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ABSTRACT The significance of short-term power load forecasting extends to grid dispatching and future
planning. To address the issues of nonlinear characteristics and poor prediction accuracy of original power
load, a hybrid short-term power load forecasting method was proposed based on Improved Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), Grey Relation Analysis
(GRA), Improved Secondary Variation Differential Evolution Algorithm (SVDE), Bidirectional Gated
Recurrent Unit (BiGRU) and Error Correction Model. Firstly, ICEEMDAN decomposition is used to divide
the sequence into Intrinsic Mode Functions (IMF) and a residual component (Res), and GRA is used to
reconstruct the partial component sequences to improve the model operation efficiency and anti-interference
ability. Then, an Improved Secondary Variation Differential Evolution Algorithm (SVDE) is proposed
to perform hyperparameter optimization on BiGRU neural networks to predict the processed component
sequences. Finally, an Error CorrectionModel based on SVDE-BiGRU is established by the processed mode
components and factors such as temperature and holiday weekends to further increase the accuracy of its load
prediction. The experimental results show that the RMSE, MSE, and MAPE of the prediction method are
89.72, 60.56, and 0.55% on average, respectively. Compared with the common BiGRU prediction method its
MAE value is reduced by 79.02%. Compared with several mainstreammethods, its MAE value is reduced by
70.88% at maximum and 40.62% at minimum, which proves the effectiveness and accuracy of the proposed
method in short-term power load forecasting.

INDEX TERMS Differential evolutionary algorithm, short-term power load forecasting, error correction,
bidirectional gated recurrent unit (BiGRU), ICEEMDAN, GRA.

I. INTRODUCTION
In recent years, with the continuous development of intel-
ligent grid technology, accurate and efficient power load
forecasting can provide a reliable basis for grid scheduling,
thus ensuring the stable and efficient operation of the power
system [1]. This has significant practical implications for
energy utilization and the planning and scheduling of power
systems [2]. According to the time horizon, power load
forecasting can be classified into three categories: Long-term
Load Forecasting [3], Medium-term Load Forecasting, and
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Short-term Load Forecasting [4], among which short-term
load forecasting has better guidance for grid economic
dispatch, power consumption planning and resource utiliza-
tion [5].

According to the uncertainty of the grid load and
nonperiodic factors such as weather and holidays, short-
term power load forecasting methods are divided into three
main categories: traditional forecasting methods [6], modern
forecasting methods, and combined forecasting methods [7].

1) Traditional forecasting methods: traditional forecasting
methods are based on mathematical statistical models, such
as the peak load model method, regression analysis [8], the
least squares method [9], and the gray model method. In [10],
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fuzzy multiple linear regression was used for short-term
forecasting of holiday loads. In [11], an improved autore-
gressive moving combination forecasting model was used
for seasonal short-term and medium-term load forecasting,
which is a simple and fast computational model, but the
model lacks autonomous learning capability and has low
prediction accuracy for complex nonlinear systems [12].
2) Modern forecasting methods: modern forecasting

methods based on artificial intelligence, such as Support
Vector Machine (SVM) [13], extreme learning machines,
and Artificial Neural Networks (ANN) [14], [15], [16],
mainly include Recurrent Neural Networks (RNN), Long
Short-Term Memory neural networks (LSTM), Gated Recur-
rent Unit (GRU) neural networks, and support vector
regression (SVR) and improved algorithms [17], [18]. In [19],
a chaotic particle swarm algorithm was used to optimize
support vector machine parameters with some improvement
in short-term prediction accuracy. In [20], wavelet analysis
and LSTM neural networks are combined in a deep learning
architecture for short-term prediction. In [21], a combination
of genetic algorithm and GRU neural network is used for
prediction, which has a faster training speed and can be
applied in load prediction with poor smoothness [22].
3) Combinatorial prediction methods: they are weighted

and integrated by different models and algorithms into
a combined forecasting model, decompose the load into
multiple subseries before model prediction, and finally
superimpose the prediction results of each series to achieve
the final prediction value [23].

For nonlinear, nonstationary, and nonperiodic original
power load, many scholars have started to combine data
decomposition algorithms with neural networks for pre-
diction as a way to enhance the prediction accuracy of
forecasting models [24]. In [25], the data decomposition
algorithm and neural network were combined to first decom-
pose the original power load into individual subcomponents
by Empirical Mode Decomposition (EMD), and then the
LSTM neural network was used to predict the different
components separately, and the forecasting accuracy of their
combined model was verified by example to be high, but
the LSTM neural network has many parameters and the
training speed is slow [26]. In [27], the EMD algorithm
and GRU neural network were composed into a hybrid
prediction model for short-term load forecasting, and it
was verified that the EMD-GRU hybrid model has greater
prediction accuracy than a single model. However, the
EMD algorithm exists issues such as pattern confounding
and endpoint effects when decomposing the original power
load, and it does not optimize the key parameters of the
prediction model, which will affect the prediction accuracy
and effectiveness when performing load forecasting [28],
so there is still room for improvement in this regard. TheGRU
neural network only considers the influence of historical
period influencing factors on the forecasted load, while the
electric load is not only determined by the load influencing
factors in the historical period but also associated with the

influencing factors in the future period. Therefore, the GRU
neural network cannot fully extract the effective potential
relationship between the load characteristics data [29].
In addition to these, meteorological factors such as

temperature are crucial for load forecasting. In recent years,
the development of the weather forecasting (NWP) model
has improved the accuracy and reliability of forecasting [30].
Meanwhile, some scholars have proposed prediction models
using weather forecast correction neural networks [31], but
the hybrid prediction effect of these weather forecast models
and the original prediction models is not excellent.

The contributions and innovations of this paper are as
follows:
• A novel forecasting method combining a hybrid predic-

tion method and an error correction model is proposed,
which can take advantage of the high accuracy of the
combined forecasting method and consider the errors
brought by external factors such as weather on the
forecasts.

• Proposes an improved quadratic variational differential
evolution algorithm (SVDE) to optimize the hyper-
parameters of the bidirectional gated recurrent unit
(BiGRU) to enhance the prediction accuracy and speed.

• Verify the effectiveness and applicability of the method
through example experiments and error criteria.

The remainder of this paper is organized as follows:
Section II describes original power load decomposition
and reconstruction methods. Section III presents the SVDE
optimization algorithm and is tested for performance. Then,
Section IV outlines the prediction method and the prediction
steps. Next, Section V includes example validation and
analysis of prediction results. Finally, section VI concludes
the paper.

II. LOAD DATA DECOMPOSITION AND RECONSTRUCTION
A. ICEEMDAN DECOMPOSITION
The actual power load has a large number of nonlinear,
non-stationary, and strong random fluctuation characteristics.
Empirical Mode Decomposition (EMD) is a data mining
method with the adaptive capability to decompose signals
based on the time-scale features of the data itself, which can
handle complex nonlinear load prediction problems without
any predefined basis functions. The Ensemble Empirical
Mode Decomposition (EEMD) is proposed to effectively
suppress the mode mixing in the EMD decomposition,
but the reconstruction error is large in the decomposition
process [32]. The Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) decom-
position effectively reduces the reconstruction error, and the
decomposition is more efficient.

Based on the decomposition algorithms of EMD and
CEEMDAN, the Improved Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (ICEEMDAN)
decomposes the original signal x(t) into several Intrinsic
Mode Functions (IMF) components and a residual com-
ponent by introducing white Gaussian noise with mean
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0 and unit variance in the decomposition process [33]. The
ICEEMDAN decomposition method effectively solves the
problems of mode aliasing in the EMD algorithm, possible
residual noise in the EEMD algorithm, and pseudo-mode in
the CEEMDAN algorithm. The decomposition process of the
ICEEMDAN algorithm is as follows.

1) The Ek (·) operator in the EMD decomposition method
is introduced to decompose the kth mode component, whose
component is denoted as

−−−→
IMFk , and theM (·) operator is used

to generate the local mean value of the signal.
2) Add I groups of white Gaussian noise to the original

power load sequences, construct a partial mean decomposi-
tion sequences x i (t) = x (t)+ε0E1

(
ξ i (t)

)
by the EMD, and

obtain the first-order residuals as equation (1).

γ1 =
〈
M
(
x i (t)

)〉
(1)

where ε0 = δ0std (x)
/
std

(
E1
(
ξ i (t)

))
is used to remove

residual noise in the initial stage, δ0 is the inverse of the
expected signal-to-noise ratio between the first group ofwhite
noise (ξ i) and the analyzed signal, i denotes the times of
adding noise, std denotes the standard deviation, and ⟨·⟩
denotes averaging over the whole.

3) Calculate the first-stage (k = 1) mode components,
as follows:

−−−→
IMF1 (t) = x (t)− γ1 (t) (2)

4) Using the average of the local means of γ1 (t) +
ε1E2

(
ξ i (t)

)
, the second-order residuals and the second-order

mode components IMF are obtained as equations (3)-(4).

γ2 (t) =
〈
M
(
γ1 (t)+ ε1E2

(
ξ i (t)

))〉
(3)

−−−→
IMF2 (t) = γ1 (t)−

〈
M
(
γ1 (t)+ ε1E2

(
ξ i (t)

))〉
(4)

5) For the remaining stages k = 3, . . . , k , calculate the kth
order residuals and IMF components as equations (5)-(6).

γk (t) =
〈
M
(
γk−1 (t)+ εk−1Ek

(
ξ i (t)

))〉
(5)

−−−→
IMFk (t) = γk−1 (t)−

〈
M
(
γk−1 (t)+ εk−1Ek

(
ξ i (t)

))〉
(6)

6) Repeat the previous step to find all residuals and
components.

B. GREY RELATION ANALYSIS
The principle of Grey Relation Analysis (GRA) is to deter-
mine the degree of similarity between different influencing
factors and the system by calculating the grey correlation
between them and analyzing the influence degree of different
influencing factors on the development of the system [34].
It is divided into four main steps:

1) Determine the analysis sequences. Let the parent
sequence is X0= (X0 (1) ,X0 (2) , · · · ,X0 (n)), the sub-
sequence is Xi= (Xi (1) ,Xi (2) , · · · ,Xi (k) , · · · ,Xi (n)),
where i = k = 1, 2, · · · , n.

2) Dimensionless preprocessing of the subseries. Themean
value of the subseries data is first found, and then that

mean value is removed using each data of the subseries. The
formula is as follows:

X ′i = Xi
/
X̃i (7)

3) Calculate the grey relational coefficient. The formula is
as equations (8)-(9).

γ (X0(k),Xi(k)) =
minimink1i(k)+ξmaximaxk1i(k)

1i (k)+ ξmaximaxk1i(k)
(8)

1i (k) =
∣∣X ′o (k)− X ′i (k)

∣∣ (9)

4) Calculate the gray relational degree between them. The
formula is as follows:

γ (X0,Xi) =
1
n

n∑
k=1

γ (X0 (k) ,Xi (k)) (10)

III. SVDE ALGORITHM AND ALGORITHM PERFORMANCE
A. SECONDARY VARIATION DIFFERENTIAL EVOLUTION
ALGORITHM
Differential Evolution (DE) is a random search algorithm
based on population differences, which is essentially an
evolutionary algorithm based on real number encoding with
the idea of preservation of superiority [35]. The algorithm
is inspired by the criterion of ‘‘survival of the fittest’’ in
nature and selects the next generation by initializing the
population, evaluating individual fitness value, differential
variation operation, hybridization operation, and selection
operation. It has the characteristics of few control parameters,
strong robustness, and strong global optimization capability.
The four steps of the standard differential evolution algorithm
are as follows.

1) POPULATION INITIALIZATION
A random initialization in the solution space produces a
parent population with population size NP and dimension
D. The jth dimensional vector of each individual (−→xi ) is
expressed as:{

xi,j = xmin xj + rand (0, 1) ·
(
xmax xj − xmin xj

)
i = 1, 2, · · · ,NP; j = 1, 2, · · · ,D

(11)

2) VARIATION OPERATION
Through the difference strategy, the difference vector is
generated by subtracting two different parents in the parent
population, and the vector is synthesized with the individuals
to be mutated to obtain the variation vector [36]. Its common
variation strategies are as equations (12)-(15).

DE/rand/1 : vi,G+1 = xr1,G + F ·
(
xr2,G − xr3,G

)
(12)

DE/best/1 : vi,G+1 = xbest,G + F ·
(
xr1,G − xr2,G

)
(13)

DE/current−to−rand/1 :

vi,G+1 = xi,G + F ·
(
xr1,G − xi,G

)
+ F ·

(
xr2,G − xr3,G

)
(14)
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DE/current−to−best/1 :

vi,G+1 = xi,G + F ·
(
xbest,G − xi,G

)
+ F ·

(
xr1,G − xr2,G

)
(15)

where vi,G+1 denotes the individual after variation, xi,G
denotes the ith individual in the Gth generation; xr1,G,xr2,G
and xr3,G denote the different individuals randomly selected
in the current population, xbest,G denotes the best individual
in the Gth generation, and F is the scaling factor, whose
value range is generally [0,1]. After many tests, the
DE/current−to−best/1 variation strategy has the shortest
search time under the same optimal solution when the value
of the scaling factor is 0.55.

3) CROSSOVER OPERATION
After the variation operation, the experimental individ-
uals were obtained by the binomial crossover of the
Gth generation individuals and the mutant individuals, as
equations (16)-(17).

ui,G+1 =
(
ui1,G+1, ui2,G+1, · · · , uiD,G+1

)
(16)

uij,G+1 =

{
vij,G+1 if rand (0, 1) ≤ CR, or j = jc
xij,G others

(17)

where CR is the crossover factor in the crossover operation,
whose value range is generally [0,1], and the cross effect is
better when the value of 0.35 is tested. jc denotes a random
integer in the interval [1, D].

4) THE SELECTION OPERATION
Differential evolutionary algorithms usually use a greedy
selection strategy to select the better fitness among the child
individual ui,G+1 and current individual xi,G as members of
the next generation.

xi,G+1 =

{
ui,G+1 fi

(
ui,G+1

)
≤ fi

(
xi,G

)
xi,G others

(18)

fi (·) = |f (·)− f (xbest)| (19)

where ui,G+1 denotes the child individual after the selection
operation, xi,G is the contemporary individual, xbest is the
optimal solution of the test function. f (·) is the value
of the test function, and fi (·) denotes the value of the
fitness function. When the value of the fitness function
of the offspring individual is less than the value of the
parent individual, the child individual will replace the parent
individual into the next generation to complete the renewal of
the population.

The traditional differential evolutionary algorithm uses a
single variation strategy to produce variation individuals,
which makes its algorithm parameters remain fixed in the
optimization process, resulting in the algorithm search easily
falling into the local optimum and premature phenomenon,
which affects the solution accuracy and convergence speed

of the algorithm [37]. Therefore, the initial period of
the differential evolution algorithm should have a large
optimization range to ensure the diversity of the population.
Gaussian variation, as a variation operation method to
improve the genetic algorithm, can produce a large variation
step, which makes the algorithm a better global search
ability, so it is suitable for exploration in the early period
of the algorithm. In the middle and later periods of the
algorithm, the local optimum should be jumped out as soon
as possible, and the local search should be conducted for
the region near the current optimal individual [38]. The
DE/current−to−best/1 variation strategy can search for
better individuals faster while ensuring a certain population
diversity. Compared with DE/rand/1 and DE/best/1, it
has a faster speed of convergence and the capability to
escape from the local optimum, so it is suitable for the later
development stage of the algorithm.
Aiming at the different characteristics of the above

two variation strategies, a differential evolution algorithm
(SVDE)with a secondary variation strategy is proposed, com-
bining Gaussian variation and DE/current−to−best/1 vari-
ation, adding a dynamic weight factor SA to balance
the weights of the two strategies, guiding the algorithm
to select the appropriate variation strategy at differ-
ent evolutionary times, and improving the optimization
ability of the algorithm. The specific strategies are as
equations (20)-(21).

Mi =



vi,G+1= N
(
xbest,G+xi,G

2
,
∣∣xbest,G − xi,G∣∣)

rand (0, 1) ≤ SAi
vi,G+1=xi,G+F ·

(
xbest,G−xi,G

)
+F ·

(
xr1,G−xr2,G

)
others

(20)

SAi = 1− e−|fi(xi,G)−fi(xbest,G)| (21)

where Mi denotes the variation strategy performed for
the individual xi,G, and SAi is the dynamic weight factor
corresponding to the individual xi,G. The value of the
current individual xi,G is closer to the value of the optimal
individual xbest,G in the Gth generation, SAi has a smaller
value, and the probability of the algorithm using the
DE/current−to−best/1 variation strategy is larger, and vice
versa the probability of the algorithm using the Gaussian
variation strategy is larger. In the evolutionary process, the
value of SAi is adaptively adjusted with the evolutionary
process, which is able to explore the unknown search region,
but also able to accelerate the mining of the neighborhood of
the known excellent individual, which in turn improves the
algorithm’s ability to find the optimal.

In order to further improve the problem of premature
convergence of the difference algorithm, it should be
ensured that the global and local search capabilities of the
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TABLE 1. Each test function and related parameters.

algorithm collaborate with each other. Therefore, a stagnation
perturbation strategy is added and a parametric population
update ratio rG is introduced. According to its value and the
size of the set threshold, adjust the value of the dynamic
weight factor SAi, so as to change the evolutionary direction
of the next iteration of individuals, and ensure that the
algorithm jumps out of this local extreme value region in a
timely and limited manner. Their population renewal ratios
rG and SAi are related as follows.

SAi,G+1 =

{
0.5 rG ≤ δ

SAi,G others
(22)

where if the value of δ is too large, it will affect the evolution
of the population towards the favorable trend in the early stage
of evolution; while if the value of δ is too small, it will miss
the better time of jumping out of the local extreme value.
By trying continuously from 0 to 1 values, good optimization
performance for different test functions is shown when the
value of δ is 0.35.
The specific process of the SVDE algorithm is shown in

Fig. 1.

B. SVDE FUNCTION PERFORMANCE TEST
In order to evaluate the performance of the overall opti-
mization of the SVDE algorithm, the Particle Swarm
Optimization (PSO), Differential Evolution algorithm (DE),
Genetic Algorithm (GA), Chaos Sparrow Search Opti-
mization Algorithm (CSSOA) [39], Whale Optimization
Algorithm with Hybrid Reverse Learning (MWOA) [40] and
SVDE algorithm were subjected to performance comparison
experiments on five benchmark test functions, and each func-
tion and the associated parameters are shown in Table 1. For
ensuring fairness, the population size of the six algorithms
NP is uniformly set to 100, the dimensionality is 20, the
maximum number of function evaluations be 20,000, each
algorithm is run 30 times independently [41], and the specific
parameters of each algorithm are established as in Table 2,
and the optimal mean solution (the first row of each function)
and standard deviation (the second row of each function) are
obtained as in Table 3.

FIGURE 1. Flowchart of SVDE optimization algorithm.

TABLE 2. Parameter settings of each algorithm.

In the same dimension, compared with the other three
algorithms, the SVDE algorithm has an absolute advantage
in convergence accuracy and the ability to find the best
(Table 3). Except for the difference between the SVDE
algorithm and other algorithms on function 5, the optimum
mean and standard deviation of the optimal solution of SVDE
on the rest of the functions reach the optimal level, followed
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TABLE 3. Optimal mean solution and standard deviation of functions.

FIGURE 2. Logarithmic curve of fitness value of f2-f5 function.

by DE and PSO algorithms, and the standard GA algorithm
has the worst performance in finding the best.

Within the maximum number of evaluations (20,000
times), 20 points are taken on average as the observation
points for function evaluation. In order to show the conver-
gence speed of the SVDE algorithm more intuitively, the
convergence curves of f2-f5 four more complex test functions
are shown in Fig. 2, with the horizontal coordinate being the
number of function evaluations and the vertical coordinate
being the logarithm of the mean fitness of each algorithm run
independently for 30 times at each fixed observation point.

As shown in Fig. 2, compared with three traditional
optimization algorithms and two mainstream improvement
algorithms, the SVDE algorithm has strong convergence abil-
ity and optimization seeking effect. Since the dynamic weight
factor SA in the SVDE algorithm can change the proportion
of Gaussian variation and DE/current−to−best/1 variation
in real-time according to the population update ratio, it makes
the algorithm jump out of local optimum based on having a

large range of seeking advantages more quickly to achieve
better convergence speed and convergence effect.

IV. LOAD FORECASTING METHOD BASED ON ERROR
CORRECTION MODEL AND ICEEMDAN-GRA-CVDE-BIGRU
A. BIGRU
A Recurrent Neural Network (RNN) is suitable for analyzing
and processing time series data because the recurrent unit
structure is introduced in an RNN network, which can
transfer the information between layers in both directions,
and then form a memory of the information, so it has
some memory ability. However, the RNN neural network has
some shortcomings, when the sequence is long, its learning
ability and the ability of memory will be reduced, and
there are problems of gradient disappearance and gradient
explosion [42].

The LSTM neural network is a special kind of RNN,
which was proposed to solve the problem of RNN gradient
disappearance [43]. It has been widely used in the territory of
predicting time series data, andmany variants have evolved in
recent years according to different needs. GRU is a variation
of LSTM that uses a gated recurrent neural network topology
that has fewer training parameters and faster training speed
compared to LSTM and maintains the prediction effect of
LSTM [44]. The inner unit of the GRU is very familiar to that
of the LSTM, with the difference that the GRU integrates the
input and forgetting gates in the LSTM into a single update
gate. As a result, there are only two gate structures in GRU,
which are the update gate and the reset gate. The update gate
is used to indicate the degree to which the feature information
from before the moment is retained in the current moment,
and the reset gate is used to control the degree to which
the message from the current moment is combined with that
from the previous moment. The GRU neural network with the
structure shown in Fig. 3.

The calculation formulas of the GRU neural network are
as equations (23)-(26).

rt = σ (Wr [ht−1, xt ]) (23)

zt = σ (Wz [ht−1, xt ]) (24)
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FIGURE 3. Structure and connection of gated recurrent units.

FIGURE 4. Structure of BiGRU neural network model.

ĥt = tanh
(
Wĥ [rt ∗ ht−1, xt ]

)
(25)

ht = (1− zt) ∗ ht−1 + zt ∗ ĥt (26)

where xt is the input at moment t , zt and rt indicate the
output of the update gate and reset gate at the moment
of t; ht and ht−1 are the state information of the current
moment and the previous moment, respectively; ĥt indicates
the candidate hidden state, Wĥ, Wr and Wz are the weight
matrices of the candidate hidden state, update gate, and
reset gate, respectively; σ indicates the sigmoid activation
function, [] indicates the connection of two vectors, and ∗
indicates the product between matrices.

The information is propagated in a unidirectional neural
network in a sequence from front to back, and the power
load is associated with both historical periods as well as
future periods, and a single GRU neural network cannot
further extract the deeper features of the data [45]. Aiming
at the shortcomings of one-way information transfer, the
model prediction performance is improved by constructing
a Bi-directional Gated Recurrent Unit (BiGRU). The estab-
lished BiGRU model is shown in Fig. 4.
BiGRU has two independent hidden layers with the same

internal structure and opposite directions, relying on both
directions to provide data information to the network simul-
taneously. The GRU of the first layer calculates the forward
propagation information of the data in the temporal order,

while the GRU of the second layer reads the time series in
the reverse direction and calculates the backward propagation
information of the data in the reverse chronological order.
These two layers of GRUs do not interfere with each other in
computing their hidden states, and the final BiGRU network
output information is determined jointly by the two. The
output equation is as follows:

h⃗t = GRU (xt , h⃗t−1) (27)
←

h t = GRU (xt ,
←

h t−1) (28)

Ht = ωt h⃗t + νt
←

h t + bt (29)

where GRU (·) denotes the nonlinear change obtained after
learning by a single GRU network, ωt and νt denote the
weights corresponding to the forward GRU and the backward
GRU at time t , and bt is the bias term. h⃗t is the output of
the forward GRU and

←

h t is the output of the backward GRU,
and through the forward transmission hiding layer and the
backward transmission hiding layer to obtain the hidden state
Ht at the moment.

B. ERROR CORRECTION MODEL
Due to the influence of objective factors such as temperature
and holidays, the load can change significantly during
the periods such as sudden temperature drops, sudden
temperature rises, and holiday weekends. On the other hand,
the daily higher load periods and lower load periods in
the short-term load have periodicity, and BiGRU neural
network training cannot quickly make accurate predictions
of these anomalies when the load values are directly used
as outputs. According to the six-dimensional data in the
example dataset, the correlation between its temperature,
humidity, precipitation, holiday weekend type, high or low
load periods and original power load are calculated using the
grey correlation analysis (GRA), and the specific correlation
is shown in Table 4.

As can be seen in Table 4, humidity and precipitation
variables have a low correlation with original power load of
less than 0.6. Temperature, holiday weekend type, high or low
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TABLE 4. Correlation of six-dimensional data variables with original power load.

FIGURE 5. Neural network structure of error correction model.

load periods have higher correlation with raw electricity load
and they can be used as inputs to the error correction model.

The ICEEMDAN decomposed feature components
(IMF1, . . . , IMFk ), temperature, holiday weekend type, and
daily high or low load types are selected as inputs f (ii)
of the BiGRU neural network. The prediction residual
sequences y(i) obtained by subtracting the original load
sequences from the initial prediction sequences of the
ICEEMDAN-GRA-SVDE-BiGRU model is used as outputs,
and the SVDE-BiGRU neural network is used to train its
hyperparameters so as to obtain load prediction residual
sequences in the test set. The neural network structure of the
error correction model is shown in Fig. 5.

C. ICEEMDAN-GRA-CVDE-BIGRU-ECM PREDICTION
PROCESS
In order to reduce load forecasting errors, a combined
load forecasting model based on ICEEMDAN-GRA-CVDE-
BiGRU and Error Correction Model (ECM) is proposed, and
its specific process is shown in Fig. 6. The specific steps are
as follows.

Step 1. The ICEEMDAN method is used to decompose
the power load history data into two categories: multiple
eigenmode components (IMF) and residual components
(Res).

Step 2. The grey correlation analysis (GRA) is used to
analyze the correlation of the decomposed components, and
the sequences of components with similar correlation are
fused to form Intrinsic Mode Functions (IMF1′, . . . , IMFm′).

Step 3. The multiple processed mode components are
input to the BiGRU neural network for training, and the
four hyperparameters of the number of hidden layer neurons
(L1,L2), learning rate lr , and batch_size of BiGRU are
optimized by the SVDE algorithm, to obtain multiple initial
prediction sequences.

Step 4. The error correction model is built by using
five variables in the training set: prediction residual series

FIGURE 6. ICEEMDAN-GRA-SVDE-BiGRU-ECM prediction method flow.

(the load series minus the initial prediction series), mode
components (IMF1′, . . . , IMFm′), temperature, holiday
weekend type, and daily high or low load type, which leads to
the prediction error series. Finally, the initial prediction series
and the prediction error series are superimposed to obtain the
final load prediction results after error correction.

V. ANALYSIS AND VERIFICATION OF ALGORITHMS
A. INTRODUCTION OF ALGORITHMS AND EVALUATION
CRITERIA
To verify the accuracy and applicability of this load
forecasting method, the experimental data were selected from
a loaded dataset of an area in Ningxia City, China, which
included load, temperature, humidity, precipitation, holiday
weekend type, high or low load periods in six dimensions.
The data time was selected from January 1, 2020, to January
20, 2020, and from July 10 to July 30 of the same year,
which respectively represent the experimental conditions
under high and low temperature environments. The data
sampling interval is 15 minutes, and each part of the data set
has 1920 sampling points, for a total of 3840 sampling points.
To improve the correlation between different factors, four-
dimensional data of load sequences, temperature, holiday
weekend type, high or low load periods with correlation
are selected as inputs to the BiGRU neural network, and
these data are normalized to [-1,1], and the test set is
back-normalized according to the training set. According to
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FIGURE 7. Original power load.

the data division criteria of the training and test sets, the first
1728 sampling points data of each part of the data set are used
as the training set, which contains the data for the validation
part of the model, and the last 192 sampling points data are
used as the test set. The original power load is shown in Fig 7.

Due to the uncertainty and volatility of electric load, root
mean square error (RMSE), mean absolute error (MAE) and
mean absolute percentage error (MAPE) are proposed to
verify the accuracy of model prediction in order to evaluate
the prediction performance of each model. In addition, the
standard deviation (S) and correlation coefficient (R) are used
as auxiliary indicators of prediction accuracy. The specific
formulas are as equations (30)-(34).

RMSE =

(
1
N

N∑
i=1

(
yi − ŷi

)2) 1
2

(30)

MAE =
1
N

N∑
i=1

∣∣yi − ŷi∣∣ (31)

MAPE =
1
N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100% (32)

S =

√√√√√ 1
N

N∑
i=1

(yi − ȳ)

2

(33)

R =

N∑
i=1

(
ŷi −¯̂y

)
(yi − ȳ)√

N∑
i=1

(
ŷi −¯̂y

)2
·

N∑
i=1

(yi − ȳ)2
(34)

where yi represents the actual value of the power load and
ŷi represents the forecast value of the power load. ȳ is the
average of the actual values and ¯̂y is the average of the

predicted values, and ȳ=
N∑
i=1

yi, ¯̂y=
N∑
i=1

ŷi/N .

FIGURE 8. Decomposition results of ICEEMDAN power load.

B. ICEEMDAN DECOMPOSITION AND RECONSTRUCTION
ICEEMDAN decomposition can calculate the optimal num-
ber of modal components adaptively according to the
complexity and local characteristics of the data sequences,
and ensure the accuracy of the reconstruction operation on the
components. As shown in Fig. 8, the load sequences of this
part in January are decomposed, the noise standard deviation
and signal average are set to 0.2 and 500 times, and the
maximum number of iterations is 1000, and nine sets of mode
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FIGURE 9. Correlation heat map of sequences and components.

TABLE 5. Decomposition reconstruction of each component seque nce.

components (IMF) and residuals (Res) are obtained from high
to low frequency.

From the decomposition results, the frequency volatility
of each high-frequency component of ICEEMDAN is small,
and the fluctuation trends of IMF8 and IMF9 components of
ICEEMDANdecomposition in the low-frequency component
are close to each other, and the phenomenon of excessive
decomposition appears. On the whole, the modal components
decomposed by ICEEMDAN do not show obvious modal
mixing and pseudo-mode phenomena.

In order to decrease the dimensionality of the input
data of the neural network while reducing the number of
feature components, the sequence components with higher
relevance to the original load sequences are selected for
training. The grey correlation of each component of the
ICEEMDAN decomposition and the original load sequences
were calculated separately using the GRA method, and the
correlation heat map is shown in Fig. 9.
As shown in Fig. 9, the grey correlation values of IMF8,

IMF9, and Res components with the original load sequences
of are less than 0.6; and the correlation values are similar,
so the combinations are reconstructed into a new sequence
component. The combination of each sequence component
is shown in Table 5, and the sequences after the component
reconstruction are shown in Fig. 10.

C. ICEEMDAN-GRA-CVDE-BIGRU-ECM SHORT-TERM
LOAD PREDICTION EXPERIMENT
In order to verify the accuracy and feasibility of the proposed
combinatorial model and optimization algorithm in this

FIGURE 10. Decomposition results of ICEEMDAN-GRA power load.

paper, two combinatorial comparison experiments are used
for validation.

The first combination uses internal ablation experiments to
verify the effectiveness of the combined prediction method
proposed in this paper. The four models, BiGRU, SVDE-
BiGRU, ICEEMDAN-SVDE-BiGRU, and ICEEMDAN-
GRA-SVDE-BiGRU, are selected as the comparison models,
and the present model has experimented with the same
parameter settings. The number of input layer neurons of
BiGRU in the case analysis is 24, the number of hidden
layers is 2, the number of output layer neurons is 1, and
the optimizer is Adam. In the ICEEMDAN-GRA-SVDE-
BiGRU-ECMmodel, the four variables of modal component,
temperature, holiday weekend type, high or low load type of
the uncorrected model decomposition are used as the inputs,
and the predicted residual values as the output for the error
correction model, in which the number of input neurons for
BiGRU is 64, the number of implied layers is 4, the number
of training epochs is 10, and the optimizer is AdaGrad. The
load training results of the training set (including validation
part) of the proposed model are shown in Fig. 11. The final
error evaluations and time cost of the fivemodels are shown in
Table 6 and Table 7, the prediction results of the five models
are shown in Fig. 12 and Fig. 13, and the violin plot of the
error results is shown in Fig. 14.

As shown in Table 6-7 and Fig. 12-13, the single BiGRU
neural network has the worst prediction effect, and the
MAE of SVDE-BiGRU is 112.718 MW lower than that
of BiGRU under the same BiGRU parameters in the July
experiment. The prediction time cost of the SVDE-BiGRU

VOLUME 11, 2023 110069



L. Li et al.: Short-Term Power Load Forecasting Based on ICEEMDAN-GRA-SVDE-BiGRU

FIGURE 11. Load training results for the training set in January.

FIGURE 12. Prediction results of the first combination.

TABLE 6. Internal ablation experiment error evaluation results in January.

TABLE 7. Internal ablation experiment error evaluation results in July.

model is 15.38 seconds, which is 16.49 seconds less
than that of the BiGRU model, which illustrates the
significant improvement effect of the proposed SVDE
algorithm on the model performance. After ICEEMDAN
decomposition and SVDE-optimized hyperparameters, the
MAPE of the two parts of the experimental data decreased
by 0.482% on average, indicating the feasibility of signal

FIGURE 13. Prediction errors of the first combination.

FIGURE 14. Prediction errors of the first combination.

decomposition. The ICEEMDAN-GRA-SVDE-BiGRU-
ECMmodel has the smallest prediction error, with MAE and
MAPE averaging 60.565 MW and 0.555%, respectively. The
RMSE is 35.197 MW lower than that of the ICEEMDAN-
GRA-SVDE-BiGRU model. As shown in Fig. 14, the
proposed model in this paper has the smallest error
distribution range and a more concentrated distribution,
which shows that its model has higher prediction accuracy
and stability.

In order to further verify the accuracy of the SVDE
optimization algorithm proposed in this paper for the
hyperparameters of the BiGRU neural network to find the
optimal capability. To achieve the comparative analysis of
various optimization algorithms, the population size and
the maximum number of iterations of PSO, GA, DE, and
SVDE algorithms are set as 20 and 500, respectively,
and the hyperparameter hidden layer neuron number L1,
L2, learning rate lr , and batch_size of BiGRU are in the
optimization seeking ranges of [1, 100], [1, 100], [0.001,
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TABLE 8. Hyperparameter search results.

TABLE 9. Evaluation results of the second combination error.

FIGURE 15. Prediction results of the second combination.

0.02], [1, 300]; the specific parameters of each algorithm are
consistent with Table 2 above. According to the above param-
eters, six models of ICEEMDAN-GRA-PSO-BiGRU-ECM,
ICEEMDAN-GRA-GA-BiGRU-ECM, ICEEMDAN-GRA-
DE-BiGRU-ECM, ICEEMDAN-GRA-CSSOA-BiGRU-
ECM, ICEEMDAN-GRA-MWOA-BiGRU-ECM, and
ICEEMDAN-GRA-SVDE-BiGRU-ECM are established for
comparative experiments.

The six hyperparameters obtained from the optimization
of each model are shown in Table 8, the prediction error
evaluation of the four models in the July experiment is shown
in Table 9, and the overall prediction error accuracy of all
models in the first group of comparison experiments is shown
in Fig. 15.

As shown in Table 8, the model hyperparameters of
the SVDE seeking BiGRU are L1 is 88, L2 is 48,

TABLE 10. Second combination of experimental error evaluation results
in January.

TABLE 11. Second combination of experimental error evaluation results
in July.

FIGURE 16. Prediction error accuracy comparison of the second
combined experiment.

lr is 0.0078, batch_size is 156, and its algorithm has
the shortest optimization time. As shown in Table 9 and
Fig. 15, the ICEEMDAN-GRA-SVDE-BiGRU-ECM has
the lowest RMSE, MAE, and MAPE values and the
smallest error range. The MAE is 32.915 MW lower
than the PSO optimization algorithm, 67.892 MW lower
than the GA optimization algorithm, 33.572 MW lower than
the DE optimization algorithm, 19.207 MW lower than the
CSSOA optimization algorithm and 27.536 MW lower than
the MWOA optimization algorithm. In summary, the model
prediction effect is better after hyperparameter optimization
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TABLE 12. Specific parameters of the comparison models.

by the SVDE algorithm, and the SVDE algorithm has the
strongest optimization-seeking ability.

The second combined experiment uses several cur-
rent mainstream short-term load prediction methods as
comparison models for the experiments. Five models,
EEMD-GRU-MLR [46], CNN-BiGRU-NN [47], VMD-
CNN-BiGRU [48], CNN-BiLSTM-Attention [49], and MIC-
LightGBM-XGBoost [50], are selected as comparison
models, and the model proposed in this paper have experi-
mented in the same dataset. The specific parameters of the
comparison models are shown in Table 12. The experimental
error evaluations of each model are shown in Table 10 and
Table 11. Taylor diagram is chosen to evaluate the prediction
accuracy of several models, where the correlation coefficient
(R), standard deviation (S), and root mean square error
(RMSE) can demonstrate the trend and error distribution of
the predicted and true values of the load, and it is shown in

FIGURE 17. Linear regression scatter plot of prediction results.

Fig. 16. The linear regression scatter graph for the prediction
results of themodel proposed in this paper is shown in Fig. 17.

As shown in Table 10-11 and Fig. 16, theMIC-LightGBM-
XGBoost model has the largest error in the second combined
experiment, the CNN-BiLSTM-Attention model has a large
error, and the RMSE and S of the three models, EEMD-
GRU-MLR, CNN-BiGRU-NN, and VMD-CNN-BiGRU, are
at the same level. The ICEEMDAN-GRA-SVDE-BiGRU-
ECM model proposed in this paper has the smallest standard
deviation S as well as RMSE, and its correlation coefficient
R is also closest to 1. It shows higher consistency with
the trend of the true value of the load, and it can be seen
that the ICEEMDAN-GRA-SVDE-BiGRU-ECM model has
the highest prediction accuracy. As shown in Fig. 17, the
prediction result of the model tends to be linear compared
with the true value, and the combination of Fig. 12 to Fig. 17
shows that the model has good stability and robustness,
which further verifies the validity and superiority of the
ICEEMDAN-GRA-SVDE-BiGRU-EC model proposed in
this paper.

VI. CONCLUSION
Aiming at the volatility and periodicity of power load,
load forecasting accuracy is further improved. This paper
proposed a short-term electric load forecasting method based
on the combination of ICEEMDAN-GRA-SVDE-BiGRU
and the Error Correction Model.

The ICEEMDAN decomposition method is used to
decompose the original power load into modal components
of different frequencies, extract the effective fluctuation
information inside the sequences, and reduce the nonlinearity
of the original power load. GRA is used to calculate
the correlation of the decomposed components, and the
feature components can reduce the dimensionality of the
input data of the neural network after reconstructing them
according to the correlation, and reduce the non-essential
neural network training. Finally, the initial load prediction
values are obtained by optimizing the hyperparameters of
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BiGRU for neural network training by the SVDE algorithm
with high merit-seeking capability. At the same time, the
error correction model (ECM) is combined to reduce the
influence of temperature and other related factors, and
the residual values of load prediction obtained from training
are superimposed with the initial load prediction values to
obtain the final prediction values, which further improves the
prediction effect and prediction accuracy.

The example validation under different conditions shows
that the ICEEMDAN-GRA-SVDE-BiGRU-ECM model
reduces MAE by 232.78 MW (79.02%) and MAPE by
2.21% (79.85%) on average relative to the common BiGRU
model. Compared with several mainstream short-term load
forecasting models, this model has a maximum MAE
reduction of 147.49 MW (70.88%) and a minimum reduction
of 41.42 MW (40.62%). In summary, the model proposed
in this paper has a high forecasting accuracy and stability
in short-term load forecasting by using the ‘‘decomposition-
reconstruction-optimization-error correction’’ forecasting
framework. It can effectively reduce the prediction error when
the load is highly volatile, and the prediction trend has a
high consistency with the real load value. However, when
the model is applied to different capacity power systems,
it is necessary to adjust the parameters of each part of
the forecasting framework several times according to the
different parameters of the application scenarios to ensure
the normal use of the model. Therefore, the adaptive or
tuning functions of the model parameters need to be further
optimized and improved to enhance the applicability and fast
responsiveness of the model.
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