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ABSTRACT Owing to the problems of missed detection, false detection, and low accuracy of the current fire
detection algorithm, a segmentation detection algorithm, YOLO-SF, is proposed. This algorithm combines
instance segmentation technologywith the YOLOv7-Tiny object detection algorithm to improve its accuracy.
We gather images that include both fire and non-fire elements to create a fire segmentation dataset (FSD).
The segmentation detection head of YOLOR is adopted to improve the accuracy of model segmentation
and enhance its ability to express details. The MobileViTv2 module is introduced to build the backbone
network, which effectively reduces parameters while ensuring the network’s ability to extract features.
The Efficient Layer Aggregation Network (ELAN) of the neck network is augmented with Convolutional
Block Attention Module (CBAM) to broaden the receptive field of the model and enhance its attention to
both the fire images channel and spatial information. Additionally, Varifocal Loss is used to address the
problem of inaccurate object positioning in the edge areas of fire images. Compared with the YOLOv7-Tiny
segmentation algorithm, for Box and Mask, the precision increases by 5.9% and 6.2%, recall increases
by 2.5% and 3.3%, and mAP increases by 4% and 6%. In addition, the FPS reaches 55.64, satisfying the
requirements for real-time detection. The improved algorithm exhibits good generalization performance and
robustness.

INDEX TERMS Instance segmentation, MobileViTv2, fire detection, CBAM, varifocal loss.

I. INTRODUCTION
Fire is a serious disaster that can cause significant harm to
people’s safety, property, and the natural environment. If not
addressed promptly, a fire can spread quickly, making it cru-
cial to take immediate response measures in its initial stages.
Currently, research on fire detection can be broadly catego-
rized into two groups: methods based on traditional computer
vision and methods based on deep learning. The traditional
method for fire detection primarily analyzes color, shape,
and texture features. Among these, color features are the
most commonly used. However, this method is susceptible
to false detections in scenes with complex backgrounds and
significant variations in the lighting conditions. To overcome
these limitations, some researchers have adopted a multi-
feature fusion method that combines multiple features, such
as color, texture, and shape, to improve detection accuracy.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yudong Zhang .

Li et al. [1] proposed a video-based autonomous flame detec-
tionmodel that utilized a Gaussianmixture color model of the
Dirichlet process. Wang et al. [2] extracted features related to
forest fires and developed a model for identifying fires by
analyzing various features such as color, texture, and shape.
Ding et al. [3] developed an Identification Flame Color Space
(IFCS) model based on chaos theory and the k-medoids par-
ticle swarm optimization technique to solve high false alarm
rates. To reduce false alarms and computational complex-
ity, Khondakar et al. [4] examined color information, shape
transformations, and optical flow estimation of fire while
considering both static and dynamic factors, and suggested a
multi-level fire detection approach. These approaches, which
depend on manually extracted features for fire detection such
as color, shape, and texture, are confined by preset features,
resulting in significant restrictions.

In recent years, the application of deep learning in fire
detection has received widespread attention. Among the vari-
ous neural network architectures, the Convolutional Neural
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Network (CNN) is widely used to capture both local and
global features in images. On the other hand, some Recurrent
Neural Network (RNN) variants, such as Long Short-Term
Memory (LSTM) [5] and Gated Recurrent Unit (GRU) [6],
are commonly used to model and analyze fire video sequence
information and extract the temporal and spatial evolution
characteristics. Zhang et al. [7] proposed a fire detection
model called ATT Squeeze U-Net, which utilized a U-Net
network with a Squeeze Net structure. Qi et al. [8] developed
a flame recognition framework designed to extract both static
and dynamic features of video flame images. Li et al. [9]
developed a real-time system to detect and localize indoor
fires. This system can be deployed on an embedded platform,
such as the Jetson Nano. Compared with traditional image
processing methods, the aforementioned methods exhibit
better generalization capabilities. However, fire detection
using deep learning technology still encounters the following
challenges.

• Collecting and labeling large-scale fire datasets is a
challenging and time-consuming task, particularly when
obtaining data from actual fire scenarios.

• Fires can be small, dense, large, or scattered. The ability
to identify and classify a variety of fire occurrences,
including those with varying shapes, sizes, and com-
bustion characteristics, is important for fire detection
algorithms.

• In fire detection, distinguishing between fire features
such as flames and smoke, and the background is chal-
lenging, particularly in complex environments. This
affects fire detection accuracy, leading to missed or false
detections.

• Enhancing the detection capability of the model and
increasing its detection efficiency are crucial for the
quick and accurate detection of fire information.

In response to the above problems, this study improves
the detection head, backbone network, neck network and loss
function of the original YOLOv7-Tiny detection algorithm.
The experimental results show that, compared to the orig-
inal algorithm, the improved YOLO-SF algorithm can
achieve an optimal balance between accuracy and speed.
The main contributions of this study are summarized as
follows.

• Label 5000 experimental images, including 3203 fire
images and 1797 non-fire images, such as fire clouds
and city night scenery, to improve the quality of the
experimental datasets.

• The segmentation detection head of YOLOR [10] is
used to jointly train and reason object detection and
instance segmentation, which can provide pixel-level
object position information and instance segmentation
conclusions.

• To decrease the model’s parameters and computational
complexity, we utilize the MobileViTv2 [11] network
to modify the structure of the backbone network and
depth-separable convolution to replace the standard
convolution.

• The Convolutional Block Attention Module (CBAM)
[12] is added to the Efficient Layer Aggregation Net-
work (ELAN) of the neck network to fully integrate
feature information from the upper and lower layers of
the network and improve the receptive field and ability
of the model to learn global information.

• The original loss function is replaced by Varifocal
Loss [13]. By adjusting the dynamic balance factors and
parameters, the background weight of the fire images is
reduced, and the weight of the edge, blurred area, and
detailed information are increased.

The remainder of this paper is organized as follows.
Section II presents related work on fire object detection
and segmentation detection. The details of the improved
algorithm are presented in Section III. Comparative exper-
imental analyses of the improved algorithm and other
algorithms are presented in Section IV. Finally, conclu-
sions are presented in Section V. All code and experi-
mental data can be accessed through the following URL:
https://github.com/suyixuan123s/YOLO-SF.git.

II. RELATED WORK
Owing to the development of hardware and software tech-
nologies as well as the expansion of computer power, many
researchers are using deep learning techniques for fire detec-
tion. Deep learning technology can independently extract
object features from images to obtain generalization infor-
mation. These approaches have superior learning abilities
and adaptabilities. Common deep learning algorithms include
YOLO [16], [17], [18], Faster R-CNN (region-based convolu-
tional neural networks) [15], and SSD (single-shot multi-box
detector) [14]. These algorithms combine convolutional neu-
ral networks with bounding box regression techniques to
enable real-time object detection and localization, which
are widely used in fire detection. Zhang et al. [15] devel-
oped a situational awareness system for investigating mine
fires. Simultaneously, an optimized Faster R-CNN model is
designed and implemented. Wu et al. [16], considering the
unique characteristics of ship fires and marine environments,
proposed a lightweight object recognition algorithm based on
YOLOv4-minor. Smadi et al. [17] proposed a new frame-
work to reduce the sensitivity of various YOLO detection
models and improve the accuracy of forest smoke detection.
Xu et al. [18] proposed a new flame-detection framework
called YOLO-F. They replaced the neck part of YOLOv4
with FPNs-SE and used a new loss function called ACIoU to
enhance the network’s ability to extract features of different
scales. Xue et al. [19] added the CBAM attention module
to the YOLOv5 network and proposed an improved small-
object forest fire detection model, which effectively solved
the information loss problem caused by the small number
of forest fire small object pixels. Luo et al. [20] improved
YOLOX by combining the Swin Transformer architecture,
CBAM attention mechanism and Slim Neck structure and
proposed a flame and smoke detection algorithm applied to
laboratory fires.
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FIGURE 1. YOLO-SF network structure.

In segmentation for fire detection, each pixel of an image
must be assigned to either the fire or background category.
The semantic segmentation network learns the segmentation
mask directly from the original image through end-to-end
training. U-Net [21] and DeepLab [22] networks directly
learn the semantic information of an image to achieve fire
segmentation at the pixel level. For example, Zheng et al. [21]
proposed a multi-level semantic segmentation method for
fire smoke based on global information and U-Net network.
The algorithm used Multi-Scale Residual Group Attention
(MRGA) in combination with U-Net to extract multi-scale
smoke features, which improved the perception ability for
small-scale smoke. Harkat et al. [23] utilized the Atrous Spa-
tial Pyramid Pooling architecture of Deeplabv3+ to improve
the fire image segmentation results. They proposed a fire
detection model for RGB and infrared images by integrating
Xception into Deeplabv3+. Wang et al. [24] used high-
sensitivity bands and remote sensing indices in the RGB,
SWIR2, and AOD bands to segment smoke, and proposed
a smoke segmentation network model called Smoke-U-net,
which combines an extended U-net, an attention mechanism,
and residual blocks. Cheng et al. [25] utilized an encoder-
decoder structure with dilated separable convolutions to
segment smoke regions and proposed a computer vision-
based approach for smoke heat map detection. Jing et al.
[26] integrated the CBAM module into the feature extraction
structure to enhance the network’s focus on relevant infor-
mation in wildfire areas while suppressing the extraction of
irrelevant features. They proposed a semantic segmentation
network called Mobile-Attention-Net for efficient detection
of forest fire areas.

The objective of instance segmentation is to segment each
fire instance in an image into an independent object. Com-
monly used instance segmentation algorithms include Mask

R-CNN [29], [30] and YOLACT [27]. These methods com-
bine object detection and segmentation techniques to achieve
the precise localization and segmentation of individual fire
sources. For example, Sun et al. [28] proposed a semi-
supervised learning method that can effectively improve the
performance of fire instance segmentation by reducing seg-
mentation errors. Guan et al. [29] proposed a method for
the early detection and segmentation of forest fires based
on an MS R-CNN model that used a U-shaped network to
reconstruct the Mask-IoU branch. This method is referred to
as Mask SU R-CNN. Zhou et al. [30] proposed a method for
automatic indoor fire load detection using computer vision
and a Mask R-CNN. Niu et al. [31] introduced dilated con-
volutions and the CBAM attention mechanism to enhance
the segmentation accuracy of flame regions in images.
To this end, they proposed a lightweight instance segmen-
tation feature extraction network based on a Mask R-CNN.
Martins et al. [32] used instance segmentation algorithms and
the CBAM attention mechanism to extract the shape, color,
and spectral features of objects. They presented a novel model
for forest-fire detection. The above research results highlight
the unique advantages of segmentation technology in the field
of fire detection and provide an innovative direction for the
further development of fire segmentation research.

III. IMPROVED YOLO-SF ALGORITHM
The YOLO-SF network structure is divided into four parts:
the Input, Backbone, Neck, and YOLO Head. The network
structure of the YOLO-SF is illustrated in Figure 1.

A. INPUT
The input of YOLO-SF is an RGB image, usually in standard
JPEG or PNG format. Before processing, the image must be
pre-processed to optimize its operation and output effects.
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FIGURE 2. MobileViTv2 structure.

The pre-processed images are then fed into the YOLO-SF
model for fire detection.

B. BACKBONE
The backbone network of YOLO-SF consists of convolu-
tional layers, Spatial Pyramid Pooling (SPP) [33] and fully
connected layers. To effectively detect fire objects of vari-
ous sizes and shapes and extend the receptive field of the
model, MobileViTv2, a lightweight visual transformation
network, is used to transform the backbone network. It con-
sists of two parts: a backbone network based onMobileNetV3
[34] and a head network based on a Vision Transformer
(ViT) [35], [36]. The backbone network adopts lightweight,
depth-separable convolutional modules and inverted residual
modules to extract features from the images. This design aims
to achieve efficient computation and low memory require-
ments. The main network is based on the concept of Vision
Transformer (ViT) and uses a transformer encoder to encode
and decode features to capture global features and estab-
lish the relationship between them. To further reduce the
computational burden, MobileViTv2 also introduces a mech-
anism that considers multiple scales such that the model can
prioritize features with different resolutions to improve the
efficiency of the model without losing accuracy.

The structure ofMobileViTv2 is illustrated in Figure 2. The
dimension of the input feature layer is WHC. First, the input
is routed through local representation components, using
n × n convolution to encode local information, and then
mapped to high dimensions by 1 × 1 pointwise convolution.
Next, the feature information is transmitted to the global
representation component. In this step, the transformer model
is employed to encode global information. Subsequently, a
1 × 1 pointwise convolution is applied to further process
mapping. In the third step, features are introduced into the
fusion module, where they are mapped through 1 × 1 point-
by-point convolution. In this step, the number of feature
channels C is increased to 2C , followed by a 1× 1 pointwise
convolution to normalize the information and complete the
feature processing. Figure 4 provides a detailed depiction of
the integration process between the backbone network and
MobileViTv2.

C. NECK
The neck network of YOLO-SF incorporates the resid-
ual structure [37] and squeeze-and-excitation (SE) attention

FIGURE 3. The improvement details of the Neck network.

mechanism [38] to augment the network’s feature extrac-
tion capability. In the neck network, the ELAN-C5 module
enhances the efficiency of the feature fusion by employing
stacked convolution blocks, thereby ensuring the shortest
gradient path. However, this module lacks the complete
integration of feature information between the upper and
lower layers of the network, leading to network disregard
for small objects, which hampers its capacity to capture
global information. To address this issue, the CBAMattention
mechanism is incorporated to handle both the channel and
spatial information of features. This mechanism is integrated
into the ELAN-C5module, resulting in an ELAN-C5-CBAM
architecture. Figure 3 provides a detailed depiction of the
improved process.

In Figure 5, the CBAM attention module is incorporated
following the C5 module of the neck network. The CBAM
attention mechanism comprises two essential components:
the Channel Attention Module (CAM) [12] and the Spatial
Attention Module (SAM) [12]. For the feature map F ∈

RC∗H∗W generated by the convolutional neural network, the
CBAM mechanism sequentially deduces a one-dimensional
channel attention map Mc ∈ RC∗1∗1 and two-dimensional
spatial attention map Ms ∈ R1∗H∗W . The calculation pro-
cesses are shown in equation (1) and equation (2).

F ′
= Mc(F) ⊗ F (1)

F ′′
= Ms(F ′) ⊗ F ′ (2)

Among the various symbols presented, the operator ⊗

signifies element-wise multiplication. First, multi-channel
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FIGURE 4. Backbone network improvement details.

FIGURE 5. ELAN-C5-CBAM of the neck network improvement details.

FIGURE 6. Structure of the CBAM.

attention is used to process the input feature map to derive F ′.
Subsequently, the processed feature map F ′ is dealt with
spatial attention, and F ′′ is the output. Figure 6 depicts the
operational procedure of the CBAM attention mechanism.

Each channel within the feature map is considered a fea-
ture detector. To effectively calculate the channel features,
a combination of maximum pooling and average pooling
is employed. The spatial dimension of the feature map is
compressed, resulting in two distinct spatial background
descriptions: Fcmax and Fcavg. Then, the calculation of the

channel attention map McϵRC∗1∗1 is achieved by utilizing a
shared network consisting of a multi-layer perceptron (MLP).
The calculation processes are described by equation (3) and
equation (4).

Mc (F) = α(MLP (AvgPool (F)) +MLP (MaxPool (F)))

(3)

Mc(F) = α(W1

(
W0

(
Fcavg

))
+W1

(
W0

(
Fcmax

))
) (4)

Among these variables, W0 ∈ R
C
r ∗C and W1 ∈ RC∗C/r are

distinct. Unlike channel attention, spatial attention primar-
ily emphasizes location-related information. To compute the
spatial features, the channel dimensions underwentmaximum
and average pooling operations. These operations yield two
distinct feature descriptions, denoted as F smax ∈ R1∗H∗W and
F savg ∈ R1∗H∗W . Subsequently, a densely connected layer
is employed to merge the two distinct feature descriptions
and execute the convolution operation, thereby generating
a spatial attention map Ms (F) ∈ RH∗W . The calculation
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FIGURE 7. Structure of CAM and SAM.

FIGURE 8. Detection head of YOLO-SF.

processes are shown in equation (5) and equation (6). Figure 7
shows the working principles of channel attention and spatial
attention.

Ms (F) = α(f 7∗7 ([AvgPool (F) ;MaxPool (F)])) (5)

Ms (F) = α(f 7∗7
([
F savg;F

s
max

])
) (6)

D. YOLO HEAD
During fire incidents, it is common for flames, smoke, and
various objects to obstruct and intertwine with one another.
The original YOLOv7-Tiny object detection algorithm can
only provide a bounding box that surrounds the entire object
area, but cannot provide pixel-level object boundary infor-
mation. In particular, in the case of occlusion or overlap,
localization of the fire area becomesmore inaccurate. In addi-
tion, owing to the difficulty in obtaining detailed information
about the object area, the processing of small-object fires has
significant limitations.

To address these issues, this study carries out objec-
tive improvements to the detection head of YOLOv7-Tiny.
Specifically, the object detection head in YOLOv7-Tiny is
replaced with the segmentation detection head of YOLOR,
which realizes the integration of object detection and

pixel-level segmentation. YOLOR’s segmentation detection
head is a crucial component that combines object detection
and segmentation tasks. It defines an ‘IDetect’ class for
object detection tasks and an ‘ISegment’ class for segmen-
tation tasks. The ‘ISegment’ class inherits from and extends
the ‘IDetect’ class to process the segmentation task. This
inheritance and extension approach allows the creation of
models for different vision tasks without re-writing shared
functionality [39].

First, the ‘IDetect’ class utilizes the fire image features
extracted by the backbone and neck networks to generate
candidate bounding boxes for the identified objects and pre-
dicts the object category and confidence level. Next, the
‘ISegment’ class generates a segmentationmask for each can-
didate box based on shared features, classifying image pixels
as foreground objects or background regions. Segmentation
masksmake pixel-level predictions of fire and smoke and seg-
ment fire objects from images. Finally, the object detection
results are integrated with pixel-level segmentation masks
to yield location information and pixel-level segmentation
outcomes for each fire object. The distinctive design of the
improved head allows simultaneous achievement of object
location and pixel-level segmentation in fire image detection.
This capability enables a more comprehensive and accurate
analysis of fire information. Figure 8 shows the detection
process after adding the segmentation detection head.

E. VARIFOCAL LOSS
Fire objects usually occupy only a small portion of the entire
detection image, whereas the background occupies most of
the space. This phenomenon leads to an imbalance in the
fire categories. Additionally, accurately classifying the edges
of flames or blurred pixels is challenging. In this case, the
original loss function may allocate excessive weight to the
background pixels or equal weights to all pixels, making
it difficult for the model to accurately detect and segment
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fire objects. This study utilizes Varifocal Loss to address these
issues.

Varifocal Loss introduces dynamic focusing factors that
can be dynamically adjusted based on the complexity, pre-
diction probability, and confidence of the fire samples. This
allows for a more precise and balanced focus on the fire cat-
egories. The introduction of a boundary-aware loss function
can prioritize the boundary region of an object. By incorpo-
rating a supplementary loss term into the bounding region,
the regression of the bounding box can be effectively opti-
mized, leading to an enhancement in its localization accuracy.
The concept of Varifocal Loss is derived from Focal Loss
[45], [46]. The mathematical expression for the Focal Loss
is shown in equation (7).

FL (pt) = − (1 − pt)γ log (pt) , pt =

{
p, y = 1
1 − p, y = 0

(7)

VFL (pt) = −α(1 − pt )γ log
(
pt_hat

)
− α(1 − pt−hat )β log(pt_hat ) (8)

Equation (8) is the mathematical expression of Varifocal
Loss, among these variables, the pt is the probability that the
model predicts that the sample is positive class, the pt_hat
is the probability that the model predicts that the sample is
positive class, and the prediction is correct, the α is a balance
factor, used to adjust the weights between positive and nega-
tive samples. When the predicted probability approaches one,
the focal factor exhibits a gradual decrease, whereas when
the predicted probability approaches zero, the focal factor
increases. The γ and β are adjustable parameters used to
adjust the weights of easily and accurately classified samples.
The incorporation of these parameters can improve the focus
accuracy and promote balance, thereby optimizing the capac-
ity of the model to detect and segment fire objects.

IV. EXPERIMENTS AND RESULT ANALYSIS
A. EXPERIMENTAL PREPARATION
1) DATASET
Currently, publicly accessible fire datasets are scarce. During
the data collection process, duplicate fire images are excluded
to guarantee the diversity and uniqueness of the collected
data. We utilize LabelMe software to perform data labeling
and name it FSD. During data-labeling process, the images
are categorized into two groups: smoke and fire.

Subsequently, they are further divided into a training set
and test set at a ratio of 9:1. Additionally, a portion of the
training set, specifically 10%, is reserved as the validation
set. The dataset encompasses a variety of scenarios, including
grasslands, forests, buildings, roads, and small-scale fires.
Figure 9 shows a section of the fire segmentation images.
The URL dataset can be obtained from https://github.com/
suyixuan123s/Fire-Segmentation-Dataset.git.

A total of 3203 fire images and 1797 non-fire images
are labeled. These non-fire images encompass various visual
images, such as sunsets and city lights, thereby enhancing

FIGURE 9. Annotation flow of datasets and scenarios.

FIGURE 10. Some negative sample examples.

the diversity of the dataset. Figure 10 shows some negative
sample images. It is evident from Figure 11 that the segmen-
tation dataset contains approximately 6000 flame labels and
3000 smoke labels. The distribution and proportion of labeled
data exhibit both evenness and diversity.

2) EXPERIMENTAL ENVIRONMENT AND PARAMETER
SETTING
The configuration of the experimental environment is listed
in Table 1. The input image size is 640×640, with 300 epochs
and a batch size of 64. The optimizer is SGD with a patience
of 100. The mosaic value is set to 1.0, lr0 to 0.01, momentum
to 0.937, and weigh-decay to 0.0005.

3) EVALUATION INDICATORS
In the experimental analysis, we evaluate two output meth-
ods: Box and Mask. We introduce the following metrics to
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FIGURE 11. Experimental data visualization.

assess the algorithms used in this study: Precision (Box),
Precision (Mask), Recall (Box), Recall (Mask), F1 (Box),
F1 (Mask), mAP (Box), mAP (Mask), FPS, and Parame-
ters. TP (Box) indicates the number of instances that are
correctly detected as objects, FP (Box) indicates the number
of instances that are incorrectly detected as objects, and FN
(Box) indicates the number of actual object instances that are
not detected. TP (Mask) denotes the number of pixels that
have been accurately classified as objects. FP (Mask) refers
to the number of pixels erroneously classified as objects.
FN (Mask) represents the number of the actual object pixels
that have not been correctly classified.

The number of object categories is denoted as nclass,
where nrecall represents the number of set recall thresholds.

TABLE 1. Environment configuration.

The average precision of a single category at a given
recall rate r is denoted as APBox(r) APMask (r). These
evaluation indicators are commonly referred to as P(B),
P(M), R(B), R(M), F1(B), F1(M), mAP(B), mAP(M), FPS,
and Params. The mathematical expressions are shown in
equations (9)- (16).

Precision(Box) =
TP(Box)

(TP(Box) + FP(Box)
(9)

Precision(Mask) =
TP(Mask)

(TP(Mask) + FP(Mask)
10) (10)

Recall(Box) =
TP(Box)

(TP(Box) + FN (Box)
(11)

Recall(Box) =
TP(Mask)

(TP(Mask) + FN (mask)
(12)

F1(Box) =
2 × Precision(Box) + Recall(Box)
Precision(Box) × Recall(Box)

(13)

F1(Box) =
2 × Precision(Mask) + Recall(Mask)
Precision(Mask) × Recall(Mask)

(14)

mAP (Box) =
1

nclass

∑nclass

i=1

1
nrecall

∑nrecall

r=0
APBox(r)

(15)

mAP (Mask) =
1

nclass

∑nclass

i=1

1
nrecall

∑nrecall

r=0
APMask (r)

(16)

The parameters are employed to quantify the scale of
a model, denoting the adjustable variables that must be
acquired during the learning process of the model. These
parameters directly affect the storage capacity and compu-
tational complexity of a model. FPS is used to measure
the processing speed of the model for real-time images and
videos. This represents the number of frames processed per
second. When the FPS value is greater than 20, the require-
ments for real-time detection are satisfied.

B. COMPARISON EXPERIMENTS
1) COMPARISON EXPERIMENT FOR THE IMPROVEMENT
OF THE BACKBONE NETWORK
Enhancing model performance is a commonly employed
strategy by utilizing various network modules to optimize
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FIGURE 12. Comparison of F1(B), F1(M), mAP(B), and mAP(M) results of
the enhanced backbone network.

FIGURE 13. Comparison of FPS and Parameters results of the improved
backbone network.

the backbone network. From Figure 12 and Figure 13,
it is evident that the modules with significant improvement
effects are the RepLKDeXt [40], CSPNeXtLayer, EVCBlock
[41], CReToNeXt [42], ELANB, and MobileViTv2. The
MobileViTv2module exhibits significant improvement in the
detection effect, with its mAP(B) and mAP(M) achieving
0.803 and 0.752 respectively, representing the global optimal
values. In addition, the F1(B) and F1(M) are 0.780 and 0.750,
respectively. The FPS reaching 124.61 satisfies the real-time
detection requirements, the parameters exhibit a decrease.
This demonstrates that the network structure of Mobile-
ViTv2 can significantly enhance the network’s fire detection
capability.

2) COMPARATIVE EXPERIMENT TO IMPROVE THE
ATTENTION MECHANISM
Based on the improvement in the backbone network, dif-
ferent attention mechanisms are incorporated into the neck

network, and a series of comparative experiments are con-
ducted. As shown in Figure 14, after combining ECA [43],
SimAM [44], and CBAM, the detection effect is significantly
improved. After adding the CBAM module, the mAP(B) and
mAP(M) reach 0.811 and 0.756 respectively, which are the
global optimal levels. This can be attributed to the adap-
tive nature of the CBAM attention mechanism, which can
effectively adjust the weight distribution of the feature maps
and focus more on fire-related features, thereby significantly
improving the representation ability of the model.

FIGURE 14. Comparison of results of the attention mechanism
improvement.

To determine the optimal placement of the CBAMmodule,
this study refers to the improvement strategy of the CBAM
module and proposes three improvement schemes to verify
the most effective position for the CBAM module.
1. The CBAMmodules are incorporated after the connection

layer of the C5 module within the backbone network.
2. The CBAMmodules are incorporated after the connection

layer of the neck network’s C5 module.
3. The CBAMmodules are incorporated after the connection

layer of the C5module in the backbone and neck networks.
From the experimental data presented in Table 2, it is

evident that the incorporation of the CBAM module signif-
icantly enhances the detection performance of the model.
The detection outcome in scheme two demonstrates superior
performance. It has been verified that the addition of a CBAM
module to the neck network can significantly enhance its
effectiveness.

3) COMPARATIVE EXPERIMENT TO LOSS FUNCTION
The training direction of the model can be guided using an
appropriate loss function. After completion of the backbone
network, neck network, and detection head modification,
an experimental evaluation is carried out to assess the perfor-
mance of four loss functions: Quality Focal loss [45], Poly
loss [46], Focal Loss, and Varifocal Loss.

Figure 15 clearly shows that using Varifocal Loss results
in a significant increase in R(B) and R(M), obtaining optimal
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TABLE 2. The CBAM module improvement experiment.

TABLE 3. Comparison experiment with other algorithms.

global values of 0.741 and 0.707, respectively. In addition, the
mAP(B) and mAP(M) achieve 0.814 and 0.793, respectively.
The results indicate that the performance of the fire detec-
tion network can be improved through an appropriate loss
function.

4) COMPARISON OF LOSS CURVE RESULTS
DURING TRAINING
As shown in Figure 16, as the number of training epochs
increases, the loss curves exhibit a consistent downward trend
and eventually reach a stable state. When the epoch reaches
300, the model gradually approaches a state of convergence,
and there is no indication of overfitting throughout the train-
ing process. Comparedwith the YOLOv7-Tiny algorithm, the
improved YOLO-SF exhibits a lower training loss and a more
pronounced downward trend, indicating its superior fitting
capability. This result confirms the efficacy and robustness
of the proposed algorithm.

5) COMPARISON EXPERIMENTS WITH OTHER ALGORITHMS
It can be observed from Table 3 that the indicators for
smoke detection are higher than those for flame detection.

FIGURE 15. Comparison of results of loss function improvement.

The YOLO-SF algorithm achieves better results than the
other algorithms. Compared to the object detection algorithm
of YOLOv7-Tiny, each box indicator reveals significant
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FIGURE 16. Comparison of training loss results between YOLOv7-Tiny and YOLO-SF.

improvements. Compared to the YOLOv7-Tiny segmenta-
tion algorithm, the smoke detection precision is improved
by 0.118 and 0.103, and the recall is increased by
0.010 and 0.039, respectively. The flame detection preci-
sion is enhanced by 0.001 and 0.019, recall is improved by
0.039 and 0.026, and the mAP is increased by 0.040 and
0.060, respectively. Compared with various segmentation
algorithms in literature such as YOLACT, Deeplabv3-plus,
U-Net, Mask R CNN, H-Net and various YOLO segmen-
tation algorithms, the YOLO-SF algorithm proposed in this
paper has obtained better detection results. It is noteworthy
that despite the increase in the model parameters, the FPS
achieves 55.64, still surpassing the threshold of 20 and, meet-
ing real-time detection requirements. The results demonstrate
that the YOLO-SF algorithm presented in this study can
effectively balance detection accuracy and efficiency.

C. THE ABLATION LABORATORY
To assess the influence of each improvement factor on
network performance, a series of ablation experiments are
conducted. In the experiments, the environment and param-
eter settings are identical. The experimental results are
presented in Table 4. By implementing ablation experiments,
we assess the individual impact of each improvement point on

the algorithm’s performance and gain a comprehensive under-
standing of its role in enhancing the overall performance.

The first experiment is the results of the YOLOv7-Tiny
object detection algorithm. Because this method lacks a
segmentation function, the mask metrics are empty. The
experiment serves as a reference for four subsequent experi-
ments. In the second experiment, the segmentation detection
head of YOLOR is utilized. The P(B) increase 0.032,
R(B) increase 0.012, and mAP(B) increase 0.011. The third
experiment employs the MobileViTv2 module to adjust the
backbone network architecture. The results indicate that
in comparison to experiment two, there is an increase of
0.041 in P(B) and 0.026 in P(M). Additionally, R(B) and
R(M) increase 0.021 and 0.018 respectively, while mAP(B)
and mAP(M) increase 0.019. The CBAM attention module is
used in the fourth experiment. Compared to experiment three,
the P(B) and P(M) increase 0.009 and 0.011, respectively.
Additionally, the mAP(B) and mAP(M) increase 0.018 and
0.004, respectively. The fifth experiment adopts Varifocal
Loss. Compared to the fourth experiment, the P(B) and P(M)
increase 0.009 and 0.027, respectively, the recall R(B) and
R(M) increase 0.009 and 0.007, respectively. Furthermore,
the mAP(B) and mAP(M) increase 0.003 and 0.001, respec-
tively. The addition of various improved modules has led to
continuous improvement in fire detection results.
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TABLE 4. Ablation experiment.

FIGURE 17. Comparison of YOLOv7-Tiny and YOLO-SF verification results.

Compared with the original YOLOv7-Tiny object detec-
tion and segmentation model, the Precision, Recall, and
mAP of YOLO-SF are all improved. However, the param-
eters increase, and the FPS decrease. The analysis of these
differences is mainly due to the following factors. First,
the introduction of the segmentation detection head adds
additional network layers and computational complexity to
achieve a pixel-level object segmentation. Second, the CBAM
module introduces additional convolutional layers and atten-
tion weight parameters for the channel and spatial attention
calculations, which increases the parameters. Although the
FPS has decreased, it remains above 20, satisfying the
requirements for real-time detection. While the parameters
have increased, it is essential to emphasize the significance

FIGURE 18. Fire scene detection in actual cases.

of achieving a higher detection accuracy in practical applica-
tions, particularly in the context of fire monitoring. Through
the optimization of hardware and the rational allocation of
computing resources, it is possible to improve the FPS, miti-
gate the impact of parameter increases, and achieve a balance
between accuracy and speed, thereby ensuring the effective
application of YOLO-SF in real scenarios.

111090 VOLUME 11, 2023



X. Cao et al.: YOLO-SF: YOLO for Fire Segmentation Detection

D. THE PRACTICAL LABORATORY
For the detection of the same fire scene, the YOLO-SF
algorithm demonstrates higher detection results than the orig-
inal YOLOv7-Tiny segmentation algorithm. In Figure 17, the
detection results of YOLO-SF exceed 95%, verifying that the
improved network has superior detection performance.

To verify the practicality of the YOLO-SF algorithm fur-
ther, several real-life cases are tested, as shown in Figure 18.
The results of the YOLO-SF algorithm for detecting flames
and smoke are approximately 90%, which can effectively
avoid the false detection of fire negative sample images. The
above experiments prove that the improved algorithm has
obvious robustness and practicability in fire detection, which
provides strong support for its application in actual scenarios.

V. CONCLUSION
The updated YOLO-SF algorithm can accurately recognize
fire objects and their backgrounds, regardless of the magni-
tude or type of fire scene, and can effectively detect and locate
fires. These results demonstrate the superior performance of
the proposed algorithm in terms of its accuracy, robustness,
stability, and practicality. Despite significant improvements,
we acknowledge that the YOLO-SF algorithm still has room
for improvement in terms of fire detection recall. This
requires further research and fine-tuning.

We will focus on enhancing recall to further improve the
performance of the algorithm. This could entail screening
and strengthening of more samples for difficult-to-detect
fire objects, as well as refining the network topology and
loss function to better capture and reflect fire object fea-
tures. Furthermore, we will investigate the application of the
algorithm to more difficult environmental situations, such as
nighttime fire detection, rain, snow, and other severe weather
conditions. These improvements improve the applicability
and utility of the proposed algorithm.

These models have the potential to become significant
tools for early fire detection, thereby enhancing firefighter
safety, improving the monitoring of buildings and infras-
tructure, enabling the implementation of automated fire sup-
pression systems, and optimizing future emergency response
operations. These improvements will lead to important inno-
vations in fire prevention and disaster management. We hope
to reduce the damage and loss caused by fire, improve the
safety level of society and the ability to deal with disasters,
and provide necessary technical support for future fire pre-
vention and emergency response.

REFERENCES
[1] Z. Li, L. S. Mihaylova, O. Isupova, and L. Rossi, ‘‘Autonomous flame

detection in videos with a Dirichlet process Gaussian mixture color
model,’’ IEEE Trans. Ind. Informat., vol. 14, no. 3, pp. 1146–1154,
Mar. 2018, doi: 10.1109/TII.2017.2768530.

[2] Y. Wang, L. Dang, and J. Ren, ‘‘Forest fire image recognition
based on convolutional neural network,’’ J. Algorithms Comput.
Technol., vol. 13, Nov. 2019, Art. no. 1748302619887689, doi:
10.1177/1748302619887689.

[3] X. Ding and J. Gao, ‘‘A new intelligent fire color space approach for forest
fire detection,’’ J. Intell. Fuzzy Syst., Appl. Eng. Technol., vol. 42, no. 6,
pp. 5265–5281, Apr. 2022.

[4] A. Khondaker, A. Khandaker, and J. Uddin, ‘‘Computer vision-based early
fire detection using enhanced chromatic segmentation and optical flow
analysis technique,’’ Int. Arab J. Inf. Technol., vol. 17, no. 6, pp. 947–953,
Nov. 2020, doi: 10.34028/iajit/17/6/13.

[5] B. Kim and J. Lee, ‘‘A Bayesian network-based information fusion com-
bined with DNNs for robust video fire detection,’’ Appl. Sci., vol. 11,
no. 16, p. 7624, Aug. 2021, doi: 10.3390/app11167624.

[6] M. Pan, H. Zhou, J. Cao, Y. Liu, J. Hao, S. Li, and C.-H. Chen, ‘‘Water
level prediction model based on GRU and CNN,’’ IEEE Access, vol. 8,
pp. 60090–60100, 2020, doi: 10.1109/ACCESS.2020.2982433.

[7] J. Zhang, H. Zhu, P. Wang, and X. Ling, ‘‘ATT squeeze
U-Net: A lightweight network for forest fire detection and
recognition,’’ IEEE Access, vol. 9, pp. 10858–10870, 2021, doi:
10.1109/ACCESS.2021.3050628.

[8] R. Qi and Z. Liu, ‘‘Extraction and classification of image features for fire
recognition based on convolutional neural network,’’ Traitement Signal,
vol. 38, no. 3, pp. 895–902, Jun. 2021, doi: 10.18280/ts.380336.

[9] Y. Li, J. Shang, M. Yan, B. Ding, and J. Zhong, ‘‘Real-time early indoor
fire detection and localization on embedded platforms with fully convolu-
tional one-stage object detection,’’ Sustainability, vol. 15, no. 3, p. 1794,
Jan. 2023, doi: 10.3390/su15031794.

[10] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, ‘‘You only learn one represen-
tation: Unified network for multiple tasks,’’ 2021, arXiv:2105.04206.

[11] S. Mehta and M. Rastegari, ‘‘Separable self-attention for mobile vision
transformers,’’ 2022, arXiv:2206.02680.

[12] Z. Li, B. Li, H. Ni, F. Ren, S. Lv, and X. Kang, ‘‘An effective surface
defect classification method based on RepVGG with CBAM attention
mechanism (RepVGG-CBAM) for aluminum profiles,’’ Metals, vol. 12,
no. 11, p. 1809, Oct. 2022, doi: 10.3390/met12111809.

[13] Z. Shao, H. Lyu, Y. Yin, T. Cheng, X. Gao, W. Zhang, Q. Jing, Y. Zhao,
and L. Zhang, ‘‘Multi-scale object detection model for autonomous ship
navigation in maritime environment,’’ J. Mar. Sci. Eng., vol. 10, no. 11,
p. 1783, Nov. 2022, doi: 10.3390/jmse10111783.

[14] R. Bohush and N. Brouka, ‘‘Smoke and flame detection in video
sequences based on static and dynamic features,’’ in Proc. Signal Process.,
Algorithms, Architectures, Arrangements, Appl. (SPA), Poznań, Poland,
Sep. 2013, pp. 20–25.

[15] J. Zhang, Y. Jia, D. Zhu, W. Hu, and Z. Tang, ‘‘Study on the situational
awareness system of mine fire rescue using faster Ross Girshick-
convolutional neural network,’’ IEEE Intell. Syst., vol. 35, no. 1, pp. 54–61,
Jan. 2020, doi: 10.1109/MIS.2019.2943850.

[16] H. Wu, Y. Hu, W. Wang, X. Mei, and J. Xian, ‘‘Ship fire detection
based on an improved YOLO algorithm with a lightweight convolutional
neural network model,’’ Sensors, vol. 22, no. 19, p. 7420, Sep. 2022, doi:
10.3390/s22197420.

[17] Y. Al-Smadi, M. Alauthman, A. Al-Qerem, A. Aldweesh, R. Quaddoura,
F. Aburub, K.Mansour, and T. Alhmiedat, ‘‘Early wildfire smoke detection
using different YOLOmodels,’’Machines, vol. 11, no. 2, p. 246, Feb. 2023,
doi: 10.3390/machines11020246.

[18] K. Xu, Y. Xu, Y. Xing, and Z. Liu, ‘‘YOLO-F: YOLO for flame detec-
tion,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 37, no. 1, Jan. 2023,
Art. no. 2250043.

[19] Z. Xue, H. Lin, and F. Wang, ‘‘A small target forest fire detection
model based on YOLOv5 improvement,’’ Forests, vol. 13, no. 8, p. 1332,
Aug. 2022, doi: 10.3390/f13081332.

[20] M. Luo, L. Xu, Y. Yang, M. Cao, and J. Yang, ‘‘Laboratory flame smoke
detection based on an improved YOLOX algorithm,’’ Appl. Sci., vol. 12,
no. 24, p. 12876, Dec. 2022, doi: 10.3390/app122412876.

[21] Y. Zheng, Z.Wang, B. Xu, andY. Niu, ‘‘Multi-scale semantic segmentation
for fire smoke image based on global information and U-Net,’’ Electronics,
vol. 11, no. 17, p. 2718, Aug. 2022, doi: 10.3390/electronics11172718.

[22] X. Zhang, H. Bian, Y. Cai, K. Zhang, and H. Li, ‘‘An improved tongue
image segmentation algorithm based on Deeplabv3+ framework,’’ IET
Image Process., vol. 16, no. 5, pp. 1473–1485, Apr. 2022.

[23] H. Harkat, J. M. P. Nascimento, and A. Bernardino, ‘‘Fire detec-
tion using residual Deeplabv3+ model,’’ in Proc. Telecoms Conf.
(ConfTELE), Leiria, Portugal, Feb. 2021, pp. 1–6, doi: 10.1109/Con-
fTELE50222.2021.9435459.

[24] Z. Wang, P. Yang, H. Liang, C. Zheng, J. Yin, Y. Tian, and W. Cui,
‘‘Semantic segmentation and analysis on sensitive parameters of forest fire
smoke using smoke-UNet and Landsat-8 imagery,’’ Remote Sens., vol. 14,
no. 1, p. 45, Dec. 2021, doi: 10.3390/rs14010045.

VOLUME 11, 2023 111091

http://dx.doi.org/10.1109/TII.2017.2768530
http://dx.doi.org/10.1177/1748302619887689
http://dx.doi.org/10.34028/iajit/17/6/13
http://dx.doi.org/10.3390/app11167624
http://dx.doi.org/10.1109/ACCESS.2020.2982433
http://dx.doi.org/10.1109/ACCESS.2021.3050628
http://dx.doi.org/10.18280/ts.380336
http://dx.doi.org/10.3390/su15031794
http://dx.doi.org/10.3390/met12111809
http://dx.doi.org/10.3390/jmse10111783
http://dx.doi.org/10.1109/MIS.2019.2943850
http://dx.doi.org/10.3390/s22197420
http://dx.doi.org/10.3390/machines11020246
http://dx.doi.org/10.3390/f13081332
http://dx.doi.org/10.3390/app122412876
http://dx.doi.org/10.3390/electronics11172718
http://dx.doi.org/10.1109/ConfTELE50222.2021.9435459
http://dx.doi.org/10.1109/ConfTELE50222.2021.9435459
http://dx.doi.org/10.3390/rs14010045


X. Cao et al.: YOLO-SF: YOLO for Fire Segmentation Detection

[25] S. Cheng, J. Ma, and S. Zhang, ‘‘Smoke detection and trend pre-
diction method based on Deeplabv3+ and generative adversarial net-
work,’’ Proc. SPIE, vol. 28, no. 3, pp. 33001–33006, 2019, doi:
10.1117/1.JEI.28.3.033006.

[26] K. Jing, Y. Jia, C. Zhang, and Z. Qin, ‘‘MobileAttentionNet: An efficient
network for semantic segmentation of forest fire images,’’ in Proc. 6th
Int. Symp. Comput. Inf. Process. Technol. (ISCIPT), Changsha, China,
Jun. 2021, pp. 377–380, doi: 10.1109/ISCIPT53667.2021.00082.

[27] J. Zeng, H. Ouyang,M. Liu, L. U. Leng, and X. Fu, ‘‘Multi-scale YOLACT
for instance segmentation,’’ J. King Saud Univ., Comput. Inf. Sci., vol. 34,
no. 10, pp. 9419–9427, 2022.

[28] G. Sun, Y. Wen, and Y. Li, ‘‘Instance segmentation using semi-
supervised learning for fire recognition,’’ Heliyon, vol. 8, no. 12, 2022,
Art. no. e12375.

[29] Z. Guan, X. Miao, Y. Mu, Q. Sun, Q. Ye, and D. Gao, ‘‘Forest fire
segmentation from aerial imagery data using an improved instance seg-
mentation model,’’ Remote Sens., vol. 14, no. 13, p. 3159, Jul. 2022, doi:
10.3390/rs14133159.

[30] Y.-C. Zhou, Z.-Z. Hu, K.-X. Yan, and J.-R. Lin, ‘‘Deep learning-based
instance segmentation for indoor fire load recognition,’’ IEEE Access,
vol. 9, pp. 148771–148782, 2021, doi: 10.1109/ACCESS.2021.3124831.

[31] C. Niu, H. Guo, and Y. Wang, ‘‘Fast flame recognition algorithm base on
segmentation network,’’ in Proc. IEEEConf. Virtual Reality 3DUser Inter-
faces Abstr. Workshops (VRW), Shanghai, China, Mar. 2023, pp. 458–461,
doi: 10.1109/VRW58643.2023.00099.

[32] L. Martins, F. Guede-Fernández, R. Valente de Almeida, H. Gamboa, and
P. Vieira, ‘‘Real-time integration of segmentation techniques for reduction
of false positive rates in fire plume detection systems during forest fires,’’
Remote Sens., vol. 14, no. 11, p. 2701, Jun. 2022, doi: 10.3390/rs14112701.

[33] H. Wei and Y. Huang, ‘‘Online multiple object tracking using
spatial pyramid pooling hashing and image retrieval for autonomous
driving,’’ Machines, vol. 10, no. 8, p. 668, Aug. 2022, doi:
10.3390/machines10080668.

[34] D. Carmo, I. Campiotti, I. Fantini, L. Rodrigues, L. Rittner, and R. Lotufo,
‘‘Multitasking segmentation of lung and COVID-19 findings in CT scans
using modified EfficientDet, UNet and MobileNetV3 models,’’ in Proc.
17th Int. Symp. Med. Inf. Process. Anal., vol. 12088, Dec. 2021, pp. 65–74.

[35] Y. Cai, Y. Long, Z. Han, M. Liu, Y. Zheng, W. Yang, and L. Chen, ‘‘Swin
Unet3D: A three-dimensional medical image segmentation network com-
bining vision transformer and convolution,’’ BMC Med. Informat. Decis.
Making, vol. 23, no. 1, p. 33, Feb. 2023.

[36] R. Shi, S. Yang, Y. Chen, R. Wang, M. Zhang, J. Lu, and Y. Cao,
‘‘CNN-transformer for visual-tactile fusion applied in road recognition
of autonomous vehicles,’’ Pattern Recognit. Lett., vol. 166, pp. 200–208,
Feb. 2023.

[37] Q. Wang, H. Fei, S. N. A. Nasher, X. Xia, and H. Li, ‘‘A macaque brain
extraction model based on U-Net combined with residual structure,’’ Brain
Sci., vol. 12, no. 2, p. 260, Feb. 2022, doi: 10.3390/brainsci12020260.

[38] S. Liu, B. Zhao, Y. Wang, M. Zhu, and H. Fu, ‘‘Squeeze-and-excitation
blocks embedded YOLO model for fast target detection under poor imag-
ing conditions,’’ Proc. SPIE, vol. 12277, pp. 281–286, Jul. 2022.

[39] N. Zaghari, M. Fathy, S. M. Jameii, and M. Shahverdy, ‘‘The improve-
ment in obstacle detection in autonomous vehicles using YOLO non-
maximum suppression fuzzy algorithm,’’ J. Supercomput., vol. 77, no. 11,
pp. 13421–13446, Nov. 2021.

[40] S. Ma, L. Wang, P. Chen, R. Qin, L. Hou, and B. Yan, ‘‘A mixed
visual encoding model based on the larger-scale receptive field for human
brain activity,’’ Brain Sci., vol. 12, no. 12, p. 1633, Nov. 2022, doi:
10.3390/brainsci12121633.

[41] A. Lou and M. Loew, ‘‘CFPNET: Channel-wise feature pyramid for
real-time semantic segmentation,’’ in Proc. IEEE Int. Conf. Image Pro-
cess. (ICIP), Anchorage, AK, USA, Sep. 2021, pp. 1894–1898, doi:
10.1109/ICIP42928.2021.9506485.

[42] X. Xu, Y. Jiang, and W. Chen, ‘‘DAMO-YOLO: A report on real-time
object detection design,’’ 2022, arXiv:2211.15444.

[43] Y. Li, H. Yang, J. Wang, C. Zhang, Z. Liu, and H. Chen, ‘‘An image fusion
method based on special residual network and efficient channel attention,’’
Electronics, vol. 11, no. 19, p. 3140, Sep. 2022, doi: 10.3390/electron-
ics11193140.

[44] H. You, Y. Lu, and H. Tang, ‘‘Plant disease classification and adversar-
ial attack using SimAM-EfficientNet and GP-MI-FGSM,’’ Sustainability,
vol. 15, no. 2, p. 1233, Jan. 2023, doi: 10.3390/su15021233.

[45] M. Gao, C. Chen, J. Shi, C. S. Lai, Y. Yang, and Z. Dong, ‘‘A multiscale
recognition method for the optimization of traffic signs using GMM and
category quality focal loss,’’ Sensors, vol. 20, no. 17, p. 4850, Aug. 2020,
doi: 10.3390/s20174850.

[46] Z. Leng, M. Tan, C. Liu, E. D. Cubuk, X. Shi, S. Cheng, and D. Anguelov,
‘‘PolyLoss: A polynomial expansion perspective of classification loss
functions,’’ 2022, arXiv:2204.12511.

XIANGHONG CAO was born in 1972. She is
currently the Deputy Dean of the School of Archi-
tectural Environmental Engineering, Zhengzhou
University of Light Industry, the Director of Henan
Provincial Intelligent Building and Human Set-
tlement Engineering Technology Research Center,
a professor, and a master tutor. Her main research
interests include building electrical and intelligent
fire protection.

YIXUAN SU was born in 1999. He is cur-
rently pursuing the Graduate degree with the
School of Architectural Environment Engineering,
Zhengzhou University of Light Industry. His main
research interests include fire detection, instance
segmentation, YOLO algorithm, and image
recognition.

XIN GENG was born in 1982. He is currently pur-
suing the Ph.D. degree. He is also a Lecturer with
the School of Architectural Environmental Engi-
neering, Zhengzhou University of Light Industry,
and a master tutor. His main research inter-
ests include embedded system design and image
recognition.

YONGDONG WANG was born in 1990. He is
currently pursuing the Ph.D. degree. He is also a
Lecturer with the School of Architectural Envi-
ronment Engineering, Zhengzhou University of
Light Industry, and a master tutor. His main
research interest includes artificial intelligence
spatio-temporal data analysis.

111092 VOLUME 11, 2023

http://dx.doi.org/10.1117/1.JEI.28.3.033006
http://dx.doi.org/10.1109/ISCIPT53667.2021.00082
http://dx.doi.org/10.3390/rs14133159
http://dx.doi.org/10.1109/ACCESS.2021.3124831
http://dx.doi.org/10.1109/VRW58643.2023.00099
http://dx.doi.org/10.3390/rs14112701
http://dx.doi.org/10.3390/machines10080668
http://dx.doi.org/10.3390/brainsci12020260
http://dx.doi.org/10.3390/brainsci12121633
http://dx.doi.org/10.1109/ICIP42928.2021.9506485
http://dx.doi.org/10.3390/electronics11193140
http://dx.doi.org/10.3390/electronics11193140
http://dx.doi.org/10.3390/su15021233
http://dx.doi.org/10.3390/s20174850

