axis-angle
representation simplifies the output process. Recently, it has
also been suggested by researchers such as Xu et al. [118]
that the rotation parameters can also be expressed in a Lie
algebra form, which is applicable to optimization problems;
specifically, it specifies the external parameters through a
vector with 6 degrees of freedom (DoF) variables.

v′ = (cos(θ)v+ (1 − cos(θ ))(u ∗ v)u+ sin(θ )(u ∗ v)) (26)

TABLE 4. LiDAR-camera calibration methods based on hand-eye
calibration.

However, by far the most used representation is the quater-
nion representation proposed by Liao and Liu [119], This
unique and simple representation describes finite rotations in
3D space, divided into real and imaginary parts. w, x, y, and z
are the four parts of the quaternion, which denote the three
components of the real and imaginary parts, respectively.
The following table summarizes the current hand-eye-based
LiDAR-camera calibration methods according to different
motion estimation strategies.

This section discusses targetless calibration methods based
on hand-eye calibration. Different calibration methods use
different motion estimation and optimization methods, and
by comparing the various methods, we find that ICP and
odometer methods are still used more often, and feature
matching is mainly used in refining the parameters. The
current hand-eye calibration methods have been evolving for
several years, and it is expected that more accurate motion
estimation and representation methods will emerge in the
future.

2) 3D STRUCTURE-BASED CALIBRATION
Unlike the hand-eye calibration-based methods, the 3D
structure-based methods do not rely on odometry but
instead estimate the surrounding environment’s 3D structure
through image analysis. This is another type of motion-
based LiDAR-camera calibration method, with structure
from Motion (SFM) being one of the most commonly used
techniques [120]. SFM is a technology that estimates the 3D
structure of a scene from a sequence of 2D images. It has
numerous applications in various fields, such as 3Dmodeling,
augmented reality, and visual SLAM. Specifically, the 3D
structure estimation based on SFM involves mounting the
camera on a moving vehicle and capturing a series of images
as the vehicle moves, resulting in a set of 3D point clouds.
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This allows the LiDAR-camera calibration problem to be
transformed into a registration task in the 3D domain. The
next step involves converting the 2D image sequence into
3D point clouds and using the Iterative Closest Point (ICP)
algorithm to align the SFM point cloud with the LiDAR
point cloud, obtaining an initial estimation of the external
parameters. In theory, 3D points will be perfectly projected
to pixels, but due to noise interference, error thinning is
required, as shown in the following formula (27) [120],
where Wij is 1 when camera i observes track j, and 0 when
camera i observes track j otherwise, and ||qij − P(Ci,Xj)||
represents the cumulative sum of projection errors of track
j in camera i. For example Swart et al. [121] utilized this
SFM approach to find the point of interest exact results
by point cloud alignment followed by SIFT. In addition to
this Moussa et al. [122] used beam block accurate external
parameters after using 3D-3D alignment, so that the matching
results are better after fine calibration with continuous
refinement of parameters.

g(C,X ) =

n∑
i=1

m∑
j=1

wij||qij − P(Ci,Xj)||2 (27)

In recent years, with technological advancements, many
researchers have optimized subsequent operations after
SFM registration. For example, Wang et al. [123] utilized
continuous scene information from vehicle motion and
converted it into 3D information to obtain initial external
parameters. This method employs the SFM algorithm to
compute 3D points from a sequence of 2D images, followed
by ICP-based point cloud registration to estimate preliminary
results. However, they have made improvements based on the
continuation of the SFM method of alignment, specifically
the projection of 3D LiDAR points into the 2D image
plane through preliminary external parameters, the use of
edge feature points and the strategy of combining other
optimization methods, such as the use of a combination of
points, edges, and semantic information repeated to improve
the accuracy of the external parameters.

Although the SFM method can reconstruct 3D environ-
ments and obtain environmental information, it currently
faces challenges. For instance, converting images into 3D
point clouds may lead to sparsity in the point cloud, resulting
in decreased matching rates and the error will increase if
ICP algorithm is used again. Some researchers proposed
upsampling when converting images into point clouds, which
can be an effective solution. Additionally, to address this
issue, Li et al. [124] proposed an automatic matching method
for semantic features in point clouds and images, They refine
the parameters by maximizing the overlap area between the
two, so that even if the number of point clouds is small, the
parameters can be iterated by the overlap area. Furthermore,
Nagy et al. [125] also utilized semantic information during
the point cloud registration stage.

After the overview in this section, we find that the method
based on 3D structure estimation does not need precise

prior information, and it can recover the 3D structure of the
scene from a set of images without prior knowledge of the
internal and external parameters of the camera or the specific
information of the scene. However, there is also a problem
of high computational complexity in large-scale scenarios.
With the development of current research, although effective
reconstruction methods such as SFM are proposed, they also
need variousmeasures to increase the number of point clouds.
Therefore, in future work,We believe that the focus should be
on how to obtain as much detailed location cloud information
as possible and how to refine it to the best effect once the
initial external parameters are obtained.

V. DEEP LEARNING-BASED ONLINE CALIBRATION
TECHNIQUES
In Section III.IV, we provide an overview of offline calibra-
tion methods based on targeted and untargeted calibrations,
the two traditional calibration methods usually need to be
carried out in a laboratory environment, and the process
cannot be separated from the manual calibration, which can
only be returned to the field for recalibration in case of
a change in the relative position between the camera and
the Lidar, whereas the on-line calibration technique allows
calibrations to be carried out in real-time scenarios to adapt
to real-world variations.

In current research, many researchers, such as
Xu et al. [118], employ neural network models to estimate
camera or sensor parameters. These models can be trained
with training data to learn the relationship between camera
parameters and input images. The training data may be
a dataset containing known parameters and corresponding
images. Once the model is trained, it can be applied to
images in a live scene and camera parameters can be
obtained by inference. The end-to-end approach simplifies
the online calibration process, and several research efforts
are already working towards fully automated LiDAR-Camera
calibration without any a priori information. For instance,
Li and Lee [126] transformed the alignment problem into a
classification task by first determining whether each point in
the point cloud is in or out of range of the camera’s image, and
then passing these labeled points into a novel inverse camera
projection solver to estimate the relative pose, but this method
still requires an initial pose guess that can be projected.

Moreover, Feng et al. [127] proposed the 2D3D-MatchNet
for matching low-level cross-modal features (such as SIFT
and ISS). It should be noted that because the Field Of View
and data modes of LiDAR and the camera are very different,
the morphology of low-level features is also very different,
so it is difficult to match the low-level features of the camera
and LiDAR, and the features of cross-modal invariance tend
to exist in the high-level features (such as structural or
semantic information).

In order to better evaluate the calibration effect, online
calibration techniques usually need data sets for training and
verification. Datasets are collection that contain images of
the calibrated object and corresponding labels or comments.
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Online calibration is to identify and locate the object in
the image by deep learning model, and then determine its
position and attitude in the image. In order to evaluate the
effectiveness of the external parameter calibration method,
datasets containing multiple calibration objects are needed.
After the external parameter is obtained, the error between
the data set and the ground truth value can be observed
experimentally to evaluate the calibration effect, and the
reliability of the algorithm in different scenarios can be
verified. Multimodal sensor data sets provide rich real-world
scene data. Over the years, various datasets have been
developed for different purposes. For example, the earliest
dataset, ‘‘Rawseeds’’ [128], was used for detection, recog-
nition [129], and vehicle positioning using a combination
of GPS and IMU [130]. More recently, one of the most
well-known datasets is the KITTI dataset proposed by
Geiger et al. [131]. It is widely used for algorithm validation,
providing 1392×512 pixel RGB images and depth map
data from Velodyne HDL-64E lidar, including methods for
calibrating LiDAR and cameras, such as the work by Zhang
and Rajan [132].

Deep learning-based online calibration methods can be
categorized into two approaches based on network regres-
sion: direct regression and error regression. In the direct
regression approach, the network takes input data from point
clouds, such as RGB images and depth maps. It aims to
learn the direct mapping relationship between the input data
and calibration parameters. The network learns to predict
the calibration parameters based on the input data directly.
The network is trained to regress and predict the errors
between the estimated calibration parameters and the ground
truth in the error regression approach. By optimizing the
initial calibration parameters using these errors iteratively,
the network aims to reduce the calibration errors and improve
the accuracy of the calibration. In the following, we will
provide a detailed introduction to the process of deep
learning-based online calibration techniques.

A. REGRESSION NETWORK FOR EXTERNAL CALIBRATION
PARAMETERS
The RegNet [140] is a representative example of a regres-
sion network for directly calibrating external parameters.
It replaces the traditional three-step process and directly
regresses the six degrees of freedom for calibration. The
external parameters of the datasets are calculated using the
method of formula (28) [140] as the ground truth value,
which means that the given point x in the sensor coordinate
system is converted to point y in the world coordinate
system, and then the ground truth value H is obtained. The
network architecture consists of a feature extraction part and a
registration network part. RGB images and point cloud depth
maps are used as input data. First, the NiN feature extraction
network [141] is applied to extract features from the image
and point cloud data with different channel numbers. Then,
feature concat is performed on both data, followed by two

fully connected layers to obtain the loss function.

y = Hx (28)

Secondly, cycle the steps of ‘‘3D-2D projection ->RegNet
network processing -> Update external parameters’’ to
continuously obtain new external parameters and optimize
the loss function. Finally, five kinds of networks are trained
from large to small, representing five different deviation
ranges. Comparing the calibration effects of five kinds of
networks, it is found that the regression external parameters
are constantly close to the ground truth value. In the course
of training here, two challenging sequences were selected
on the KITTI dataset for a total of 574 frames, while all
other sequences were only used for training (14,863 frames).
We randomly vary the error of the external parameter φdecalib,
each frame during training generates a potentially infinite
amount of training data on the dataset, so that the dataset can
be used for iterative training. RegNet can conduct target-free
calibration from scratch without manual intervention, and
the calibration accuracy is higher than that of traditional
methods. However, the network’s performance is limited by
the design and capability of the network structure. The feature
extraction and matching network used is too simple, and the
geometry of the point cloud is not considered. When the
internal parameters of the camera change, it is necessary
to fine-tune the trained model, which may not be able to
capture the characteristics and relationships between complex
sensors, and in this case, the accuracy is not high. Figure 7 is
the network structure diagram of RegNet.

Similarly, building upon RegNet, Liu et al. proposed an
online calibration method that integrates visual and depth
sensors. They fused image and point cloud data into a single
depth sensor and then calibrated it with the image.

CalibRCNN [143] calculates the external parameters
between camera and Lidar by solving the relative position
relationship between successive frames. The network takes
as input images, incorrectly calibrated point cloud projection
depth maps, and camera calibration matrices (camera internal
parameters). After pre-processing KITTI-odometry’s 00-06
sequence datasets, 90% of the frames in each sequence are
taken as the training set and the remaining 10% as the test set.
In addition, part of theKitti-raw 0926 sequence is used, which
has unfamiliar scenes and different internal parameters. First,
feature extraction is carried out. For RGB image branches,
the convolution layer of the pre-trained ResNet-18 network
is used. For the branches of the depth map, a network
similar to the structure of ResNet-18 is used. The convolution
layer and LayerNorm layer can extract the deep features,
aggregate the extracted features and input them into the
LSTM layer, extract the time information between successive
frames for sequential learning, analyze the translation and
rotation information from the depth features output by LSTM,
and predict the translation vector τ and rotation vector γ .
CalibRCNN obtains the calibration parameters of the depth
map by calculating the formula, and then replaces the formula
to predict external parameters, to obtain the position matrix
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FIGURE 7. Network architecture diagram of RegNet.

transformation between two frames of the camera. Calibr-
cnn introduces three loss functions, including luminosity,
geometry, and regression, and continuously optimizes the
camera error loss function to accurate external parameters.
The following formula (29) [143] is the solution formula for
the real external parameter Tφgt , where Tvelo is the coordinate
transformation parameter between point cloud frames and
the pose transformation between Tcam cameras. The network
combines CNN and LSTM through end-to-end training and
optimization, CalibRCNN can effectively capture the visual
features of targets, improve target detection accuracy, and
adapt to different scenarios. However, CalibRCNN needs to
constantly improve its generalization ability in the future. The
network structure of CalibRCNN can be visualized as shown
in Figure 8.

Tvelo = TφgtTcamT
−1
φgt (29)

All kinds of networks described above have been widely
used in the field of online calibration, but they all need initial
pose estimation to optimize iteratively in the calibration pro-
cess. Since 2023, Sun et al. [144] have proposed an adaptive
lidar camera calibration method, ATOP, that first converts
point cloud data into depth map information, then uses a
cross-modal object matching network (CMON) consisting of
two parallel embedded branches for feature extraction. The
setting of the attention mechanism mainly focuses on the
overlapping area of the field of view between the liDAR and
the camera, thus generating the corresponding relationship of
the 3D-2D image. Through the corresponding relationship,
two cascaded particle swarm optimization (PSO) based
optimization algorithms, namely Point-PSO and Pose PSO,
are used for the attitude initialization and refinement of the

optimization stage. To train CMON, a cross-modal target
matching dataset was created, which was collected from the
platform acquisition data and part of the KITTI mileage
datasets (sequence 0 to 8), with a total of 2892 labeled
data, of which 1513 were used for training CMON, 379 for
validation, and 1000 for testing. The tag data for sequence
03 in KITTI is all allocated to the test set. Figure 9 shows the
overall framework of ATOP method. Compared with other
methods, the most significant advantage of this method is
that it does not need to estimate the initial pose and does not
rely on specific calibration targets, which has great reference
value for future research on perceptual systems. However,
as far as the current research status is concerned, there are
still time-consuming and laborious, and highly subjective
problems in the training process of collecting annotated data.

B. REGRESSION NETWORK FOR ERRORS
CalibNet [145] is a network that regresses external calibration
parameters instead of calibration parameters, primarily using
raw data from the KITTI dataset, specifically RGB images
and velodyne point cloud data to prepare the dataset, 2,609
driving sequences were used for training, as they consist of a
large number of sequences with good scene variation while
capturing a wide range of input biases. The training data
was amplified by random sampling in the range of ±10o
rotation and ±0.2 m translation of any axis, through a neural
network that takes as input the image, the depth map of the
point cloud projection that is not correctly calibrated, and
the camera calibration matrix (Camera Intrinsic Parameters).
Feature extraction is performed first; for the image branch,
the convolutional layer of a pre-trained ResNet-18 network
is used [146], and for the depth map branch, we use a similar
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FIGURE 8. Network architecture diagram of CalibRCNN.

FIGURE 9. Network architecture diagram of ATOP.

architecture to the RGB branch but halve the number of filters
at each stage as the features of the depth map, It need to
be learned from scratch. The outputs of the two branches
are feature spliced along the channel dimensions, followed
by global feature aggregation through a series of additional
total convolutional layers, and the final outputs are obtained
as the corresponding rotation and translation vectors, which
are used to solve the external calibration parameters between
the camera and the Lidar by minimizing the introduced
distance loss from the point cloud, as well as the photometric
loss function, to obtain the best possible range of error.
The initial calibration parameters are continuously calibrated
to maximize the image’s and the point cloud’s geometric
and photometric consistency. Although CalibNet can solve
the point cloud structure problem, unique training methods

must be designed to achieve calibration accuracy during the
training process. Figure 10 shows the network structure of
CalibNet.

LCCNet [147] improves the network structure based on
CalibNet. Instead of directly regressing the Lidar and camera
external parameters, it regresses the uncalibrated deviation
between the projection and the initial calibration to the
ground truth. The results of the algorithm were observed
primarily using the odometer branch of the KITTI dataset,
which provides calibration parameters between sensors,
trained and validated using sequences 01 to 20 (39,011
frames) and tested using sequence 00 (4541 frames). The test
data set is spatially independent from the training data set,
except for a very small subset sequence (about 200 frames),
so it can be assumed that the test scenario is not in the
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FIGURE 10. Network architecture diagram of CalibNet.

FIGURE 11. Network architecture diagram of LCCNet.

training data. The network takes the RGB image and the depth
map formed by the projection of the incorrectly calibrated
point cloud as the input to the network, and extracts the
features of the image and the point cloud depth map through
a feature extraction network respectively, and then introduces
a feature matching layer in the optical flow detection network

FlowNet [148], which correlates and matches the image
features and the point cloud depthmap features by calculating
the similarity between the feature map vectors, and finally
utilizes the feature global aggregation network to regress
the external parameter error calibration parameters between
the LIDAR and the camera, and continuously calibrate the
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FIGURE 12. Visual calibration results for LCCNet.

TABLE 5. Comparison of online calibration network structures based on deep learning.

TABLE 6. Calibration results for different networks.

initial external parameter through the calibration parameters,
to improve the external parameter calibration accuracy. In the
calibration process, unlike other networks, the loss function

introduces the point cloud distance loss as an additional
self-supervised signal in addition to the smoothed L1 loss.
LCCNet adopts an end-to-end training method, which does
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not require too much manual intervention, and it is robust
enough to adapt to the real-time environment and also meets
the requirement of higher accuracy so that there is no need for
fine-tuning themodel when the camera’s internal parameter is
changed. Figure 11 shows the network structure of LCCNet.

Various studies have evaluated the effectiveness of differ-
ent calibration networks. Table 5 compares the characteristics
of some typical networks for online calibration based on
deep learning. From Table 5, the typical networks’ input part
is basically the same. At the same time, the output can be
error regression with external parameter regression, and also
summarizes the advantages and disadvantages of the various
networks and the different approaches used in the feature
extraction and matching process.

This section introduces deep learning-based online cal-
ibration techniques through networks that regress external
calibration parameters and networks that regress errors,
respectively. As the hottest method in the current develop-
ment of multi-sensor calibration direction, it mainly uses,
for example, pre-trained Resnet-18 as well as Resnet-
18 networks to perform feature extraction on images and
point clouds, respectively, and the initial external parame-
ters through loss functions or optimization algorithms for
continuously optimized by loss functions or optimization
algorithms. At the same time, in the process of using the
data set, it is found that in addition to the KITTI data
set commonly used in online calibration networks, other
existing data sets are also applicable, such as BDD [133],
ApolloScape [134], ONCE [136], MVSEC [137], Argoverse
2 [138], Rope3D [139], etc, and others are suitable for
outdoor sensor calibration, and it is expected that various
algorithms can also use other data sets for verification and
effect comparison in the future.

We compare the calibration effects of different methods
in Table 6. Through the calibration data of various types of
networks on the same dataset of KITTI, we find that LCCNet
is the neural network with the best calibration effect at
present, and the ATOP network, which was just proposed this
year, has added the attention mechanism, and its calibration
effect is also noteworthy. In future development, the attention
mechanism and the optimization algorithm is a module that
can be borrowed. Compared with the iterative complexity of
other networks, the network made so far is better at achieving
lightweight, and its fastest response time can be up to an
average of 0.073 s. We look forward to the emergence of
better calibration networks in the future.

VI. CONCLUSION AND OUTLOOK
Multi-sensor exo-reference calibration techniques have
become a hot topic in computer vision due to their competi-
tive performance and great potential in deep learning. Many
methods have been proposed in recent years to discover and
summarize various external parameter calibration methods.
These methods perform excellently on various vision tasks
such as fault detection, remote sensing, robotics, localization
and 3Dmap reconstruction, and unmanned driving. However,

the potential of external reference calibration has yet to be
fully explored, and there are still some challenges to be
addressed. This section summarizes the approaches discussed
throughout the paper and presents current challenges,
providing insights into future perspectives.

A. CONCLUSION
This review introduces various methods for external parame-
ter calibration ofmodal sensors such as cameras and LIDARs,
mainly including targeted calibration techniques, targetless
calibration techniques, and online calibration techniques
based on deep learning, and contrary to other reviews,
we propose a typical process structure for external parameter
calibration for each method. Improve accuracy, such as the
simpler indoor environments, are still applicable. However,
when the environment is slightly more complex, there
are some defects of erroneous feature extraction and the
limitation of the initial value, mainly due to the susceptibility
of the calibration plate to changes in illumination. In order
to alleviate this problem and evolve the technique of
owning targets, we introduce the fourth section of the
targetless calibration technique, specifically through the three
categories of methods based on information, features, and
motion. By comparing the methods, we find that the general
process is similar to the third section. However, it eliminates
the trouble of arranging the environment, and the current
calibration using odometers and inertial measurement units
is more effective. In addition, we also review the latest
methods for online calibration and introduce popular point
cloud datum datasets and the performance of these methods
on 3D visual calibration tasks. Currently, LCCNet is the
best performer in both response time and error of six values
from the ground truth. However, methods incorporating an
attention mechanism can be considered in the future to
help improve performance. This review is limited to these
three methods, which cover most of the primary methods
for external parameter calibration, and we believe that the
deep learning-based method is the essential method to be
emphasized at present. Its process is relatively free of human
intervention.

B. CHALLENGES AND FUTURE PROSPECTS
Although the methods for external parameter calibration
have shown good performance on several tasks (including
classification, part, and semantic segmentation), some areas
still need more attention. Extensions for more significant
scenes are rarely exploited, as most current works rely on
slicing large scenes into smaller parts. At the time of this
review, most of the works are for one-frame scenes, and only
CalibRCNN employs continuous frame calibration, so future
works exploring could focus more on deep learning of large-
scale 3D scenes.

In order to advance the development of camera and
LiDAR external parameter calibration techniques, we pro-
pose potential directions for future research. One direction is
effectiveness and efficiency. The goal is to develop efficient
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deep learning networks, i.e., networks with high performance
and low resource costs. Performance determines whether
the model can be applied to real-world applications, while
resource cost affects device deployment. Effectiveness is
usually associated with efficiency, so finding a better balance
between them is an exciting research topic.

With large-scale data training, deep learning networks can
achieve advanced performance on benchmark dataset tests.
Whether it is possible that neural networks need big data
rather than a uniform one-frame feature generalization bias
also echoes the large-scale scenario problem we posed in the
first paragraph of this subsection. Finally, a question is left for
reflection: can deep learning-based network models achieve
satisfactory results under lightened manipulation and with
large-scale data training?
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