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ABSTRACT Battery electric vehicles (BEVs) are becomingmore widespread and consequently the charging
load from vehicles is rapidly increasing. For energy system and grid planning, themagnitude and coincidence
of these charging loads are crucial parameters. Furthermore, to determine the charging power demand in
different charging locations, the coincidence of charging in them must be examined. Thus, in this study,
the coincidence factors of charging loads in different charging locations were analyzed for a large-scale
BEV fleet, considering available charging power and ambient temperature. In addition, the mean charging
load, deviation of load, and flexibility potential within charging events, were examined based on the same
parameters. The coincidence factors of charging increased with lower available charging power and lower
ambient temperature. By location type, the highest factors were at work, at hotel, and at home, but overall, the
coincidence of charging remained low for a large-scale BEV fleet. Moreover, the relative standard deviation
of a composite load for a large number of BEVs was low, whereas the opposite was found for a small number
of BEVs. The modeling of the charging loads in this study was based on activity-travel schedules from travel
survey data, from which 12773 respondents with 40321 trips were included.

INDEX TERMS Charging load, coincidence factor, electric vehicle, load deviation.

I. INTRODUCTION
The number of electric vehicles (EVs) is likely to grow
significantly in the coming decades, due to technological
advancements, cost decreases, and decarbonization targets.
Globally, the International Energy Agency predicts, in their
Stated Policies Scenario, that the number of passenger light
duty electric vehicles will increase from 10 to 125 million by
2030 from 2020 [1]. This trend is evident in the European
Union (EU), where the share of EVs from the newly regis-
tered vehicles has increased from a near 2% level (in 2015 –
2018) to 17.8% in 2021 [2]. Moreover, the EU plans to end
the sale of new CO2 emitting cars by 2035 [3]. Likewise
in Finland, the share of battery electric vehicles (BEVs)
and plug-in hybrid electric vehicles (PHEVs), from the new
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registrations in 2022, were 17.8% and 19.8% respectively [4].
As the number of EVs increase, consequently so does the
energy and power demands of the transportation sector. For
energy system operation and planning, it is crucial to estimate
the characteristics of these charging loads, to maintain relia-
bility and efficiency of the system.

The estimation of the EV charging loads can be based
on data from travel surveys, vehicle trials, or EV charger
trials [5]. Further, whichever the source of data, methods for
estimating the demand are numerous. Travel surveys, often
conducted on a national level, are a widely used source of data
for this estimation. For example, in [6], [7], and [8] survey
data was used to form charging profiles with the Monte Carlo
method, whereas [9], [10], [11] used Direct use of observed
activity-travel schedules (DUOATS), as classified in [12], for
the formulation.Moreover, theMarkov chain model was used
in [13] to assess effects of EV charging to residential load,
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while [14] used artificial neural networks to forecast travel
behavior.

As the number of EVs on roads has increased, such have
studies based on vehicle trials. For example, in [15] EV data
of commercial and shared vehicles were used to forecast
charging demand with the Monte Carlo method, while [16]
developed a machine learning method, and compared it to
several others, which utilized vehicle data to predict the
demand. Moreover, vehicle measurement data was used in
[17] to formulate usage patterns of vehicles, and in [18] to
estimate power demand and the flexibility of charging.

Charging point data has been utilized e.g. in [19], where
time series models, such as autoregressive integrated mov-
ing average, were used for forecasting aggregate charging
load, or in [20] where time series models were compared
to machine learning methods. Moreover, in [21] data mining
methods for forecasting the charging load with case studies
were utilized, while [22] used charging point data to estimate
the future loading of commercial charging.

Even though there are several studies utilizing EV trials
and charging point measurements, the data from these are
scarce and often publicly not available [5]. Thus, in this
study the data from the national household travel survey
(NHTS) in Finland [23], was utilized to formulate charging
profiles, by using the DUOATS [12] type modeling. In the
survey, all respondents recorded all their trips on a given day,
with detailed information on the departure and arrival times,
locations, length, and mean of transport for the trips, which
allowed the derivation of driving profiles. Shortcoming of
using DUAOTS, based on survey data, is that it results in
predetermined profiles where the driving patterns are fixed,
and thus for example estimations of EV policy effects are not
possible to be conducted [12]. However, in [9] Pareschi et al.
compared the DUOATS type modeled charging load to elec-
tric vehicle trial data and concluded that travel surveys can be
utilized for EV load modeling with reasonable accuracy.

For studies which utilize the characteristics of the charging
profiles, case studies are required, for which the used source
data almost always reflects a particular area, e.g., a country.
In the case of Finland, large-scale EV charging has been
estimated for BEVs in [11] and [24], and for PHEVs in [25].
The charging profiles can be utilized in a great number of

analyses, including generation planning and scheduling, grid
expansion and resiliency, and economics and environmental
studies. Moreover, the effect of different parameters to the
profiles can be considered in the analysis. The majority of
studies consider the effect of available charging power on
the estimated load. In addition, several studies consider the
energy consumption of the vehicles based on ambient tem-
perature [7], [8], [16], [24], or estimate different consumption
scenarios [9], [25], and the vehicle’s driving speed. How-
ever, while the ambient temperature is considered in several
studies, a very low temperature is not. Thus, in this study,
to fill this research gap, the charging load of a large-scale
BEV fleet is examined with a very low ambient temperature
of −20◦C.

One key characteristic for generation and grid planning is
the coincidence of EV charging load. This has been studied
in small scale for example in [26], in the case of apartment
buildings, analyzing the effects of available charging power,
and in [27] by number of EVs considered. For a larger number
of EVs, the coincidence factor has been studied in [28] with
different available charging powers, while the effect of the
number of EVs considered was studied in [29], [30], and [31].
In addition, in [32] the coincidence factor was analyzed based
on charging power, battery size, and plug-in behavior. More-
over, [33] studied the coincidence of charging in terms of
change in peak load by EV penetration level. However, there
is a research gap on studying the variation of the coincidence
of charging of large-scale EVfleets in different charging loca-
tions. Moreover, while ambient temperature was considered
in studies [29], [30] on the coincidence factor, no analysis was
conducted for a very low ambient temperature. This study
examines these research gaps by analyzing the coincidence
factor of charging in different charging locations, considering
available charging power and ambient temperature, including
a low temperature of−20◦C.Moreover, as mentioned earlier,
also the magnitude of the charging load is studied at very
low ambient temperature, which lacks from the current liter-
ature. By analyzing the coincidence of charging in different
charging locations, the location types where greater charging
capacity is required, can be determined. This may be useful
when planning charging point availability or dimensioning
the distribution grid. By including the analysis of a very low
temperature of −20◦C, the magnitude, and the coincidence
of the charging load, can be examined in a situation when the
whole energy system is often under heavy loading. Thus, this
knowledge can be useful when studying e.g., the reliability of
the power system or generation planning.

In addition, in this study, the deviation of composite load,
together with the flexibility potential of charging within
charging events, which may lessen the burden of the charging
load for the system, are examined based on the available
charging power and ambient temperature.

The rest of the paper is formed as follows. Section II
presents the materials and methods used to formulate the
charging profiles, Section III presents the results, and
Section IV concludes the study with discussion on the results.

II. MATERIALS AND METHODS
A. NATIONAL HOUSEHOLD TRAVEL SURVEY TO
DRIVING PATTERNS
The driving patterns of BEVs were based on the driving pat-
terns derived from the Finnish NHTS from 2016, conducted
by the Finnish Transport and Communications Agency [23].
In the survey, the respondents recorded all their trips during
one given day. For this study, the data used from the survey
included the departure and arrival times, departure and arrival
location types, trip distances, and mean of transport for the
trips. From them, only the trips completed with passenger
cars or vans with the respondent as a driver were included.
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FIGURE 1. Share of vehicles in locations during week and weekend days, based on NHTS data [23]. Availability represents vehicles in
locations with available charging power, in this study, as presented in Table 1.

FIGURE 2. Daily driving distance distribution of vehicles during week and
weekend days [23].

In addition, only continuous trips were included, where a
later trip began from the same location as the earlier trip
ended. Only exception was that the last trip of the day did
not have to end at the same location as the first trip of the
day began, to include long one-way trips. In addition, if the

TABLE 1. Location types for vehicles based on the NHTS data [23], and
the assumed available charging power (kW) in them, in this study, for
three different charging power scenarios.

calculated mean velocity of the vehicle to complete a trip was
greater than 130 km/h, or the departure time was later than
the arrival time, the answers were eliminated. In total, the
analysis included 13 323 responses with 43 348 trips, from
which 12 733 and 40 321 were included after the elimination.

In the NHTS the respondents had 23 options to choose
from as the location type of arrival and departure. Similar
location types were here grouped together and treated as one,
after verifying the continuity of trips. BEV driving profiles
were formed such that one respondent was assumed to cor-
respond to one BEV, regardless of the motive power of the
respondent’s vehicle in the survey. Further, it was assumed
that the vehicle moved with a mean velocity during the trips
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and was stationary between them. By so, a time series was
formed for each vehicle, where its location for every time
step, stationary or driving, was defined. In addition, while
driving, the distance driven and driving speed, for each time
step was defined from the survey data. The distance driven
was multiplied by the energy consumption rate (ECR) of the
vehicle, defined in Section II-C, which formed a consumption
time series for each vehicle. Based on the location, charg-
ing power was either always or never available, and formed
another time series for each vehicle.Moreover, three charging
power scenarios (CPS) were analyzed (Low, Medium, and
High power), which are presented in Table 1 for the different
location groups. Charging was considered widely available
in different location types, to represent a situation where
the transportation sector is widely electrified, and thus the
availability of charging points can be assumed high. All the
23 locations and their grouping are presented in Table 10 in
Appendix A.

The responses were divided into weekday and weekend
profiles. The share of active vehicles in each location, includ-
ing driving, at every 1-minute time step are presented in
Fig. 1 for week and weekend days. Notably, the share of
vehicles at home were never below 31.7% and 44.8% during
week and weekend days, respectively. The dashed line in the
figure represents the share of vehicles with available charg-
ing. Moreover, in Fig. 2 the daily driving distance distribution
of the formulated driving profiles is presented for week and
weekend days, for which the average daily driving distances
were 59.7 km and 60.9 km respectively.

To formulate driving profiles over one week, to have
a continuous transfer from weekday to weekend, each of
the weekday vehicle profiles was randomly coupled with a
weekend profile. For this, conditions were that the weekday
profile’s last trip ended in the same location type as the week-
end profile’s first trip began, but if not possible, the profile
was chosen such that the locations were similar in terms
of available charging power. The total number of weekday
profiles were 9744 and weekend profiles 2989.

Furthermore, it is important to note that the values in
the tables and figures in this study refer to the active vehi-
cles, i.e., the ones driven during the survey day. Thus, the
resulting charging profiles from a number of active vehi-
cles should be considered to occur for a larger BEV stock,
which also includes the vehicles that are not driven on a
given day [9]. The share of inactive vehicles can be derived
as in (1) [9],

Inactive share = 1 −

(
dperson·#AdultsFinland

#CarsFinland

)
dactive

≈ 28.1% (1)

where dactive (60.0km) is the mean daily driving distance
of active vehicles and dperson (28.9km) is the daily driving
distance per adult in the NHTS. Also included are the number
of adults (4 429 921 [34]) in Finland and the number of
vehicles in traffic (2 968 860 [35]) in Finland in 2016.

B. ELECTRIC VEHICLE CHARGING PROFILES
Based on the driving profiles, minimum and maximum state
of charge (SoC) levels of each individual BEV battery can
be determined. Previously Zhang et al. [36] have studied
aggregated charging profiles for BEVswith energy and power
boundaries, to model charging and discharging of a large-
scale BEV fleet. This study utilizes some of these same
principles for calculating the minimum and maximum SoC
levels for single BEV battery.

First the minimum (emini ) and maximum (emaxi ) represen-
tations of a BEV battery SoC through time were formulated,
which were used for two purposes: to determine if the BEV
was able to complete the trips assigned to it, and to formulate
two charging profiles, one related to emini and one to emaxi .
These battery SoC levels should be thought as representations
if the BEV would be either charged such that its battery
level through time is as low as possible to complete the trips
assigned to it (emini ), or such that the battery level is as high
as possible (emaxi ). By so, the charging profile related to emini
is one that delays the charging as late as possible, whereas
the one related to emaxi charges immediately. Moreover, they
are levels which can be sustained, and repeated, by the BEV
if its trips over a time period, here a week, remain the
same. Further, by calculating two charging profiles which
either charged immediately or delayed the charging, allowed
the flexibility potential, and thus demand response capacity,
within charging events to be analyzed.

The process of calculating the emini and emaxi , and the
charging profiles is presented in Fig. 3. If the BEVwas unable
to complete its trips based on the NHTS, fast charging events
were added to the profile. However, if the BEV was still
unable to complete its trips, the profile was defined as non-
electrifiable (6.1% of BEVs in the end). The calculations
were performed over a three-week period with 1-minute res-
olution, from which the middle week was considered as an
example week for further analysis. The three-week period
was chosen to obtain a balance where during the middle week
the BEV charged and consumed the same amount of energy.
The process in Fig. 3 is explained in detail in the following
subsections.

1) MINIMUM BATTERY SOC LEVEL FOR A BEV TO
COMPLETE ITS TRIPS
In blocks A.1, A.2, and A.3 in Fig. 3, the minimum bat-
tery SoC level of a BEV required to complete its trips was
determined based on the consumption and location of the
vehicle, and the available charging power. In block A.1 the
location, and available charging power, of the vehicle were
directly as the formulated vehicle profile from the NHTS,
whereas in blocks A.2 and A.3 the location and available
charging power were altered by the addition of stops for fast
charging. However, in all the blocks A.1, A.2, and A.3 the
calculations were completed in a similar manner based on the
input information.
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For each individual BEV (i) the required energy for its
individual trip (j) was calculated as etripi,j in for eachmoment of
departure tdi,j, i.e., the last moment the vehicle was stationary
before a trip, as in (2). There, t is time step, d depict departure,
a depict arrival i.e., the first moment stationary after a trip,
and ci (t) is the consumption of the vehicle. If a later trip had
a large energy demand, or the charging power between the
trips was limited, part, or all, of the energy demand of a later
trip might have to be considered in the energy demand of the
earlier trip. Thus, the total energy demand before each trip
was represented as eneedi,j for each moment of departure tdi,j as
presented in (3-4) and visualized in Fig. 4.

etripi,j =

∑tai,j−1

t=tdi,j+1
ci(t), ∀i, ∀j (2)

eneedi,j = etripi,j , j = J (3)

eneedi,j = etripi,j + emini,j+1

(
tdi,j

)
, j < J (4)

Starting from the last trip, with eneedi,j and the available
charging power for the vehicle pavailablei (t), the minimum
SoC level of the battery, emini,j (t), for each trip for the pre-
ceding timesteps, was determined such that the SoC of the
battery reaches the eneedi,j at tdi,j, as in (5-6), which are a close
resemblance to [36, eq. (6)], and where ηch is the charging
efficiency. In addition, the minimum SoC of the battery dur-
ing the trip was calculated based on the consumption of the
vehicle during the trip as in (7).

emini,j (t) = max

eneedi,j −

tdi,j∑
t=t+1

ηchpavailablei (t), 0

 ,

t < tdi,j (5)

emini,j (t) = eneedi,j , t = tdi,j (6)

emini,j (t) = max
(
emini,j (t − 1) − ci (t) ,0

)
, t > tdi,j (7)

From emini,j (t) for each single trip, the minimum SoC level
of the BEV battery considering all its trips, emini (t), was
determined as the maximum value for each time step of the
individual trips emini,j (t) for the vehicle as in (8).

emini (t) = max(emini,j=1 (t) , . . . ,emini,j=J (t)), ∀t, ∀j (8)

In Fig. 4 an example vehicle profile with two trips is pre-
sented, seen as when pavailablei (t) is zero. Both trips have the
same energy demandwhen considered individually (etripi,j ), but
the charging time between the trips is too short for charging
the total energy demand of the later trip during the stop, and
thus part of the demand must be considered in the energy
demand of the earlier trip. Hence, the eneedi,J−1, for the earlier

trip, is greater than etripi,J−1, by e
min
i,J

(
tdi,J−1

)
. For the later trip

eneedi,J = etripi,J . The minimum SoC levels of each of the trips
which reach their energy demands eneedi,j at tdi,j are presented
in green and yellow in the figure. In addition, it shows how

FIGURE 3. The process of calculating the minimum, emin
i , and maximum,

emax
i , levels of battery SoC to complete the trips by a vehicle profile, and

the related two charging profiles. SoCmax
i refers to the battery capacity,∑

ci to the daily energy consumption,
∑

ηchpavailable
i to the possible

daily charged energy, and ηch is the charging efficiency. If the driving
profile, formed from the survey data, was unable to be completed by the
BEV, fast charging stops were added by two occasions, after which the
profile was either defined as electrifiable or non-electrifiable.

the later trip’s energy demand emini,J

(
tdi,J−1

)
is added to the

previous trip’s energy demand at tdi,J−1. The minimum level
of the battery SoC of the BEV, which considers all the trips,
is presented in blue and the maximum SoC in red, which is
defined in Section II-B-III.
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2) CHARGING EVENTS FOR FAST CHARGING
If the minimum SOC level for the BEV, emini (t), to com-
plete all its trips, as calculated in block A.1 in Fig. 3, was
greater than the maximum available capacity of the BEV
battery SoCmax

i , or the charging was not realizable, that is,
the possible energy charged daily was less than the daily
consumption, fast charging stops were added to the driving
profiles. First, they were added to trips which consumption
was greater than SoCmax

i , in block B in Fig 3. These stops
were added by modifying the location data of the vehicle
profiles such that the departure times of the trips in question
were moved earlier, and the arrival times were not altered.
The energy demand for fast charging was determined as the
energy demand of the trip, reduced by the possible charge
in the battery at the beginning of the trip, based on the past
24 hours. After the BEVs location profile was altered, the
emini (t), was recalculated as in (2-8). If the emini (t) remained
greater than the BEV’s battery capacity, or there were no
single trips with greater energy consumption than it, fast
charging stops were added considering the too high energy
demand due tomultiple consecutive trips, in block C in Fig. 3.
Now the energy demand for fast charging was determined
as the lack of possible charging during days where the BEV
consumed more than it charged. For these days, fast charging
stops were added to the trip with the highest consumption,
and the emini (t) recalculated with the altered vehicle location
profile. In addition, conditions for adding the fast charging
stops were that the duration that the BEV was stationary
before the trip where fast charging was added must be longer
than the duration for fast charging, and the last fast charging
event must end 15 minutes before the trip’s arrival time.

3) CHARGING PROFILES FOR ELECTRIC VEHICLES
For the vehicles which driving profiles were electrifiable,
the maximum level of the BEV battery SoC emaxi (t) was
determined as in (9-10), which are a close resemblance of
[36, eq. (5)]. The emaxi (t) was assumed to begin from the
maximum battery capacity at the beginning of the three-week
period and then represent a level of a battery which is charged
immediately at every opportunity.

emaxi (t) = min(emaxi (t − 1) + ηchpavailablei (t) − ci,j (t) ,

SoCmaxi ),t> 1 (9)

emaxi (t) = SoCmaxi , t = 1 (10)

Moreover, two charging scenarios were determined
which followed either emini (t) or emaxi (t). As described in
Section II-B, emini (t) reached the required charge at the
moment of departure for a trip. Thus, a charging profile
related to emini (t) resulted in one which delayed the charging
as late as possible, formally pdelayedi (t), as presented in (11).
Likewise, emaxi (t) resulted in a situation where the BEV was
charged immediately after a trip. Thus, the charging profile
related to emaxi (t), pimmediatei (t), was defined as in (12). Impor-
tantly, both charging profiles pdelayedi (t) and pimmediatei (t)
charged the same amount as the BEV consumed over the

FIGURE 4. The formulation of the minimum and maximum battery SoC
levels for a single BEV (i) with two trips (j) with limited charging time
between them.

example week, i.e., themiddle week of the three-week period.
The difference in charged amounts of energy was then during
single stops, but as the trips occurred in repetitive manner,
in total the profiles charged the same amount. Thus, it can be
considered that these profiles change the time of charging but
not the amount, when considering the example week.

The two charging profiles were formed as described in
(11) and (12) for the example week. As the calculations
were conducted with a 1-minute interval, time steps between
10081 and 20160 were considered, i.e., from Monday to
Sunday of the middle week of the three-week period. The
consumption was added since during trips both the emini (t)
and emaxi (t) decreased and thus the charging profiles would
have been otherwise negative for these moments, whereas
now they are zero.

pdelayedi (t) = emini (t) − emini (t − 1) + ci,j (t) ,

10081 ≤ t ≤ 20160 (11)

pimmediatei (t) = emaxi (t) − emaxi (t − 1) + ci,j (t) ,

10081 ≤ t ≤ 20160 (12)

C. OTHER PARAMETERS CONSIDERED FOR
CHARGING PROFILES
Electric vehicles’ energy consumption rate, ECR, depends on
several parameters, of which two major ones were considered
in this study. These were the vehicle driving speed and the
ambient temperature (T amb), as their effect on the ECR is
well studied in the existing literature. The effect of the driving
speed was based on the studies presented in Table 2, from
which a mean consumption rate, kWh/km, was determined
from 10 km/h to 120 km/h.

The effect of the ambient temperature on the ECR was
based on the studies presented in Table 3. The lowest con-
sumption was in general determined to occur when the
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FIGURE 5. Electric vehicle energy consumption rate in terms of vehicle
driving speed and ambient temperature, based on the mean values
presented in Table 2 and Table 3 [13], [24], [37], [38], [39], [40], [44], [45],
[46], [47].

ambient temperature was approximately 20◦C, and thus it
was chosen as the base value for which the other temperatures
were compared to. This is also visible in Table 3, except
for [37] where the consumption was lowest for 25◦C. For
the values in Table 3, which required conversion from the
original studies, the original values are presented in Table 11
in Appendix A. Moreover, as presented in Table 3, the ECR
increases when the temperature decreases, and may double at
temperatures of −15◦C and −20◦C. This is due to increased
cabin and battery heating [13], [37], [38], [39], [40], output
energy losses [40], efficiency of regenerative braking [38],
and increased air density [40]. Similarly with higher than
20◦C temperatures, the ECR increases due to cabin and bat-
tery cooling needs [13], [39].
The BEV energy consumption rate for each of its trips was

calculated such that the consumption rate based on the BEV’s
driving speed during the trip, from Table 2, was multiplied
by the relative energy consumption rate based on the ambient
temperature, from Table 3. For both, the mean values pre-
sented in Tables 2 and 3 were used, which were considered
to represent well the generic ECR of a large-scale BEV
fleet. Moreover, these energy consumption rates, considering
both the vehicle driving speed and ambient temperature are
presented in Fig. 5.

The consumption was examined with a typical summer
(15◦C) and winter (−5◦C) temperatures in Finland, based on
the monthly mean temperatures from 1991-2020, in the four
climate zones in Finland [41], [42], which were weighted by
the number of registered vehicles [43] in 2020, with minor

FIGURE 6. Cumulative share of electric vehicle’s tank-to-wheel energy
consumption during a week and weekend day.

effect, for each climate zone and rounded to the closest
5 degree Celsius. These are presented in Table 4. Moreover, a
−20◦C scenario was added to examine the charging profiles
with very low temperature, as then the whole energy system
is often under heavy loading. Between 2010-2020 there were
on, vehicle weighted by the climate zones, average 118 hours
annually, when the temperature in Finland was −20◦C or
lower [48].
Vehicle battery capacities chosen for this study are pre-

sented in Table 5. Of the battery capacity 80% was assumed
to be possible to be operated in the analysis in Section II-B
similar to [9]. In addition, three different capacities for the
vehicle batteries were assumed, depending on the daily dis-
tance driven, thus assuming that a driver travelling longer
distances would prefer a vehicle with higher battery capacity.
Moreover, the charging was assumed linear, with an effi-
ciency of 90%, as in [24] and [49].

III. RESULTS
In the following subsections the results for the charging
profiles are presented for the three different temperatures
(15◦C,−5◦C, and−20◦C) and for the three different charging
power scenarios (Low, Medium, and High). The results are
presented for active vehicles which were electrifiable in every
scenario. The share of electrifiable vehicles was 88.6% with-
out fast charging, and 93.9% with fast charging. Moreover,
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TABLE 2. Electric vehicle energy consumption rate (kWh/km) in terms of vehicle driving speed (km/h).

TABLE 3. Electric vehicle relative energy consumption rate, compared to 20◦C, in terms of ambient temperature.

TABLE 4. Mean monthly temperature from 1991-2020 [42] for each climate zone in Finland [41] and their weighted mean by the number of registered
light vehicles in each climate zone in 2020 [43].

TABLE 5. Electric vehicle battery capacity based on the daily driving
distance.

the mean and standard deviation of the weekly time series for
the charging load profiles, considering all the scenarios, are
presented Appendix C in Table 12 and Table 13.

A. CHARGING PROFILES
The daily tank-to-wheel energy consumption of the BEVs
by different temperatures are presented in Fig. 6 for week
and weekend days. Notably, even with ambient temperature
of −20◦C, nearly half of the BEVs consumed 10 kWh or
less, and close to 80% 20 kWh or less, daily. To be pre-
cise, the mean daily energy consumptions during a weekday
(and weekend) were 8.2 (7.9), 12.7 (12.2), and 15.9 (15.3)
kWh with 15◦C, −5◦C, and −20◦C respectively. Moreover,
the mean distance driven by BEVs were 51.2 km dur-
ing weekdays and 49.1 km on weekends. Thus, the mean
ECR of the vehicles during a weekday (and weekend) were
16.1 (16.1), 24.8 (24.8), and 31.1 (31.2) kWh per 100 km,
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FIGURE 7. The hourly mean charging load for the pimmediate and pdelayed charging profiles for each week and weekend day with ambient
temperature of −20◦C and charging power scenario Low. Note that some of the lines have a slightly wider linewidth for better visibility.
Moreover, all except Monday for pimmediate are approximately on top each other, and likewise for all except Friday for pdelayed .

FIGURE 8. Hourly mean charging load, as lines, with varying ambient temperature and available charging power with pimmediate charging
profile. The shaded areas represent the minimum and maximum 1-minute values (in kW) within each hour for each temperature
considering all the CPSs.

for 15◦C, −5◦C, and −20◦C respectively. As presented in
Section II-B-III, two charging profiles were formed for the
BEVs: pimmediate and pdelayed .

The hourly mean charging for both profiles are pre-
sented for each weekday and for Saturday and Sunday in
Fig. 7. Although all weekdays used the same vehicle location
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TABLE 6. Hourly mean peak charging load (kWh/h), the 1-minute mean peak load (kW), and the share of BEVs (%) charging simultaneously during the
peak hour by ambient temperature and CPS.

FIGURE 9. Normalized hourly mean charging in different locations during a mean week and weekend day. For each location, the shaded areas delimit the
area in between which all the normalized values considering all the scenarios (temperature and CPS) fit into. Note, that both week and weekend days
were normalized separately.

TABLE 7. Highest share of BEVs, from total, simultaneously charging at a location (CH) as %, and the summed 1-minute peak powers (Ppeak) in kW for
pimmediate in the locations, divided by the total number of BEVs.

profiles, there were minor differences between Monday and
the rest of the weekdays for pimmediate due to the proximity
of the weekend. Similarly for Saturday and Sunday. The

profiles in Fig. 7 are presented for −20◦C and CPS Low,
as for it the summed absolute difference over a day between
Monday and the rest of the weekdays, and between Saturday
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TABLE 8. Highest share of BEVs from total BEVs simultaneously at a location (%) and the share of BEVs visiting a location during a day (%).

TABLE 9. Coincidence factors per location by ambient temperature and charging power scenario.

and Sunday, was the largest. From the figure the difference
of the two profiles is clearly visible; the pimmediate charges
immediately after arrival, seen e.g. during weekdays as a peak
after arriving to home fromwork in the afternoon, whereas the
pdelayed delays the charging as late as possible, seen e.g., as a
peak before the departure from home to work during weekday
mornings. Moreover, the charging profiles in Fig. 7, and all
the consequent figures and tables, present the results from the
grid’s point of view, i.e., considering the charging efficiency
of 90%.

In Fig. 8 the hourly mean charging load for pimmediate is
presented for the different ambient temperatures and charg-
ing power scenarios. The immediate charging profile was
considered as the one, from the two, which the majority of
BEV users would follow, since it assumed that the BEVs
were charged when plugged in, whereas the delayed charging
profile would require the drivers to time the charging exactly
such that the vehicles would be charged as late as possible.
This was considered unlikely, especially for charging which
does not occur at home. That is, the pimmediate charging profile
corresponds to an uncontrolled charging profile. Neverthe-
less, the corresponding figure for pdelayed is presented in
Fig. 14 in Appendix B.
In addition to the hourly mean charging loads, presented

as lines in Fig. 8, the maximum and minimum 1-minute
power values within each hour are presented as the shaded
areas in Fig. 8. These 1-minute values consider all the CPSs
for each temperature. Moreover, in Table 6 the hourly mean
peak charging load (kWh/h), for each scenario, is presented
together with the mean peak 1-minute load (kW) within that
peak hour. Overall, the mean charging load remained low
compared to the available charging power, since the majority
of BEVs did not charge simultaneously. This is highlighted in
Table 6, where the shares of BEVs charging simultaneously

FIGURE 10. Normalized mean and standard deviation (SD) of a composite
charging load by the number of groups (n) , representing electric vehicles
with charging distributions, considered. Mean weekday with −5◦C and
CPS medium.

during the peak hours are presented. Furthermore, in Fig. 8,
with lower available charging power the charging profiles
were more even, whereas with higher available charging
power there were larger differences between the peaks and
valleys of charging.

In Fig. 9 the hourly normalized mean charging in different
charging locations, for the pimmediate charging profile, are
presented for a mean week and weekend day. The shaded
areas in the figure, per location, delimit the area in between
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FIGURE 11. The share of standard deviation of a composite load (σ ) compared to mean of a composite load (m) of the same hour by number of
BEVs considered in a) and b). In c) and d) the share of composite SD to the composite mean of the peak hour during the day, by number of BEVs
considered. Crosses represent the shares during peak hours. The shares are presented with bars in which all the hourly shares of the scenario
fit into.

which all the normalized values, considering all the scenarios
(temperatures and CPSs) fit into. During weekdays the peak
in the morning is almost fully due to charging at work, and the
peak in the afternoon largely due to charging at home. In the
rest of the locations the charging load was significantly lower,
and from them shopping and errands presented the highest
charging load. Moreover, for fast charging the difference
between the scenarios was considerable, seen as high vertical
difference of the corresponding shaded area, as the number of
BEVs required to utilize fast charging varied by temperature
and CPS. During weekends, home charging dominated, and

charging at relatives & friends and shopping & errands were
the second and third most charged locations. Furthermore,
also fast charging was notable with high variation.

B. COINCIDENCE OF CHARGING IN CHARGING
LOCATIONS
For energy system operation and planning, and especially
for grid planning, the simultaneity of charging is highly
important. By knowing the share of vehicles which charge
simultaneously and the peak charging power, the requirement
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FIGURE 12. Flexibility within charging events represented as charging which can at most be shifted from start hour to end hour, as percentage of energy
charged during a day with ambient temperature of −5◦C. Monday to Thursday presented as a mean value of the respective days as they were nearly
identical.

for the supply of charging power can be determined such
that the charging demand can be fulfilled. In Table 7 the
mean 1-minute peak powers, in kW, in the different charging
locations are presented by ambient temperature and available
charging power in the location. The mean peak powers were
derived such that the summed peak powers for all the BEVs
by location were divided by the total number of BEVs. Thus,
the values in Table 7 are small for locations where the number
of vehicles which charged in the location was low. Moreover,
in Table 7 the maximum share of vehicles, from all BEVs,
which charged simultaneously at each location is presented.
These shares remained on a low level, and the highest share of
BEVs charging in a particular location, 27.5%, was at home
with −20◦C and CPS Low.
The highest share of BEVs, which were simultaneously at

a location, and the share of which visited a location during
a week and weekend day, are presented in Table 8. From
the values in Tables 7 and 8, the coincidence factors of

the charging load per location type can be determined by
temperature and CPS. In general, the coincidence factor is
determined such that the peak power of a sum of loads is
divided by the sum of individual peak loads. Here the summed
peak load was as presented in Table 7, and the summed indi-
vidual peak load was determined as share of BEVs visiting a
location during a day times the available charging power in
that location. The coincidence factors for each location are
presented in Table 9. The available charging power affected
the coincidence factors the most, as with a lower CPS they
were the highest. Moreover, for lower ambient temperature,
i.e., higher consumption, the coincidence factors increased.
Furthermore, the factors were the highest for charging at
work, at hotel, and at home.

C. DEVIATION OF CHARGING
As presented previously, the coincidence of charging
remained rather low, and such did the mean charging loads
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FIGURE 13. Share of charged energy, in the pimmediate charging profile, during hours 15 to 21 which could be shifted at most to the following hours
within charging events, presented for each evening hour. The shaded areas delimit the area in between which all the scenarios considering the ambient
temperatures of 15◦C, −5◦C, and −20◦C for each CPS fit into. Mon-Thu presents the mean values from Mondays to Thursdays. Note that hours from 1 to
20 refer to the next day from the header. For example, hour 2 on the Fri CPS Low graph refers to hour 2 on Saturday morning.

compared to the available charging power. Thus, the deviation
of individual charging loads from the mean load was high.
To analyze the standard deviation (SD) of a composite load
of different number of BEVs, the BEVs were divided into
groups which represented an electric vehicle as a variable
with a distribution of charging for each hour. In other words,
the total BEVs N were divided into n groups, with N/n
BEVs in each group, and the BEVs in a group formed the
distribution of charging for the group, which represented an
electric vehicle. For these groups, the composite load mean
(m) and standard deviation (σ ) were calculated as in (13) and
(14) [50], where mk and σk are the mean and SD of a single
group of BEVs and ρk,l the correlation between two groups.
In them, k and l represent the groups of vehicles. In Fig. 10,
an example is given where the normalized composite mean
and standard deviations are presented for different number of
vehicles considered (n), represented by the aforementioned

groups. There the absolute SD is the highest during the
peak hour, but compared to the mean, the lowest. Moreover,
in Fig. 10, the normalized mean was the same for all n,
whereas the non-normalized mean, for example, for n = 100
was tenfold compared to n = 10.

m =

∑n

k=1
mk (13)

σ 2
=

∑n

k=1

∑n

l=1
σkσlρk,l (14)

The mean and SD for a composite load were calculated
for each scenario and the results presented in Fig. 11.
In Fig. 11 a) and b) the share of composite SD to the com-
posite mean of the same hour, by the number of vehicles, n,
considered is displayed. In addition, as this share varied
for every hour, as in Fig. 10, for each scenario the share
is presented with a bar in which all the hourly shares fit
into. Furthermore, the shares during peak hours are presented
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FIGURE 14. Hourly mean charging load, as lines, with varying ambient temperature and available charging power with pdelayed charging profile. The
shaded areas represent the minimum and maximum 1-minute values within each hour for each temperature considering all the CPSs.

TABLE 10. The grouping of all possible type locations as in the national
household travel survey into groups of locations used in this study.

with crosses, and they represent the lowest values for each
scenario. In Fig. 11 c) and d) the share of composite SD
to the composite mean of the peak hour during the day
is presented, by number of vehicles considered. Again, for
each scenario, the share is presented with a bar in which all

the hourly shares fit into, and crosses represent the values
during the peak hours. The peak hour values were in c) and
d) almost always the highest values presented by the bars,
but if not, nearly the highest. This means that during some
hour (often +1h or −1h to the peak hour) the absolute SD
was greater than during the peak hour. Moreover, the shares
in c) and d) were significantly lower, compared to the ones in
a) and b), highlighting that the composite SD at every hour
was low compared to the composite mean of the peak hour.
For both comparisons the shares decreased significantly as
the number of vehicles increased, and for 1000 BEVs, when
comparing to the peak hours in c) and d), the highest shares
for CPS High were 0.069, 0.064, and 0.060 for 15◦C, −5◦C,
and −20◦C, respectively. The values in Fig. 11 considered a
mean weekday as then the peak power was the greatest. For
attaining the SD of a composite load, the correlations between
groups of BEVs were determined, which were greater for
groups with small amounts of BEVs, but always lower than
0.021 and greater than −0.019.

D. FLEXIBILITY OF CHARGING WITHIN
CHARGING EVENTS
As the pimmediate charging profile charged immediately after
arrival, it was possible to determine the charging which could
be shifted within each charging event. This is visualized by
matrixes in Fig. 12, where the mean amount of charging
that could be shifted from ‘Start hour’ i.e., from hour where
the charging would occur in pimmediate, to ‘End hour’, which
represents the last hour where the charging could be shifted.

VOLUME 11, 2023 114305



I. Jokinen, M. Lehtonen: Modeling of EV Charging Demand and Coincidence of Large-Scale Charging Loads

TABLE 11. Electric vehicle energy consumption rate (ECR) in terms of ambient temperature. Original values and the conversion to relative values, which
are presented in Table 3 in Section II-C.

FIGURE 15. Flexibility within charging events represented as charging which can at most be shifted from start hour to end hour,
as percentage of energy charged during a day with ambient temperature of 15◦C. Monday to Thursday presented as a mean value of the
respective days as they were nearly identical.

Thus, these amounts represent the flexibility of charg-
ing within charging events. In other words, they must be
charged between the ‘Start’ and ‘End’ hours. The values in

the matrixes in Fig. 12 represent the share of the daily charged
energy duringMonday to Thursday (mean), Friday, Saturday,
and Sunday, with ambient temperature of−5◦C for each CPS.
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FIGURE 16. Flexibility within charging events represented as charging which can at most be shifted from start hour to end hour, as percentage of energy
charged during a day with ambient temperature of −20◦C. Monday to Thursday presented as a mean value of the respective days as they were nearly
identical.

Corresponding figures for 15◦C and −20◦C are presented
in Appendix [DCLseclabel9]B in Fig. 15 and 16. In Fig. 12
several clusters can be identified:

� Non-shiftable charging on the diagonal
� Charging which could be shifted a few hours forward as
data points just above the diagonal

� Shiftable charging during common office hours from
morning to afternoon on Monday to Friday

� Shiftable charging during night, i.e., from afternoon and
evening to morning on all days

Moreover, and unsurprisingly, when the following day is a
weekday, e.g. on Sunday, the shiftable charging overnight
must be charged earlier compared to when the following
day is a weekend day. In addition, with higher available
charging power the clusters identified were slightly more
concentrated and the non-shiftable charging during the night
decreased.

The peak BEV charging load, with the pimmediate charging
profile, occurred during the evening hours, which is when
there usually is higher power demand in the rest of the energy
system too. Thus, from Fig. 12 the share of charging during
peak hours which could be shifted forward can be further
examined. In Fig. 13, the share of charged energy during the
evening peak hours, from 15 to 21, which could be shifted
at most to the following hours, is presented for each of the
evening hours. The shaded areas delimit the area in between
which all the scenarios considering the ambient temperatures
for eachCPSfit into. Thus, it includes data presented for 15◦C
in Fig. 15 and −20◦C in Fig. 16 in Appendix B. For example,
from Fig. 13 it can be determined that during Mondays to
Thursdays, from hour 16 with CPS medium, approximately
75% of the charged energy can be shifted to hour 17, 50% to
hour 2 the next day, and 30% to hour 7 the next day.Moreover,
in Fig. 13. it is further visible that when the following day
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TABLE 12. Mean and standard deviation (SD) of pimmediate charging profile over the example week with 1-hour resolution by ambient temperature and
charging power scenario Low (L), Medium (M), and High (H).
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TABLE 12. (Continued.) Mean and standard deviation (SD) of pimmediate charging profile over the example week with 1-hour resolution by ambient
temperature and charging power scenario Low (L), Medium (M), and High (H).
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TABLE 12. (Continued.) Mean and standard deviation (SD) of pimmediate charging profile over the example week with 1-hour resolution by ambient
temperature and charging power scenario Low (L), Medium (M), and High (H).

is a weekend day the charging can be shifted to a later hour
overnight. In addition, with higher available charging power
a slightly larger part of the charging could be shifted closer
to the ‘End’ hour.

IV. DISCUSSION AND CONCLUSION
In this study, the charging of a large-scale BEV fleet was ana-
lyzed in terms of ambient temperature and available charging
power. Moreover, the coincidence of charging was examined,
with the coincidence factor, in different charging locations,
together with the possible flexibility of charging within
charging events, and the deviation of the charging load. The
examination included a very low ambient temperature of
−20◦C, to provide knowledge of conditions when the energy
system is often as a whole under heavy loading. The results
show that with higher available charging power the peaks of
charging increased, and the valleys became deeper. Whereas
with lower charging power the charging demand was more
even. With higher ambient temperature the BEVs con-
sumed, and consequently charged, less, compared to low
ambient temperature, including during the peak hours. More-
over, the maximum hourly mean charging load increased to
1.80 kWh/h, with −20◦C and CPS High, whereas the peak

1-minute load within that hour, and same scenario, reached
2.03 kW. Furthermore, compared to previous studies, the
charging profiles presented in this study were in the same
order of magnitude as in studies [11] and [24].

The coincidence of charging increasedwith lower available
charging power and lower ambient temperature. By loca-
tion type, the highest coincidence factors were at workplace,
at hotel, and at home. However, the factors were never
above 0.438 (workplace), which reflects that in a large-scale
BEV fleet the simultaneity of charging is rather low, even
with ambient temperature of −20◦C. However, as presented
in Fig. 10 and Fig. 11 the standard deviation of charging
was considerable for a small number of BEVs. Thus, when
considering e.g., a single location with a small number of
BEVs, the deviation of charging would be high, and such the
coincidence of charging could be too. Compared to previous
studies, which included a large number of EVs [28], [32]
similar effects were observed for a change in the available
charging power; the coincidence factor decreased with higher
available charging power. Moreover, the magnitude of the
coincidence factors, for large number of EVs were in the
range of 0.07 – 0.45 in studies [28], [29], [30], [31] which are
comparable to the coincidence factors presented this study.
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TABLE 13. Mean and standard deviation (SD) of pdelayed charging profile over the example week with 1-hour resolution by ambient temperature and
charging power scenario Low (L), Medium (M), and High (H).
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TABLE 13. (Continued.) Mean and standard deviation (SD) of pdelayed charging profile over the example week with 1-hour resolution by ambient
temperature and charging power scenario Low (L), Medium (M), and High (H).
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TABLE 13. (Continued.) Mean and standard deviation (SD) of pdelayed charging profile over the example week with 1-hour resolution by ambient
temperature and charging power scenario Low (L), Medium (M), and High (H).

Although keeping in mind, that here the factors were pre-
sented per location type, which had a large effect on the
factors. However, as near all BEVs in this study visited the
location ‘Home’, especially the coincidence factors for it,
presented a reasonably close comparison, and results, to the
previous studies. The driving profiles formed in this study
were based on travel survey data of 12 773 responses, with
40 321 trips, and thus the profiles can be considered to repre-
sent well the average passenger vehicle driving behavior.

However, no analysis was conducted weather the driving
patterns of BEVs would differ from the driving patterns of
vehicles with internal combustion engines (ICEs), which can
be assumed that the majority of the respondents in the travel
survey, conducted in 2016, used. Instead, the underlying
assumption was that the BEVs would be preferred to be used
similarly to ICE vehicles, to satisfy the travelling patterns of
the respondents. In addition, charging was assumed widely
available in this study, to represent a situation where the
transport sector is widely electrified, and thus the availability
of charging can be assumed high. Moreover, the temperature
and driving speed dependence of the BEV consumption, was
based on several studies, instead of particular BEV models,
which was considered better to describe the average con-
sumption of a large-scale BEV fleet. However, the energy

consumption rate of BEVs, based on ambient temperature
(Table 3), had high variation for the very low temperature
of −20◦C, and hence included some uncertainty. In addi-
tion, some of the studies considered were already a couple
years old, and thus due to technological advancements, the
rates presented can be rather considered pessimistic than
optimistic.

The share of electrifiable vehicles after fast charging was
93.9%. Themethod for adding the fast-charging events can be
considered rather simple, and by allowing either the addition
of further stops or to alter the consecutive trips of the vehicle
profiles together, the share of electrifiable vehicles could be
increased. However, these would either increase the compu-
tational burden or, in the case of altering the profiles further,
assume a change in the driving behavior of the driver, which
was beyond the scope of this study. In addition, regardless of
fast charging or not, the driving profiles were fixed, which
is inherent when using DUOATS type modeling, and thus
effects of e.g., EV policy changes are not possible to be
conducted. Moreover, utilizing the results for a small number
of BEVs includes uncertainties, due to high variation of
charging for individual BEVs, whereas for analyses includ-
ing a large number of BEVs, the results should represent
the charging behavior well. These analyses could include
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generation planning, power system security of supply, and
grid expansion planning, to include e.g., a new district which
includes certain types of charging locations.

For future studies, the timing of charging could bemodeled
based on external parameters, such as the price of electricity,
which could also affect the coincidence of charging. Further-
more, the flexibility of charging, including vehicle-to-grid,
could be modeled. In addition, the effects of the charging load
to a complete energy system could be analyzed.

APPENDIX A
GROUPING OF LOCATION TYPES
In Table 10 the grouping of all locations available for the
respondents in the national household travel survey is pre-
sented.

In Table 11 the original values are presented for the studies
which required conversion from them to the relative values
presented in Table 3 in Section II-C. Moreover, the conver-
sion is presented in the column with ‘calculated as’ heading.
Study [37] studied maximum range of two vehicles which are
both presented in table 11, together with the mean value of
them, which was utilized in this study.

APPENDIX B
ADDITIONAL FIGURES
See Figs. 14–16.

APPENDIX C
TIME SERIES FOR CHARGING PROFILES
The Tables 12 and 13 present the hourly mean and standard
deviation of weekly charging loads for the pimmediate and
pdelayed charging profiles considering the ambient temper-
atures of 15◦C, −5◦C, and −20◦C, and the three charging
power scenarios.
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