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ABSTRACT Emotion recognition based on EEG has been implemented in numerous studies. In most of
them, there are two observations made: first, extensive implementation is negatively associated with the
performed validation. Cross-subject validation is more difficult than subject-dependent validation due to
the high variability between EEG recordings caused by domain shifts. Second, a large number of channels
requires extensive computation. Efforts to reduce channels are impeded by decreased performance as the
number of channels is decreased; therefore, an effective approach for reducing channels is required to
maintain performance. In this paper, we propose collaboration on 2D EEG input in the form of scalograms,
CNN, and channel selection based on power spectral density ratios coupled with the relief method. The
power ratio is derived from the power band’s power spectral density. Based on the trial selection with
various conditions, the collaboration of the proposed scalogram and PR-Relief (power ratio-Relief) produced
a stable classification rate. For analysis, the Database for Emotion Analysis of Physiological Signals
(DEAP) has been employed. Experimental results indicate that the proposed method increases the accuracy
of cross-subject emotion recognition using 10 channels by 2.71% for valence and 1.96% for arousal,
respectively. Using 10 channels for subject-dependent validation, the efficacy of the valence and arousal
classes increased by 2.41% and 1.2%, respectively. Consequently, by pursuing collaboration between input
interpretation and stable channel selection methods, the proposed collaborative method achieves a better
result.

INDEX TERMS Channel selection, emotion recognition, validation, cross-subject, scalogram.

I. INTRODUCTION
Emotion recognition is an affective computing research that
is actively researched. Several studies have employed facial
expressions [1], [2], voices [3], [4], body gestures [1], and
brain signals [5] to identify emotions. EEG is an instrument
for measuring the activity of brain signals [6], [7]. EEG
emotion recognition is a valid psychological signal for emo-
tion recognition [8], [9]. EEG has been utilized in numerous
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disciplines, including medicine, psychology, education, mar-
keting, law, and transportation, among others [10], [11], [12],
[13], [14], [15], [16], [17]. Extensive EEG usage is negatively
associated with anticipated validation. EEG signal validation
is predominantly intra-subject or dependent subjects. Inter-
subject or cross-subject validation is one of the most difficult
aspects of emotion recognition [18], [19], [20]. This type
of emotion recognition is extremely unpredictable due to
domain shifts between EEG recordings [21], [22], [23], [24],
[25]. In addition to variability, there is a propensity to utilize
EEG channels that are sufficiently large to maintain the same
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level of performance regardless of the cost of computation
[26], [27], [28], [29], [30], [31], [32]. Methods for channel
selection or reduction are required to achieve competitive
performance with less computation.

Several ways have been proposed and intensively
researched for EEG classification. First, transforming 1D
EEG into 2D or 3D form to strengthen the use of deep
learning. The use of 2D or 3D forms of EEG facilitates the
interpretation of signal analysis and the use of deep learning
methods [33]. Several previous studies obtained the best
cross-subject validation results using 2D EEG interpretation
[26], [27], [29]. Second, the channel selection method is
used to find significant information and reduce computation
[26], [30]. Cross-subject channel selection methods are more
limited as compared to independent subjects [26]. Third, the
use of deep learning to strengthen classification validation
[34], [35], [36].

In most of the existing research, several common prob-
lems have been observed which are critical to be addressed
to advance the emotion recognition field. Firstly, in cross-
subject classification, limitations arise from the variability
in channel selection across different subjects [22], [37],
[38]. In dependent subject scenarios, the optimal EEG chan-
nels for emotion analysis can differ significantly from one
individual to another, making it challenging to establish a
universal channel selection strategy that applies consistently
across multiple subjects [39]. As a result, studies including
cross-subject validation using channel reduction are rare [26].
Secondly, existing channel selection approaches often rely
on heuristic methods or feature ranking techniques, which
may not fully capture the intricate relationships between EEG
channels and emotional states. These methods may also over-
look non-linear dependencies and inter-channel interactions
that could be vital for accurate classification [40]. Thirdly,
Convert 1D EEG signals to 2D or 3D EEG. Several inves-
tigations, such as transforming 1D EEG data to Pearson’s
Correlation Coefficient images of channel correlation of EEG
sub-bands, have been conducted [41], transform 1D EEG
to gray image with six level [42], scalogram images [28],
spectrogram images [26], [27], [43], Transformation of 1D
EEG to spectrogram images offers the greatest performance,
especially for cross-subject validation [26], [27]. Conven-
tional deep learning techniques applied to Short-Time Fourier
Transform (STFT)-based 2D representations of EEG data
may not exploit the full potential of the data and can reside on
very large computational resources [26], [27]. In addition, the
wavelet-transform, which produces 2D image scalograms,
has been studied, but its performance is unsatisfactory [28].
In the domain of emotion recognition using EEG data,

a critical challenge lies in optimizing classification accuracy
while mitigating computational complexity. Currently, the
reliance on transfer learning with pre-trained models, such
as DenseNets or ResNets or CNN with deep layer, applied
to all EEG channels necessitates substantial computational
resources. Such approaches have been successful in attaining
a higher classification rate of over 99 percent in dependent

subject cases [44], [45], while other accuracies remain limited
to 78 – 92 percent in the case of cross-subject [26], [27],
[29] while exploring the DEAP dataset. Despite attaining
satisfactory outcomes, these approaches overlook the inher-
ent variability in optimal channel selection across different
individuals in cross-subject classification scenarios. Within
subjects, EEG channels that are most relevant for emotion
analysis can significantly differ, rendering a universal chan-
nel selection strategy impractical. To address these issues,
there is a compelling need to explore simplified CNN archi-
tectures tailored to EEG data. These architectures should
be complemented by novel channel selection approaches
capable of enhancing cross-subject classification accuracy,
thereby reducing computational demands and improving the
efficiency of emotion recognition systems. These limitations
have helped develop the motivation for this work which is
centering around the following:

i. A need to explore further deep learning architectures
under various 2D image generation techniques still
exists apart from using transfer learning STFT images,
and scalogram with low performance.

ii. The channel selection method for classifying cross-
subject emotions is still limited in comparison to
dependent subject emotion classification.

iii. There is a need to combine cross-subject channel selec-
tion methods with simplified deep learning architecture
and image generation methods to reduce the computa-
tional load and enhance performance.

Considering the gaps identified above and the listed motiva-
tional factors, this study aims to contribute to the knowledge
base as follows:

The research aims to overcome the highlighted challenges
and limitations by contributing as follows:

A. IMPROVED CROSS-SUBJECT CHANNEL SELECTION
The research introduces an advanced channel selection
approach for cross-subject emotion classification, leverag-
ing power bands and ratios to enhance the Relief method.
By selecting the most relevant EEG channels that capture
emotional patterns consistently across different individuals,
we address the challenge of variability in channel selection,
improving the generalizability and efficiency of emotion
recognition models.

B. EXPLORATION OF MORLET TRANSFORM IMAGES
The study explores an innovative approach to generating
2D images from EEG data using the Morlet Transform
(scalogram). In contrast to conventional Short-Time Fourier
Transform (STFT) methods, Morlet Transform images offer
a new perspective on feature extraction, potentially reveal-
ing intricate temporal and spectral information crucial for
accurate emotion classification. This exploration expands the
repertoire of image-based EEG analysis techniques. In addi-
tion, the wavelet family has been exploited for improved
performance to existing research.
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C. SIMPLIFIED DEEP LEARNING MODEL
To reduce computational cost while maintaining classifi-
cation accuracy, this research introduces a simplified deep
learning architecture tailored to EEG emotion recognition
tasks. The architecture had been added in our recent publi-
cation also [26] yet tailored for spectrogram images. Instead
of relying on resource-intensive transfer learning models, our
approach optimizes model efficiency, making it more com-
putationally friendly or resource-constrained applications.
This contribution aims to streamline the implementation of
emotion recognition systems without compromising perfor-
mance.

The proposed research is based on a simplified deep learn-
ing architecture and channel selection approach that leads
towards closer and resource-constrained real-time implemen-
tation. In addition, research for cross-subject validation is
more likely to be implemented widely than dependent subject
validation. Cross-subject validation has a better generaliza-
tion model than dependent-subject validation. This makes
this research applicable across a wide range of industries
where emotion recognition enables the development of inter-
active applications such as content delivery, personalized
experiences, and enhanced security. In healthcare, for exam-
ple, determining a patient’s emotional state using wearable
devices in real-time can help in the early diagnosis of vari-
ous problems related to stress and mental health. Likewise,
in the automotive sector, human-machine interaction can be
improved, resulting in a safer driving environment, by recog-
nizing the driver’s emotional state.

The paper is organized in the following manner: Section I
provides an overview of the relevant background of the situ-
ation at hand. The subsequent part provides an overview of
previous research conducted on the topic of emotion recog-
nition in cross-subject 2D environments. However, we will
supplement our knowledge with some non-2D research.
Section III describes the dataset, methodology proposed, and
evaluation. In Section IV, the results of experimental research
on cross-subject validation with selected channels are com-
pared to previous studies. Section V serves as the conclusion
segment.

II. RELATED WORK
In the domain of EEG-based emotion classification problems,
the DEAP dataset is the most studied public dataset [5], [46].
The comprehensive literature review presented herein encap-
sulates a multifaceted exploration of research pertaining to
EEG-based emotion recognition. This review encompasses
two distinct categories of articles, each contributing unique
insights to the field. First, this study into studies focused
on channel selection methods within EEG signals using the
DEAP dataset, encompassing a diverse array of techniques
aimed at isolating the most informative channels for emotion
analysis. Second, this study explores articles that make use
of all 32 EEG channels (DEAP dataset) or a subset while
integrating various deep learning models, while keeping a
focus on model performance associated with this approach.

In the context of channel selection, several prior studies
are described, that may or may not employ 2D image gen-
eration and use of deep learning. This is done to enhance
the comparability of performance outcomes. Kouka et al.
[30] conducted channel selection experiments. In the valence
class, using the Binary Many-Objective Particle Swarm Opti-
mization with Cooperative Agents (BMaOPSO-CA) method
with 8 channels on valence and 16 channels on arousal
have an accuracy between 69.56% and 83.50%, respec-
tively [30]. The NMI selection approach with input PSD and
SVM classifiers yielded 74.41% valence (8 channels) and
arousal (10 channels) accuracy of 73.64% [47]. Goshvar-
pour and Goshvarpour employing the sLORETA selection
method and input lagged Poincare indicator and SVM clas-
sifier deliver valence (5 channels) and arousal (5 channels)
performance of 74.41% and 74.71%, respectively [48]. Topic
et al. used ReliefF and NCA approach for selection chan-
nels with accuracy on valence and arousal around 80%
[49]. Javidan et al. validate cross-subject performance in the
valence class (2 channels) utilizing the RReliefF selection
strategy with input MSCE and SVR classifiers, yielding an
accuracy of 67.45% [50]. Msonda et al. [51] reconstruct
features (using 2, 3, 4, 5, 6, 7, and 8 channels) and search
for the minimal errors using Adaboost, LR, Linear SVC,
Polynomial SVC, and RF, with average performance results
between 50 and 60%. Using locally robust feature selection
(LRFS), Yin et al. execute channel selection for cross-subject
classification with an estimated accuracy of 60% for valence
and arousal classes [52]. Arjun et al. [24] employed the
attention channel when combinedwith the LSTMand autoen-
coder for cross-subject classification and obtained rate of
accuracy for 65.9% and 69.0%, respectively, for valence and
arousal classes. Yang et al. used ReliefF and random forest to
choose the top 10 and 11 channels for dependent subject and
cross-subject classification, respectively, with cross-subject
outcomes of 81.27% and 82.37% for valence and arousal clas-
sifications [53]. Pandey and Seeja used frontal lobe channel
to channel selection with accuracy on valence and arousal
around 50% until 60% [28]. Reference [26] used best single
collaboration with confusion matrix as an indicator for chan-
nel selection with accuracy on valence and arousal around
92%. The application of reduction channels for cross-subject
classification has not been thoroughly investigated. Addition-
ally, the result can be enhanced. A summary of the existing
articles on channel selection has been presented in Table 1.

Some cross-subject studies are based on 2D or 3D forms
with 32 channels. Yin et al. [55] presented a 3D cube
ECLGCNN that was based on graphs and had 84% accu-
racy in the valence class and 85% accuracy in the arousal
class. Pandey and Seeja conducted research using CNN
architecture, achieving 59% and 59% accuracy for valence
and arousal, respectively [28]. Using Inception Resnet-V2,
Cimtay and Ekmekcioglu achieved a valence of 72.81%
[29]. Using 2D frame sequences and BiDCNN, Huang et al.
achieved 68% valence accuracy and 63% arousal accu-
racy [56]. Another study used a matrix sequence-based
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TABLE 1. Summary of the channel selection approaches.

meta-learner with a class performance of 69.92% for valence
and 68.89% for arousal [57]. Pusarla et al. conducted
three experiments simultaneously on cross-subject valida-
tion [27]. First, using a spectrogram in conjunction with
the DenseNet-121 architecture yields performance in the
85.57% valence class. In a second experiment, they collab-
orated on DCERNET architectures and Softmax to achieve
a valence class performance of 88.57 percent. Thirdly,
they combined DCERNET and SVM to achieve 88.10%
valence class performance. Farokhah et al. [26] integrated
the development of a simplified CNN architecture, the best
single collaboration for channel selection, and a spectro-
gram with the greatest accuracy in the valence and arousal
classes, achieving 98.3% and 96.7% accuracy with 32 chan-
nels, respectively. Tang et al. [32] used the spatial-temporal
information learning network (STILN) technique, achieving
valence and arousal accuracy rates of 67.52 and 68.31 per-
cent, respectively. The presentation of the entire study utilizes
32 channels. Using 10 front channels and CNN architecture,
Pandey and Seeja [28] achieved valence and arousal accuracy
of 61% and 58%, respectively. In [58], the authors propose an
EEG-based emotion recognition model (AP-CapsNet) with
subject-dependent and cross-subject experiments, achiev-
ing high accuracies of 62.7% and 63.51% in valence and
arousal class. In [59], MTLFuseNet combines VAE and
GCN/GRU for EEG-based emotion recognition, outperform-
ing state-of-the-art methods with accuracies of 71.33% to
73.28%. Reference [31] introduces a subject-independent
or cross-subject approach with Inception-V3 CNN achiev-
ing accuracies of average 90.7%. Reference [60] presents
BiSMSM for EEG-based emotion recognition, achieving
63.10% to 61.89% accuracy. In [61], an ensemble method

outperforms existing approaches with 64.22% to 84.44%
accuracy. Reference [62] presents a transfer learning frame-
work achieving accuracy of 65.7% to 64.22% accuracy.
Reference [54] introduces an automated cross-subject frame-
work with impressive accuracies of 83.9% to 84.3%. Our
recent paper Farokhah et al. [26] proposed a simplified
CNN and spectrogram with 32 channels that achieve 98.3%
and 96.7% valence and arousal class accuracy, respectively.
These papers collectively contribute diverse approaches to
EEG-based emotion recognition, each demonstrating promis-
ing results in addressing various challenges. A summary of
the articles making use of deep learning methods on all
32 channels has been presented in Table 2.

III. MATERIALS AND METHOD
The methodology adopted in this study comprises a multi-
step approach, starting with a meticulous channel selection
technique. Through the extraction of features such as band
power and their ratios and subsequent application of the
RelieF method, we discern the most informative EEG chan-
nels. These selected channels are then subjected to the
Morlet transform, transforming the data into 2D images that
effectively encapsulate intricate temporal and spectral infor-
mation. Subsequently, employing a simplified deep learning
architecture, we conduct a precise classification task, cate-
gorizing emotional states into valence and arousal groups.
For dependent subject and cross-subject performance analy-
sis, the model employs two additional validation techniques,
namely random split, and leave-one-out subject. The archi-
tecture proposed in this research was validated using the
publicly available DEAP dataset. The dependent subject and
cross-subject validation portions of the emotional validation
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TABLE 2. Recent articles on deep learning for EEG classification.

FIGURE 1. Proposed research framework.

experiment using EEG are separated into two segments. The
general proposed research framework order is depicted in
Fig. 1.

A. DEAP DATASET
DEAP is an open-source database that is known to offer EEG,
physiological, and audiovisual signals that can bewidely used
in the domain of computing and emotion recognition. Numer-
ous subjects are involved in the experimentation which can
aid in gathering a diverse set of information under the con-
trolled environment as they experience a variety of emotional
stimuli. Primarily, DEAP offers access to numerous kinds of
physiological signals including EEG, ECG, GSR, and others,
yet in this study, EEG data available for 32 subjects has been
employed. Each of the subjects has been exposed to numer-
ous types of 40 video clips (1 minute each) associated with
content related to different emotional states. The associated
EEG responses are recorded at a high sampling rate utiliz-
ing BioSemi ActiveTwo EEG instruments with 32 principal
channels. The data is later passed on through pre-processing
stages that involve data downsampling to 128 Hz, removal

TABLE 3. DEAP dataset attributes.

of the EOG artifacts, and application of a bandpass filter
from 4 to 45 Hz. The reference label information is also
available in the form of self-reported valence and arousal
ratings against each of the video clips. A summary of the EEG
dataset employed has been presented in Table 3.

The dataset is significantly associated with the type of
experimentation carried out in this study. Initially the Morlet
transformation services as an effective tool to analyze these
very large signals under the time and frequency domains. This
can help determine the contained patterns and features in the
EEG signals that can be correlated with the emotional states.
This approach helps in capturing the oscillatory patterns and
the spectral components in the EEG data while linking them
to the emotional states. This can further help in capturing the
subtle patterns of changes in brain activities that are largely
present in high-sampled DEAP EEG data under dynamic
conditions.

Thus the expected outcomes from the dataset entail the
successful extraction of the features related to the unique
patterns of emotional responses using the Morlet transform.
These features are then subject to deep learning Convolu-
tional Neural Networks to analyze the classification accuracy.
Thus in summary the DEAP dataset acts as an effective data
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TABLE 4. Parameter of scalogram.

resource in the given experimentation design to analyze the
performance of each of the proposed stages of work.

B. SCALOGRAM GENERATION
The Scalogram used for image generation is theMorlet Trans-
form (also known as the Gabor-Morlet transform). It is a
widely used mechanism for the generation of time-frequency
analysis by combining Fourier Transform and Gabor Trans-
form. The EEG signals (primarily non-stationary signals),
exhibit time-frequency dependencies over time that are being
captured using the Morlet transform. The method is based on
the convolution of complex sinusoidal waves, by using a com-
plex sinusoidal Gaussian windowing approach characterized
by central frequency and bandwidth.

For a given channel c and participant p, Xcp represents
the preprocessed version of the selected data, at time t . The
Gabor-Morlet wavelet ϕ (t) can be defined as:

ϕ (t) = A.e
−(t−t0)

2

2σ2 e−j2π f0(t−t0) (1)

here A is the normalization constant, t0 is the wavelet center,σ
is the width of the wavelet, and f0 is the central frequency of
the wavelet.

Here t represents the time, σ is the standard deviation of the
Gaussian window, f0 is the central frequency of the wavelet.
The potential benefit of using the Morlet transform is that it
offers a good compromise between the localization of time
and frequency. The Gaussian window keeps the wavelet con-
centrated across time and frequency domains, thus enabling it
to capture temporal and spectral information simultaneously.
The complex value representation of the signal through the
Morlet transform is provided in the time-frequency domain
(unlike frequency domain representation in the case of the
Fourier transform). The results generated using the Morlet
transform are the representation of EEG signals as 2D color
images representing time and frequency axis. Some of the
parameters used for making the transform are described in
Table 4.

The RGB images are generated by scaling the scalogram
to size of 224 × 224×3. The dimensions of the input size
for transfer learning models utilized in this work have been
selected based on acknowledged standards. Additionally,
these dimensions are further normalized to ensure optimal
training operations. In order to ensure correct inference of
hidden trends, it is beneficial to normalize pixel values within
the range of 0 to 1. The transformation of all channels into
pictures is followed by the application of channel selection
and classification modes. Morlet images were generated for
channel number 3 of a specific recording, representing both
high and low for valence and arousal classes. The architec-
tural framework suggested in this study was assessed for its
efficacy by employing the publicly accessible DEAP dataset.
The emotional validation experiment utilizing EEG is divided
into two distinct segments: the dependent subject validation
and the cross-subject validation. Four sample images are
depicted in Fig. 2.

C. PROPOSED CHANNEL SELECTION
The EEG pre-processing involves the application of
band-pass filters for the removal of noise and other artifacts
contained within the signal. The Morlet Transform applied as
part of this study infers the time-frequency dependency of the
data contained as a 1D stream. The selection of the channels
employed in this study makes use of an improved Relief
model, that analyses the significance of the data contained
in each channel to the classification outcomes. We call it
Power ratio-relief (PR-Relief). Unlike the traditional Relief
methods adopted which use raw data to choose the best
channel, this study makes use of PSD band powers with ratio
across the four channels alpha (α), beta (β), gamma (γ ), and
theta (θ ), along with their ratios. This band power serves
as a feature of the Relief method, which then determines
the scores of the individual channels under the high and
low valence classesNc. Ratios are utilized to characterize
significant connections between power band characteristics.
Ratios can assist in identifying patterns or tendencies that
may not be apparent when examining individual features.
Some previous studies have employed features extraction
approaches applied to relief and reliefF methods [49], [63],
[64], [65], [66], [67], however, they differ from the suggested
PSD and ratios approach made part of this study.

The PSD across individual bands has been computed using
the Welch method, whose mathematical representation is
given in Eq. 2. Given the frequency range fmin to fmax :

PSDband,c,p (f ) =
1
N

∣∣∣∣∣∑
k

Xc,p (fk)

∣∣∣∣∣
2

(2)

where N represents the total number of samples, while the
summation is performance over the frequency bins fk ranging
between fmin, fmax depending upon the specific band under
consideration.

Algorithm 1 presents the approach adopted for the channel
selection through the Relief method as part of this study:
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FIGURE 2. Scalograms for individual recording at subject 1 on channel 3. a. High valence (Trial 11), b. Low valence (Trial
24), c. High arousal (Trial 1), d. Low arousal (Trial 13).

FIGURE 3. Proposed method of channel selection.

The present study involves the process of channel selection
through the examination of individual channels, followed by
the identification and selection of the top 10 channels based
on the power ratio derived from the power band’s Power
Spectral Density. The weight of the ten greatest channels
capable of correctly classifying the valence class. This study
employs a classification indicator for dependent subjects

based on valence class (low-high) for the channel selection
process. The selected classification class is valence class. The
results of channel selection are then applied to the advanced
classification of valence and arousal classes. Fig. 3 depicts
the sequence of the proposed channel selection method. The
selection of the validation rule involves the use of a random
split in the ratios 70:10:20 for training, validation, and testing.
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Algorithm 1 Power Ratio Relief Method for the Channel
Selection

Input: EEG Data X, Trials T, Bands α, β, γ, θ
Output: Selected Channels S
Process Starts:
1. D← X{T }
2. DB← Bandpower D (θ) ,D (α) ,D (β) ,D (γ ) ,

D (α/β) ,D (α/γ ) ,D (γ /β) ,D (α/β/γ ) ,D (θ/β/γ )

3. Nc← high valence, low valence
4. R← RelieF Scores (DB,Nc, kwargs = 10)
5. for i in range (10) do
6. S(i)← max_index(R)
7. discard(max_index(R))
8. End

D. ARCHITECTURE FOR CLASSIFICATION
After the 1D to 2D EEG transformation generates a 2D EEG
scalogram, the scalogram will be used as input for classifi-
cation using deep learning. This study applies streamlined
architecture. This architecture has been established in previ-
ous studies [26]. The architecture for classification is shown
in Fig. 4.

The is designed to effectively process 2D Morlet Images
derived from EEG channel data for emotion classification.
This architecture consists of several essential layers, each
contributing to the model’s ability to extract meaningful fea-
tures and make accurate predictions. The Input Layer serves
as the initial entry point for the 2D Morlet Images, providing
the raw image data to the neural network. The first Convolu-
tional Layer, with 32 filters and Rectified Linear Unit (ReLU)
activation, performs feature extraction. It identifies low-level
patterns in the Morlet Images, such as edges and basic
shapes. The second Convolutional Layer, with 64 filters and
ReLU activation, further refines feature extraction, capturing
more complex and higher-level patterns. The MaxPooling
layer reduces spatial dimensions, helping the network focus
on the most relevant features while reducing computational
complexity. Two additional Convolutional Layers with 64 fil-
ters and ReLU activation allow for deeper feature extraction,
potentially identifying intricate patterns related to emotion.
Dropout layers prevent overfitting by randomly deactivating
neurons during training, encouraging robust feature learning.
The first Dense (fully connected) layer with 256 neurons and
ReLU activation further consolidates the learned features,
enabling complex relationships between extracted features
to be captured. A dropout layer with a rate of 0.7 further
regularizes the network, promoting generalization. The sec-
ond Dense layer with 128 neurons and ReLU activation
continues to capture higher-level abstractions in the data.
Another dropout layer with a rate of 0.5 aids in preventing
overfitting, ensuring the model’s generalizability. The final
Dense layer, employing the softmax activation function, pro-
duces probability distributions over the different emotional
classes, enabling the network to make emotion predictions.

TABLE 5. Hyperparameter of deep learning.

The outcomes are rendered as high-valence, low-valence,
or high-arousal, low-arousal.

The following simulation parameters have been adopted
for carrying out the training and evaluation of the model as
presented in Table 5.

E. EVALUATION
This publication provides more depth about cross-subject
validation. Dependent subject validation was used as supple-
mentary knowledge with 70:20:10 random split as training:
validation: testing. Concerning cross-subject validity, the
leave-one-out takes into account the training of the model
based on N-1 individuals while using the left-one individual
as the validation data. Finally, the model has been trained and
tested under numerous performancemetrics. Thematrices are
determined based on the True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN). These
include accuracy, recall, precision, and F1-Score, the math-
ematical models for each of these performance metrics have
been provided below.

Accuracy =
TP+ TN

TP+ FN + TN + FP
(3)

Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

F1Score =
2(Precision)(Recall)
Precision+ Recall

(6)

F. PLATFORM AND MODEL COMPLEXITY
The experimentation and implementation performed in
this study make use high-performance computing platform
accessed through the Google Colab version equipped with
state-of-the-art GPUs. Access to GPUs including NVIDIA
V100 and NVIDIA T4 was granted along with RAM access
of up to 54 GBs. This enabled an efficient execution of
the complex experimentations enabling rapid model training
and evaluation. Additionally, the use of standard libraries
like TensorFlow for the development of deep learning mod-
els helps further optimize the underlying computations on
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FIGURE 4. Simplified CNN architecture.

TABLE 6. Models’ complexity comparison.

the GPU environment. Since the study claims an adoption
of simplified CNN architecture, therefore, it is imperative
to analyze the complexity of the model compared to some
standard architectures and developed architecture in exist-
ing research especially cross-subject validation in Table 6.
This is due to the fact that a number of previous stud-
ies ignored specific computational details. The architecture
has been compared with some of the most commonly used
transfer learning architectures for 2D image classification
including ResNet50, DenseNet121, and InceptionResNetV2.
Additionally, DCERNET architecture was incorporated. This
architecture was created for cross-subject emotion valida-
tion. This study involved conducting experiments utilizing a
standard architectural framework. One issue that arises when
employing a standard architecture with deep layers is the
significant consumption of RandomAccessMemory (RAM),
especially when handling 32 channels with 32 participants
utilizing the DEAP dataset. The Google Colab system is
going to trigger a runtime restart in order to prevent the
execution of the subsequent process. This is not happening
when employing a developed architecture (Simplified CNN)
[26]. The comparison has been made in terms of trainable
parameters and the number of layers that comprise convo-
lutional layers, dropout, and pooling layers. A summary has
been presented in Table 6.

TABLE 7. Comparison of cross-subject performance results with different
trials.

TABLE 8. Performance of dependent subject with 10 channels.

IV. RESULT AND DISCUSSION
A. PROPOSED SELECTED CHANNELS WITH VARIOUS
TRIALS TREATMENT
In the process of channel selection, we proposed the power
ratio of the Relief (PR-Relief) method. PR relief is a method
for channel selection based on relief weighting that employs
the ratio feature between power bands. This is illustrated in
Figure 3. In the procedure for channel selection, we tested
the channels resulting from different selection methods of
trials using three distinct methods, along with the results of
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FIGURE 5. Training curves for Valence. a. training and validation accuracy.
b. training and validation loss.

inter-subject classification performance. Initially, the use of
18 randomized clinical trials. Second, select 18 trials from the
DEAP dataset based on the LastFm Website supplementary
ground truth (online assessment). Third, use all trials (40
trials). Only one or two channels are distinguishable among
the obtained channel results. The top ten channels determined
by random sampling are 5, 6, 7, 8, 9, 10, 11, 15, 19, and 27
(FC5, FC1, C3, T7, CP5, CP1, P3, Oz, Fz, CP6). Using the
trial with additional ground truth from LastFm as a guide,
ten channels are obtained: 5, 6, 7, 8, 9, 10, 15, 19, 22, and
27 (FC5, FC1, C3, T7, CP5, CP1, Oz, Fz, CP6). Using all
trials, ten channels with the numbers 5, 6, 7, 8, 9, 10, 11,
15, 26, and 27 (FC5, FC1, C3, T7, CP5, CP1, P3, Oz, T8,
CP6) were obtained. Then, we conducted a cross-subject
validation test with 32 participants by calculating the average
of 20 participants. Table 7 summarizes the result.

The DEAP dataset includes the TagFM of ground truth
as one of its features. TagFM is a website that validates
the emotions that the average person experiences when
watching a stimulant video. According to the TagFM survey
(Which is provided by the DEAP dataset), only 18 trials
are provided with ground truth in the DEAP dataset. This

FIGURE 6. Training curves for arousal a. training and validation accuracy.
b. training and validation loss.

TABLE 9. Cross-subject performance outcomes with varying input
treatment or channel selection method.

is added to the analysis of the trials chosen for use because
they have publicly available ground-truth references. The
proposed selected channel utilizing PR-Relief (power ratio-
relief) has the advantage of not requiring the use of all
trials, thereby reducing computation. In addition, the effi-
cacy of channel selection in the classification of emotions
produces nearly identical results. This shows the consis-
tency of the channel selection results under varied conditions
of trials.
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TABLE 10. Result of cross-subject performance for valence class.

B. VALIDATION OF EMOTION RECOGNITION
1) EXPERIMENT OF DEPENDENT SUBJECT
Validating the dependent subject or intra-subject emotion
classification using 10 channels. These ten channels were
generated from the previous channel selection process using
the proposed PR-Relief Method. We use a 10% random split
of the data for testing. The performance results for the testing
accuracy of the emotion classification in the valence and
arousal classes were 94.4% and 94.6%, respectively. This
result is up compared to all previous studies [26]. The depen-
dent subject’s performance results have improved, according

TABLE 11. Result of cross-subject performance for arousal class.

to a comparison of current research to previous research
on the topic [26]. Fig. 5 depicts the training and validation
accuracy for the valence class then training and validation
loss. Fig. 6 depicts training and validation for the arousal class
then training and validation loss. Details of the experiment are
shown in Table 8.

2) EXPERIMENT OF CROSS-SUBJECT
a: CROSS-SUBJECT WITH VARIOUS INPUTS AND SELECTED
CHANNEL
In this investigation, we attempted to compare it to our previ-
ous research [26], which utilized the input spectrogram and
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TABLE 12. Cross-subject performance comparison with previous studies.

single-best collaboration to select channels. We attempted to
conduct experiments with input modifications using spec-
trogram versus scalogram, using either the new channel
selection method (PR-Relief) or the old channel selection
method (single best collaboration) [26]. We only test specific
groups to compare changes (for example, just valence or just

arousal classes for testing time efficiency). Table 9 shows
the experiment’s particulars. Table 9 displays the results
of cross-subject classification using 32 subjects, with one
out-subject average remaining until the twentieth subject.

According to Table 9, the combination of the proposed
input and proposed channel selection yields the highest per-
formance.

b: CROSS-SUBJECT WITH PROPOSED INPUT AND
PROPOSED SELECTED CHANNEL
For both dependent subjects and cross-subjects using
10 selected channels, we use the previously developed archi-
tecture [26]. This architecture has a smaller number of
parameters than the architectures used in other cross-subject
classifications [26]. For validation, this study uses a leave-
one-out subject and then takes an average of 32 subjects.
Leave one out of the subject is a validation standard for
cross-subject classification that strictly separates the subject
in the training and validation processes [26], [27], [56]. The
results of cross-subject classification for the valence class are
shown in Table 10 and Table 11 for the arousal class.
As shown in Tables 9 and 10, the cross-subject classifica-

tion validation using our proposed scalogram and proposed
PR-Relief (10 channels of channel selection) yielded an aver-
age accuracy of 94.81% for the valence class and 94.16%
for the arousal class. The accuracy performance is used as
a performance indicator to compare with previous studies.

C. COMPARISON WITH PREVIOUS RESEARCH ON
CROSS-SUBJECT EMOTION RECOGNITION
To show the contribution to performance enhancement and
the proposed method, this study presents the results of pre-
vious research with various channel numbers. In addition,
it is explained in Subchapter II Related Work for previous
research in other domains. Table 12 is a comparison of per-
formance outcomes.

The collaboration of the proposed method in input inter-
pretation using a scalogram and the channel selection method
using PR-Relief (Power ratio -Relief) resulted in an increase
in accuracy performance of around 2% from the previous
highest research in inter-subject or cross-subject validation.
In the 2D EEG and 3D EEG domains in Table 12 as well as
other domains in Sub-Chapter II Related Work. The accuracy
performance produced in this study resulted in the highest
performance.

V. CONCLUSION
In this paper, we were able to improve the accuracy of
emotion recognition for cross-subject validation by keeping
computations lighter through channel selection or reduction.
The processing of data for emotion recognition using EEG
with a large number of channels needs significant resources.
A pair of tasks have been completed. First, propose and
determine the best interpretation of the input that will be
used for the classification of emotions using a scalogram.
Second, propose a channel selection method based on the
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preponderance of the power band ratio via the relief method.
Third, collaboration of scalogram, PR-Relief for channel
selection, and simplified CNN for classification have pro-
posed. In the proposed channel selection, the number of
experiments on trials led to stable performance in terms of
classification accuracy. The proposed collaboration process
between the input and the channel selection method gener-
ates important information, namely that the interpretation
of the input and the channel selection method influences
the classification results of emotions. Compared to previous
studies, collaborative EEG representation, simplified CNN,
and channel selection methods produced the highest per-
formance. Validation of cross-subject emotion classification
that collaborates with channel selection in the image domain
is still limited. As additional information to demonstrate a
genuine contribution, this study includes additional domain
research in subchapter II Related work. Our research keeps
going showing the highest accuracy performance compared
to previous 2D or other research domains. In future research,
the incorporation of reinforcement learning techniques holds
promise for dynamic and run-time channel selection person-
alized to each subject. By formulating the channel selection
task as a Markov decision process, reinforcement learning
algorithms can adaptively identify the most informative EEG
channels during real-time emotion recognition tasks. This
approachwill allow the system to continuously refine channel
selection strategies based on the subject’s specific emotional
responses, effectively mitigating the cross-subject variability
challenge. The development of reinforcement learning-based
agents that optimize channel selection in an online and
subject-specific manner represents a compelling direction to
enhance the adaptability and accuracy of EEG-based emotion
recognition system.
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