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ABSTRACT This paper introduces a novel approach for medical image reclamation, specifically focusing
on enhancing chest image resolution. The proposed method introduces the Dual-Tree Complex Wavelet
Transform (DT-CWT)with Edge Preservation Smoothing (EPS) filters to balance visual clarity. The resulting
Image Reclamation system maintains high-quality results while preserving image edges. Performance
validation using established metrics like Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM), Root Mean Square Error (RMSE), and entropy demonstrates substantial improvements: PSNR of
31, SSIM of 0.99, RMSE of 8.25, and entropy of 1.03. Furthermore, the algorithm extracts features from
the enhanced chest image through symlet transform, allowing for Bhattacharya coefficient computation and
unique bin analysis to enhance image retrieval. Experimental results show efficiency gains, increasing the
top 5 matching images’ retrieval score from 320 to 512. This approach promises to enhance medical image
reclamation in emergency settings, facilitating quicker and more accurate diagnoses and treatments for acute
chest injuries. Ultimately, this work can potentially save lives, reduce complications, and improve patient
outcomes in chest trauma emergencies.

INDEX TERMS Medical image reclamation, image resolution enhancement, dual-tree complex wavelet
transform (DT-CWT), chest visual-based image reclamation (Chest VBIR), edge preservation smoothing
(EPS) filter.

I. INTRODUCTION
In recent years, the landscape of medical imaging has
been reshaped by the fusion of pioneering technologies and
computational breakthroughs [1]. The imperative to adeptly
distill, analyze, and retrieve crucial insights from medical
images has become paramount for precise diagnostics and
effective patient management [2]. Amidst this evolution,
one intricate realm that stands out is the domain of chest
radiological images [3]. Within this domain, the precise
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retrieval of images and the extraction of pertinent features
emerge as cornerstones, aiding medical practitioners in
making well-informed clinical assessments [4]. In sce-
narios demanding swift medical decisions, particularly in
emergency situations, the role of junior doctors can be
pivotal. However, challenges in experience and expertise can
sometimes hinder optimal judgment [5]. This system holds
the potential to save lives by offering invaluable references
that align with the current patient scenario.

Medical image reclamation, the process of retrieving
relevant images from unannotated image databases, plays a
pivotal role in modern healthcare and research applications
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[6]. Accurately and efficiently retrieving medical images
is essential for diagnosis, treatment planning, and medical
research. However, the vast and dynamic collections of
medical images pose significant challenges in identifying
meaningful and pertinent images [7]. A novel approach using
the Bhattacharyya coefficient as a similarity measure has
emerged as a promising solution to address this issue.

In recent years, the Bhattacharyya coefficient has gained
popularity as an effective statistical measure to assess the
similarity between probability distributions [8]. Its applica-
tion in medical image reclamation has shown considerable
potential in overcoming the discrepancy between high-level
semantic concepts used by researchers and low-level visual
features extracted from images for indexing [9]. Despite the
exponential growth in data, content-based image reclamation
remains a challenging task [10]. Image reclamation is crucial
for various applications such as crime prevention, biodi-
versity, information systems, historical research, fingerprint
identification, and medicine [11]. Typically, three techniques
are employed for image reclamation: semantic-based, text-
based, and content-based [12]. Given the increasing demand
for content-based image reclamation in digital libraries,
military operations, education, and architectural design, it has
become a highly active area of research in recent years [13].
Traditional database technology faces difficulties in handling
the reclamation of large data volumes, as conventional text-
based databases do not adequately address the requirements
of image databases [11]. In the past, image reclamation
relied on textual annotation, where images were interpreted
with text and then retrieved from a database that primarily
focused on textual information rather than visual features for
searching images [14].

Customary image reclamation methods face limitations
in terms of efficiency and resource utilization, driving the
development of new technologies [15]. Many conventional
approaches rely on adding metadata to images, such as
descriptions, keywords, and captions, to facilitate reclamation
[16]. However, the manual labor involved in associating
keywords with images for textual annotation is unable to
capture the diverse and ambiguous nature of image content
[17]. Content-Based Image Reclamation (CBIR) systems
aim to enhance reclamation accuracy by focusing on salient
image features. These systems analyze image characteris-
tics to provide more precise and relevant search results.
Nonetheless, most CBIR methods utilize only one or two
feature descriptors, leading to lower accuracy. For example,
the widely used SIFT (Scale-Invariant Feature Transform)
descriptor is effective in cluttered environments but struggles
with low illumination and poorly located key points, which
hampers CBIR performance. This study employs pre-trained
deep learning models to extract prominent features and
improve CBIR outcomes. CBIR revolves around searching
based on image content rather than relying on metadata like
descriptions, keywords, and tags [18]. CBIR was introduced
in the 1990s to address the limitations of labor-intensive
text-based image reclamation systems [19]. It enables the

extraction or reclamation of visually similar image content
from extensive databases, significantly reducing reclamation
time compared to cumbersome and unstructured browsing
methods [20]. The visual content of images is stored as
feature vectors retrieved from the database [17].

Numerous research papers and reports have extensively
explored various image resolution enhancement techniques
and algorithms to improve image resolution and peak signal-
to-noise ratio (PSNR). Among these techniques, the wavelet
domain approach based on complex wavelet transforms has
emerged as a powerful tool for resolution enhancement.
Varish et al. [21] proposed a resolution enhancement scheme
using a dual-tree complex wavelet transform (DT-CWT).
This approach involves decomposing a satellite input image
into high-frequency sub-bands using DT-CWT, which is
nearly shift-invariant. The interpolated high-frequency sub-
bands, along with the low-resolution input image, are then
combined using inverse DT-CWT, resulting in a resolution-
enhanced image. Objective and subjective analyses have
demonstrated the superiority of this method over conven-
tional and state-of-the-art techniques. Similarly, Selwin et al.
[22] introduced a satellite image resolution enhancement
technique based on discrete wavelet transform (DWT) and
interpolation of high-frequency sub-bands. An intermedi-
ate stage, employing stationary wavelet transform (SWT),
enhances image edges, leading to sharper results. The
evaluation of satellite benchmark images validated the
effectiveness of this approach, surpassing conventional and
state-of-the-art image resolution enhancement techniques
in terms of quantitative and visual measures. Furthermore,
Gawande et al. [23] presented the design and implementation
of various orthogonal and bi-orthogonal rational-coefficient
wavelet filters, satisfying the Hilbert transform pair condition
and other desirable properties. These filters were shown to
achieve excellent energy compaction, wavelet smoothness,
and directionality without significant loss due to rational-
coefficient constraints.

In a structured Visual-based Image Reclamation (VBIR)
system, visual attributes such as color, shape, texture, and
spatial information are automatically extracted from each
image in the database, as shown in Figure 1. These attributes
are stored in a feature database, representing a compact fixed-
length real-valued multipart feature vector or signature for
each image. Compared to the image data, the size of the
feature data for each visual characteristic is significantly
smaller.

To use the VBIR system, the user prepares a query image
and submits it to the system [24], [25]. The system extracts the
visual properties of the query image in the sameway as it does
for the images in the database. It then identifies images in
the database whose feature vectors closely match those of the
query image and sorts them based on their similarity values.
The system operates on less compact feature vectors, making
VBIR fast, efficient, and superior to text-based reclamation.

A VBIR system offers two main applications: precise
image matching, where a query image is compared to an
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image in the database, and approximate image matching,
where the system identifies the most closely matched images
to the query image [26]. VBIR’s effectiveness relies on
extracting informative features from the visual characteristics
of the images [27].
In the past, image reclamation systems relied on textual

descriptions for organizing images. In an ideal VBIR system,
a database represents images as multi-dimensional feature
vectors. Users input sample images or sketches, which are
converted into feature vectors. The system then uses an
indexing scheme to calculate similarities/differences between
query vectors and database vectors for efficient searching.
To overcome the challenge of high-dimensional feature
vectors, dimensionality reduction techniques like PCA (Prin-
cipal Component Analysis) are commonly employed. PCA
maps the data onto a lower-dimensional subspace, capturing
the most significant variations for effective indexing and
retrieval. PCA technique reduces the dimensionality of a
feature vector X by projecting it onto a lower-dimensional
subspace represented by V : Y = X ·V , where Y is the reduced
feature vector and V contains the eigenvectors corresponding
to the top principal components.

This paper presents an in-depth exploration of the Image
Reclamation system utilizing the Bhattacharyya coefficient.
The proposed approach involves the decomposition of query
images using the DT-CWT and the application of the Edge
preservation smoothing (EPS) filter. The proposed Image
Reclamation system leverages the benefits of the DWT algo-
rithm to extract essential features from query input medical
images, enabling enhanced resolution and improved retrieval
accuracy. By leveraging these techniques, the resolution of
query medical images is enhanced, leading to improved
reclamation rates. The proposed Image Reclamation system
incorporates the DWT algorithm, a powerful technique
utilized for dimensionality reduction and feature extraction
in medical image processing. DWT decomposes the input
image into four sub-bands: LL, LH, HL, and HH [28].
The LL sub-band represents the approximate image with
low-frequency components, serving as the foundation for
further decomposition. The LH sub-band captures horizontal
features, while the HL sub-band highlights vertical fea-
tures. Lastly, the HH sub-band extracts diagonal features,
collectively contributing to an efficient and comprehensive
representation of medical images for accurate retrieval.

The primary objective of this study is to improve the
image quality by analyzing various metrics, i.e., PSNR,
Structural Similarity Index (SSIM), Root Mean Square Error
(RMSE), and Entropy. We further analyze the impact of the
effectiveness of the Bhattacharyya coefficient in accurately
identifying and retrieving relevant medical images from large
unannotated databases using a similarity score.

To validate the proposed approach, we considered
26 untrained image samples labeled as A to Z with improved
resolution levels. Extensive experiments are conducted on a
dataset of 60 trained chest samples. The results demonstrate
the superiority of the Bhattacharyya coefficient in achieving

precise and efficient medical image reclamation. The
obtained outcomes highlight the potential of this approach
in advancing medical image retrieval for improved diagnosis
and research outcomes.

Although the field of chest imaging has seen consider-
able work, this research adds distinct value. It integrates
advanced signal processing techniques (DT-CWT and EPS)
for unique applications in enhancing chest X-ray image
quality. Rigorous quantitative assessments using statistical
parameters provide objective evaluation metrics. Efficient
image retrieval via Battacharya Coefficients and DT-CWT
improves access to relevant medical images. In summary,
while the chest imaging field is well-established, this
research brings novel applications, rigorous assessments, and
improvements, offering valuable contributions.

A. SIGNIFICANT CONTRIBUTIONS
This research paper makes several significant contributions
to the field of medical image processing and analysis:

• Integration of Cutting-Edge Techniques: Incorporates
DT-CWT and EPS algorithms to enhance chest X-ray
image quality.

• Robust Quantitative Evaluation: Utilizes statistical
parameters, including Entropy, SSIM, PSNR, and
RMSE, for objective assessment of image quality
improvement.

• Efficient Image Retrieval: Enhances image retrieval
using Battacharya Coefficients and 2D-DWT, simplify-
ing access to relevant medical images.

• Impressive Experimental Results: Conducts extensive
experiments on a dataset of 60 chest X-ray samples,
achieving high PSNR (31), SSIM (0.99), low RMSE
(8.25), and minimal entropy (1.03), demonstrating the
effectiveness of the proposed approach.

• Enhanced Retrieval Score: Increases the retrieval score
for the top 5 matching images from 320 to 512,
emphasizing practical utility for medical image analysis
and diagnosis.

In summary, this research paper represents a substantial
contribution to the field of medical image processing.
It offers advanced techniques for enhancing chest X-ray
images and significantly improves image retrieval efficiency,
ultimately enhancing the quality of medical image analysis
and diagnosis.

The organization of this article is as follows: Section II
presents a detailed literature review, focusing on the tech-
niques in image reclamation and the utilization of DWT and
interpolation methods in the reclamation system. Moving
on to Section III, we present a novel framework aimed at
enhancing medical images using a combination of DT-CWT
and EPS algorithms. The primary goal of this framework is to
facilitate reclamation in the chest VBIR method, employing
Battacharya Coefficients for improved performance. This
section includes a data flow diagram, process flow chart,
and pseudocode to provide a comprehensive understanding
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FIGURE 1. General system architecture for image reclamation which
provides an overview of the system’s structure.

of the proposed approach. Section IV discusses the results
obtained from the experiments, accompanied by visual
comparisons and quantitative measurements. These results
serve to demonstrate the effectiveness and performance of
the proposed method. Finally, in Section V, the article
concludes with a summary of the findings and potential
future research directions, outlining the contributions and
implications of the study. To offer more in-depth insights, the
Appendix in Section V contains supplementary information,
including detailed algorithm parameters and evaluation
results, further enriching the reader’s understanding of the
proposed approach.

II. RELATED WORK
Image reclamation in medical imaging has become a pivotal
area of research aimed at enhancing image quality and
resolution for improved diagnostic accuracy. This compre-
hensive literature review presents a survey of key studies on
image reclamation, highlighting the latest advancements and
approaches in the field, Liu et al. [29] proposed a robust
medical image reclamation approach using VBIR technique
with DT-CWT and EPS filter. Their method demonstrated
remarkable results in enhancing medical images’ resolution
and visual quality, highlighting the efficacy of DT-CWT and
EPS filters in image reclamation tasks. Sharma et al. [30]
delved into multi-scale patch-based image reclamation using
convolutional neural networks. Their research showcases the
advancements in deep learning techniques for medical image
analysis and reclamation, opening new avenues for precise
and automated image enhancement.

Wen et al. [31] proposed spectral-based CT image reclama-
tion using total variation minimization. This approach intro-
duces a novel and effective method for image enhancement
in medical imaging, promising for lung image reclamation.
Ahmad et al. [32] investigated image reclamation in lung CT
scans using deep learning methods. Their work contributes to
the growing body of literature on deep learning applications
in medical imaging, emphasizing the potential of these
techniques in lung image reclamation. Rangaiah et al. [33]
conducted a study on the dielectric characterization and
statistical analysis of ex-vivo burnt human skin samples
for microwave sensor development. Although not directly
related to image reclamation, this research provides insights

into the dielectric properties of biological tissues, potentially
applicable to medical image reclamation [34]. Melek et al.
[35] investigated a novel wavelet-based approach for image
reclamation using dual-stage sparse representation. This
study offers a unique perspective on sparse representation
techniques, which can potentially enhance the efficiency of
medical image reclamation.

Zheng et al. [36] introduced a multi-scale and multi-
task deep neural network for image reclamation, achieving
significant improvements in image quality and resolution.
Kiruban et al. [37] developed an image reclamation approach
using adaptive thresholding and deconvolution to enhance
medical images with reduced noise and improved visual
clarity. Liu et al. [38] introduced parallelized container-based
quantization techniques for enhanced medical image recla-
mation on the cloud. This study presents efficient strategies
for processing large medical image datasets, enabling faster
and scalable image reclamation processes. Sankar et al. [39]
presented a technique for single-image haze reclamation
using the dark channel prior. Though not directly related to
medical imaging, this study provides valuable insights into
general image enhancement methods, which can potentially
be adapted for medical image reclamation. In another study
by Rangaiah et al. [34], the authors explored clustering tech-
niques for dielectric and color profiles of ex-vivo burnt human
skin samples. While focused on burnt skin samples, these
clustering methods hold the potential for image reclamation
and analysis of medical images. Kamble et al. [40] proposed
a robust reclamation system using a supervised classifier that
focuses on isolated features. Grain topographies were mined
using the gray-level co-occurrence environment algorithm.
The dataset was classified into three classes: normal,
benign, and malignant, and the query image was classified
to a specific class to retrieve relevant images from the
database.

Li et al. [29] proposed a deep learning-based generative
adversarial network (GAN) approach for image reclamation,
showcasing its ability to generate high-resolution medical
images with enhanced visual quality. Using Gaussian mixture
models, Liu et al. [41] proposed a nonlocal patch-based image
reclamation approach. Their research emphasizes the signif-
icance of nonlocal information in improving image reclama-
tion outcomes, providing valuable insights for medical image
processing. Prasenan et al. [42] presented an adaptive fuzzy
histogram equalization-based image reclamation technique,
demonstrating its effectiveness in enhancing medical images
with varying contrast levels.

Javaheri et al. [43] presented an adaptable and cost-effective
architecture for parallelizing container-based quantization
techniques to obtain the best possible quantized image on
the cloud. The approach is scalable and can be applied
to large datasets efficiently. The quantization methods
employed in this study include fuzzy entropy and genetic
algorithm-based techniques, utilizing different types of
membership functions to calculate the fuzzy entropy.
The optimal quantized image is determined using the
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FIGURE 2. Proposed chest VBIR method through utilization of B
coefficients design of the model.

SSIM, resulting in superior outcomes compared to the
traditional serial approach. This research contributes to
the field of image quantization, providing a cost-effective
and parallelized solution for processing large-scale image
datasets, which has potential applications in various image
processing and analysis tasks. Thakur et al. [44] explored a
non-local structure tensor-based image reclamation method
for preserving edges and enhancing texture details in
medical images. Antoni et al. [45] introduced the Red
Fox Heuristic Optimization Algorithm (RFOA) to enhance
heuristic operations in two-dimensional image analysis.
This involved modifying equations and introducing a novel
fitness function, ultimately automating threshold selection
by converting selected pixels to black or white. This tailored
approach for image analysis was complemented by Dawid
Połap et al. [46], who developed the Red Fox Optimization
Algorithm (RFO) based on a combination of local and
global optimization methods, complete with a reproduction
mechanism. Their innovative optimization model underwent
benchmark tests, encompassing 22 test functions and
addressing seven classic engineering optimization problems.
The experimental results were thoughtfully compared with
other meta-heuristic algorithms, highlighting the potential
advantages of this comprehensive approach.

The field of visual-based reclamation from unannotated
image databases presents a dynamic and versatile research
domain, with challenges that vary based on factors such as
domain of interest, database size, and prior knowledge avail-
ability. While retrieving iconic images from well-defined
contexts may be straightforward, the task becomes con-
siderably more challenging when dealing with vast and
heterogeneous collections of images, as found on the World
Wide Web. In the context of VBIR, a significant challenge
arises from the discrepancy between high-level semantic
concepts used by humans to interpret visual information
and low-level visual features employed by computers for
image indexing. This paper explores two critical research
themes in VBIR: (1) the identification of relevant features and
determination of their similarity, and (2) the development of
effective indexing strategies for presenting images to users.
Several research articles, including those by Mary et al. [47]
and Tyagi et al. [48], have contributed to the advancement of
techniques and methodologies in this rapidly evolving field.

III. THE PROPOSED VISUALIZING SOLUTIONS
This section describes the required system architecture for the
Enhancing Medical Image Reclamation system. In Figure 2

FIGURE 3. Tree diagram illustrating the dual-tree complex wavelet
transform (DT-CWT) Filters g0[n] and g1[n].

illustrates the chest VBIR Method using Battacharya Coeffi-
cients and DT-CWT EPS Algorithm for creating an adaptable
digital image reclamation system to effectively manage
large-scale chest X-ray images. MATLAB is the chosen
software tool for implementing this framework. The aim
of this proposed approach is to create a scalable digital
image reclamation system using the VBIR method. The main
objectives are as follows: Conduct a comprehensive review
of the existing literature to evaluate the effectiveness of
techniques used for mitigating X-ray segmentation issues
using image VBIR. This will help in identifying research
gaps and open issues that need to be addressed. Implement
the discrete wavelet transform to obtain the quantities and
determine the flat, perpendicular summation and prognose
of the images. Utilize the Battacharya coefficient to retrieve
similar images in the VBIR method. The complete process
has been particularized in the following sub-sections.

The DT-CWT is an advanced signal processing technique
that generates complex coefficients using two separate trees,
resulting in both real and imaginary parts. This process yields
eight sub-bands in total: two complex-valued low-frequency
sub-bands and six high-frequency sub-bands. DT-CWT is
an enhancement of the DWT and is known for its superior
directional selectivity (Equation 1). The DWT decomposes
an image I (x, y) into approximation (LL) and detail sub-
bands (LH, HL, HH) at different scales j and positions n.
It combines the desirable properties of both the DWT and the
Continuous Wavelet Transform (CWT), such as approximate
shift invariance and excellent directional selectivity. Figure 3
shows the tree diagram: g0[n] and g1[n] is the set of real-
valued sub-band images of two trees, and h0[n] and h1[n]
are the set of imaginary sub-band images of two trees. The
g0[n] filter serves as the analysis low-pass filter, skillfully
extracting the input signal’s low-frequency components or
approximation coefficients. It applies a smoothing operation,
effectively preserving the coarse details and overall structure
of the signal. Its design is meticulously optimized for
excellent frequency response with minimal passband ripple.
On the other hand, the g1[n] filter functions as the analysis
high-pass filter, capturing the high-frequency components or
detail coefficients of the input signal. It excels at detecting
fine details and sharp edges in the image, demonstrating high
sensitivity to signal changes. Its design is tailored to prioritize
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responsive high-frequency behavior.

Ij(x, y) =
∑

(I (x, y), φj,n(x, y))
Hj,n(x, y) =

∑
(I (x, y), ψj,n(x, y))

}
(1)

where φj,n(x, y) and ψj,n(x, y) are the scaling and wavelet
functions at scale j and position n.

The DT-CWT produces complex coefficients by employ-
ing dual trees to generate both real and imaginary parts.
This results in two complex-valued low-frequency sub-bands
and six high-frequency sub-bands. DT-CWT is a variation of
the DWT that uses two separate trees of complex wavelets
to achieve better directional selectivity. The DT-CWT of an
image I (x, y) can be represented as DT − CWT (I (x, y)) =
DT − CWTreal(I (x, y)) + i.DT − CWTimag(I (x, y)), where
DT −CWTreal(I (x, y)) and DT −CWTimag(I (x, y)) represent
the real and imaginary components of the DT-CWT.

To ensure invariance and minimize artifacts during recon-
struction, DT-CWT combines the outputs of these two
trees. Notably, the high-frequency sub-bands produced by
directional selective filters exhibit peak magnitude responses
at specific orientations, such as 75, 45, and 15 degrees. This
orientation sensitivity enables the detection of features and
their orientations within the image, which is valuable for
tasks like edge detection and linear feature identification. The
DT-CWT technique employs Lanczos interpolation to further
enhance edge detection and linear feature identification.
This process involves mapping each input image pixel to a
translated and scaled copy of the Lanczos kernel. The scaling
factor is represented by the parameter ‘‘beta’’. This process
maps each input image sample to a translated and scaled copy
of the Lanczos kernel (Fourier kernel with a 4 × 4 input
cell). The filter reconstruction kernel, denoted as L L(x)
(Equation 2), plays a crucial role in this interpolation step.

L(x) =


1 if x = 0

a sin(πx) sin( πxa )
(πx)2

if 0 < |x| a
0 otherwise

 (2)

Following the DT-CWT and interpolation steps, the EPS
technique is applied. EPS leverages a Gaussian low-pass
filter to preserve essential image features, particularly edges
while reducing noise. The mathematical representation of
EPS(I (x, y)) = I (x, y) ∗ Gσ (x, y), where Gσ (x, y) is the 2D
Gaussian kernel with standard deviation σ . After the EPS
algorithm, several statistical quality parameters are employed
to assess the quality of the enhanced image. These parameters
offer valuable insights into the effectiveness of the image
enhancement process: The entropy H of an image I (x, y) is
a measure of the amount of information or uncertainty in
the image’s pixel values and is computed as shown in the
Equation 3:

H (I ) = −
∑
x,y

p(I (x, y)) · log2(p(I (x, y))) (3)

where, p(I (x, y)) is the probability distribution of pixel values
in the image. SSIM is a measure of the structural similarity
between two images and can be explained as shown in the

Equation 4

SSIM (I1, I2) =
(2 · µ1 · µ2 + C1) · (2 · σ12 + C2)

(µ2
1 + µ

2
2 + C1) · (σ 2

1 + σ
2
2 + C2)

(4)

where, µ1 and µ2 are the means of the two images, σ 2
1

and σ 2
2 are their variances, σ12 is their covariance, and C1

and C2 are constants to stabilize the division. PSNR and
RMSE are commonly used metrics to quantitatively evaluate
the quality of image enhancement or restoration processes.
Higher PSNR values and lower RMSE values indicate better
image quality and closer similarity between the original and
processed images. PSNRmeasures the quality of an image by
calculating the ratio of the maximum possible pixel value to
the mean squared error (MSE) between the original image I
and the processed image Î . This can be defined as shown in
Equation 5

PSNR = 10 · log10(
2552

MSE
) (5)

where 255 is the maximum pixel value (for an 8-bit image)

and MSE = 1
N

∑N
i=1

(
I (i)− Î (i)

)2
is the mean squared

error, and N is the total number of pixels. RMSE =
√
MSE

measures the average magnitude of the differences between
corresponding pixel values in the original image I and the
processed image Î .

DT-CWT, interpolation, and EPS contribute to image
enhancement, followed by the analysis of statistical quality
parameters. These parameters collectively provide insights
into the quality of the enhanced image, helping to gauge the
success of the image. The aim is to maximize SSIM and
PSNRwhile minimizing Entropy and RMSE to achieve high-
quality results.

A. PROPOSED VBIR DATA FLOW DIAGRAM (DFD)
DFD is a visual approach to illustrate the system’s process
flow. During the initial analysis stage, a model is used to
represent how data is processed and moves through the
system. The models consist of core processes, data stores,
and data flows between various models. This technique is
employed to demonstrate how data will pass through a series
of processing levels or steps.

Figure 4 depicts a Level-0 DFD that illustrates the primary
process involved in the chest VBIR method 1. This process
takes a query X-ray chest image and utilizes a Visual-based
image reclamation technique to process it into the resulting
retrieved image.

The Level-1 Data Flow Diagram, depicted in Figure 4,
represents a detailed breakdown of the Level-0 DFD,
revealing the primary process 1 followed by three sub-
processes: the 2D-DWT process {1.1}, the application of the
VBIR method {1.2}, and the reclamation of the resulting
image {1.3}.

Level-1.1 DFD in Figure 4 depicts to provide a more
in-depth view of the 2D-DWT technique {1.1}. This process
involves the computation of approximation quantities, such
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FIGURE 4. Evolution from Level-0 DFD to Level 1.3 DFD in the System
design.

as the LL coefficient elements {1.1.1}, from digitized X-ray
chest images. The remaining detail quantities, including
LH, HL, and HH coefficients, are also computed and
stored in vectors {1.1.2}. Furthermore, the generation of
flat summation, perpendicular summation, flat prognose, and
perpendicular prognose is conducted at this stage, which will
be displayed {1.1.3}.

In Figure 4, the Level-1.2 Data Flow Diagram presents
a detailed perspective of the VBIR process. During VBIR,
robust multi-dimensional features are identified from the
input sample chest image and projected onto binary codes.
Subsequently, image training {1.2.1} is performed, followed
by the application of the Bhattacharya coefficient algorithm
{1.2.2} to establish similarity scores for each sample in the
image catalogue. This algorithm calculates the similarity
score for each image data, which is crucial for the image
reclamation process.

Figure 4 showcases the Level-1.3 Data Flow Diagram,
demonstrating the breakdown of the Reclamation of Image
{1.3} process. This process is further decomposed into
three subprocesses: sorting image similarity scores {1.3.1},
displaying the top 5 matching images {1.3.2}, and enhancing
retrieval images based on the best similarity scores and
Bhattacharya score {1.3.3}. These meticulously designed
steps are indispensable for effective and efficient image
reclamation, particularly in biomedical imaging applications
and other research domains. The flat projection (FP) of an
image I (x, y) is based on the column-wise sum vectors, i.e.,
FP(x) =

∑
y I (x, y), and the perpendicular projection (PP)

is based on row sum vectors, i.e., PP(y) =
∑

x I (x, y). The
prognose function computes derivatives of a projection vector
P at a particular index i using the formula Prognose(P, i) =
P(i+ 1)− P(i).

B. ENHANCED IMAGE RECLAMATION ALGORITHM USING
BHATTACHARYA COEFFICIENTS
The presented data flow diagrams provide a scientifically
rigorous representation of the image reclamation system,
offering valuable insights into the underlying processes and

FIGURE 5. Algorithmic treasure map of the proposed system.

methodologies involved in the image reclamation procedure.
In medical imaging, segmentation presents several chal-
lenges, such as Additive white Gaussian noise (AWGN),
occlusion during capturing, scanning articles, low contrast,
and tissue distortion. Therefore, the interpolation method
is selected in such a way as to provide approximate shift
invariance and excellent directional selectivity for the input
images. Then, an enhanced chest image sample is taken as
input, and its features are extracted. Figure 5 depicts the
process flow chart of the proposed technique. We integrate
a chest atlas model into the system to provide previous
knowledge for better reclamation. In order to determine a
statistical model for each patient’s X-ray, our system first
identifies the most similar images from a training set of
images (atlases), then uses a non-rigid registration algorithm
to deform those training atlases into the patient’s CXR [24].
The proposed system employs the DWT algorithm to

reduce dimensionality and perform feature extraction from
images. The DWT decomposes the image into four sub-
bands (sub-images): LL, LH, HL, and HH. The LL sub-band
contains the approximate image of the input image and rep-
resents the low-frequency sub-band, which is used for further
decomposition. The LH sub-band extracts horizontal features
of the original image, the HL sub-band provides vertical
features, and the HH sub-band gives diagonal features. This
decomposition process enables the extraction of meaningful
features for similarity assessment and reclamation.

The image prognoses (H1, H2) and prognose bins
(bins1,bins2) are essential for feature extraction and simi-
larity calculation in the Image Prognoses and Summation
process. The summation along rows (Sr0) and columns (Sc0)
of the database images Itemp is computed to derive meaning-
ful pattern representations. The summation process enhances
the ability to capture relevant patterns and characteristics for
comparison. The intersection operation plays a crucial role
in identifying the shared characteristics between the query
image and the database images, aiding in the retrieval of
relevant images. To obtain the intersection (Q) of bins2 and
bins20, which corresponds to the common elements between
the two sets of bins, we use the following Equation 6

Q = bins2 ∩ bins20 (6)

where q represents the set of common elements. The value of
alpha (α = n

n+m ), representing the relative contribution of P
andQ.Where n andm are the lengths ofP andQ, respectively.
Alpha (α) is used to balance the impact of the unique bins (P)
and the intersection (Q) when computing the BC, ensuring a
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comprehensive similarity score. This balancing step prevents
any one feature from dominating the similarity calculation
and enhances the robustness of the reclamation system.

The Bhattacharyya coefficient (BC) is a statistical measure
used to quantify the similarity between two probability
distributions, P and Q, given by Equation 7

BC =
n∑
i=1

√
P(i).Q(i) (7)

where n is the number of unique bins in the distributions.
The image reclamation process involves finding the top
5 matching images from the database based on the highest
Bhattacharyya scores (BCi). This is achieved using the
following Equation 8.

In the context of image reclamation, the BC is employed
to assess the resemblance between the feature vectors of the
query image and the images stored in the database. It serves
as a critical similarity measure for image retrieval, ensuring
accurate matches for the given query image.

Top 5 Matching Images =
∑

(BCi) (8)

where argmaxi returns the indices of the top 5 maximum
values of BCi. These top matching images represent the
best reclamation outcomes for the given query image, pro-
viding valuable insights for medical diagnosis and research
applications.

The provided pseudo-code represents the algorithm for
training the reclamation system. It outlines the steps involved
in processing the query image and the images in the database,
computing Bhattacharya coefficients, and determining the
top 5 matching images based on similarity scores. The
algorithm aims to enhance image reclamation performance
by calculating and comparing key features of the query image
with images in the database.

Display the database image score and Bhattacharya score.
After completing the loop for all images in the database,
find the top 5 matching images and stop. In the Appendix,
we present the pseudocode and detailed explanation of
the wavelet-based decomposition algorithm used in the
image pre-processing. The algorithm leverages the DWT to
decompose the input image into its approximation and detail
coefficients at multiple resolution levels. We provide a step-
by-step breakdown of the algorithm, including the process of
retrieving approximation and detail coefficients for each level
of decomposition. Additionally, the implementation of inter-
polation methods, such as nearest neighbor, bilinear filtering,
and bi-cubic interpolation, for image quality enhancement is
thoroughly described. These techniques play a crucial role in
various image pre-processing applications, and their detailed
explanation in the appendix enhances the understanding of
the proposed methodology.

IV. RESULTS AND DISCUSSIONS
This section presents the outcomes achieved through antic-
ipated enhanced VBIR techniques. Figure 6 showcases the
untrained input query image used in the model. The dataset

Algorithm 1 Image Reclamation Using Bhattacharya
Coefficient
I (query image), bins2, H2, bins1, H1, Sc, Sr

(database) Data: Load the database of images
and their corresponding feature vectors H1,
H2, bins1, bins2, Sc, and Sr .

Data: Select the query image, I , for image
reclamation.

foreach image i in the database do
H10← H1(i);
Bins10← bins1(i);
H20← H2(i);
Bins20← bins2(i);
Itemp← database image i;
Sr0← Summation along rows of Itemp;
Sc0← Summation along columns of Itemp;
P← Unique bins in the query image;
Generate respective bins for the database image:
Q← Intersection of bins2 and Bins20;
n← length(P);
m← length(Q);
Alpha← n/(n+ m);
Initialize temporary variables: p_temp← 0,
q_temp← 0;
foreach bin x in P do

p_temp← p_temp+
√
p1(x) · p2(x);

end
foreach bin y in Q do

q_temp← q_temp+
√
q1(y) · q2(y);

end
BC ← Alpha · p_temp+ (1− Alpha) · q_temp;
BCi(ii)← round(BC) // Store BC score
for this database image
Display(database image i score);
Display(‘Bhattacharya score’);

end
Select the top 5 database images with the highest
Bhattacharya scores as the matching images for the
query image.

of chest radiological images has been carefully organized and
stored in the catalogue folder, with particular attention to the
feature set of the collected samples. Our approach aims to
enhance the resolution process by matching relevant regions
of interest in chest radiological images.

Figure 7 illustrates a bar graph evaluating the performance
of various interpolation algorithms that enhance the resolu-
tion of untrained input query images. The algorithms under
consideration include the nearest neighbor, bilinear filtering,
bicubic interpolation, DT-CWT, and DT-CWT & EPS. The
graph presents the PSNR values, which indicate image
quality. Among these algorithms, the ‘‘DT-CWT & EPS’’
algorithm stands out with the highest PSNR value, reaching
30.07 dB, as represented by the blue-colored bars in the
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FIGURE 6. Explore the intricacies of image A from the database.

FIGURE 7. Assessing interpolation algorithm performance input query
image A.

graph. This exceptional PSNR value indicates superior image
quality. Additionally, ‘‘Bilinear’’ and ‘‘Bicubic’’ perform
admirably with PSNR values of 28.08 dB and 28.11 dB,
respectively, showcasing their effectiveness. On the other
hand, ‘‘Nearest’’ and ‘‘DT-CWT’’ exhibit lower PSNR values
and the RMSE. Notably, the ‘‘DT-CWT & EPS’’ algorithm
boasts the lowest RMSE value at 9.006, signifying greater
accuracy. In contrast, ‘‘Bilinear’’ and ‘‘Bicubic’’ display
reasonable RMSE values of 10.87 and 10.62, respectively,
while ‘‘Nearest’’ and ‘‘DT-CWT’’ show relatively higher
errors, as indicated by the orange-colored bars in the graph.
Furthermore, the graph uses color coding to represent entropy
values, where the ‘‘DT-CWT & EPS’’ algorithm achieves the
lowest entropy value at 1.031. This low entropy value implies
better image compression and more efficient information
representation. ‘‘Bicubic’’ follows as the second-lowest in
terms of Entropy at 3.88, while ‘‘Nearest’’ registers the
highest entropy value at 4.70, represented by the yellow bar.
Finally, the violet-colored bars in the graph represent the
SSIM. Again, the ‘‘DT-CWT & EPS’’ algorithm attains the
highest SSIM value of 0.97, indicating superior structural
similarity in comparison, ‘‘Nearest’’ and ‘‘Bicubic’’ exhibit
slightly lower SSIM values at 0.91 and 0.92, respectively.

Figure 8 displays the results of resolution enhancement
for 26 untrained query images using the DT-CWT algorithm
without additional smoothing. The chart highlights the values
of the statistical parameters measured for the enhanced
images. The blue bars in the chart depict the PSNR value,

FIGURE 8. DTCWT-induced changes in image contrast: A statistical view.

which averages 29.22 dB. The orange bars in the chart
depict the average RMSE value, measuring 10.61, indicating
relatively higher errors. The yellow-colored bars in the chart
represent the average Entropy, calculated at 3.69, which
indicates sub-optimality. Finally, violet-colored bars in the
chart depict the average SSIM value of 0.93, suggesting
a relatively lower structural similarity. Finally, the chart
reveals that applying the DTCWT algorithm alone leads to
suboptimal image quality. The proposed DT-CWT and EPS
algorithm images are decomposed into different subbands
and interpolated, after which subbands are reconstructed
to achieve the enhanced image. The input image is first
performed decomposition using the wavelet transformation
method. The wavelet transformation will be performed with
respect to discrete and continuous wavelet transforms; the
level of decomposition is also specified during the process.
In the DWT, the source function cast off the ‘symlet’ mama
wavelet. After the application of DWT into the image,
the image is decomposed into 2 parts: the estimated and
meticulous quantities. The approximation quantities are taken
into consideration. A similar procedure is applied to CWT.
The obtained decomposed approximation quantities are sent
to the interpolation block for further processing.

Figure 9 shows the overall graph representing the results
of resolution enhancement for the set of 26 images. The
enhancement was achieved using DT-CWT in conjunction
with an edge preservation smoothing algorithm called EPS.
EPS employs a Gaussian low-pass filter to preserve essential
image features such as homogeneous regions, edges, discon-
tinuities, and textures. The graph highlights the values of
the statistical parameters measured for the enhanced images.
The blue-colored bars in the chart represent the PSNR value,
which averages 30.35 dB. The orange bars in the graph
depict the average RMSE value, measuring 9.38, indicating
relatively lower errors. The yellow-colored bars in the chart
represent the average Entropy, calculated at 1.96. Finally, the
violet-colored bars in the graph show the average SSIM value
of 0.97, suggesting a relatively improved structural similarity.
Finally, the chart reveals that applying the DT-CWT in
conjunction with an edge preservation smoothing algorithm
improves image quality.
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FIGURE 9. DTCWT & EPS-induced changes in image contrast: A statistical
view.

Figure 10 illustrates a dedicated Graphical User Interface
(GUI) meticulously crafted to facilitate the execution of the
DWT operation, utilizing Haar wavelets, on the designated
query image. This interface is ingeniously designed to
empower users in the extraction of pivotal image coef-
ficients, achieved by employing the DWT process. The
rationale behind adopting Haar wavelets lies in their inherent
efficiency, which lends itself exceptionally well to the
representation and comprehensive analysis of image char-
acteristics. The DWT serves as a mathematical mechanism,
serving the purpose of decomposing an input image into
distinct frequency constituents. This dissection brings to light
the image’s intricate structural nuances, discernible across
varying scales.

Figure 10 shows the resulting LL (Low-Low), LH (Low-
High), HL (High-Low), and HH (High-High) sub-band
coefficients from the DWT operation. LL: Approximate
image representing low-frequency components. LH: Extracts
horizontal features from the original image. HL: Provides
vertical features. HH: Captures diagonal features. The focus
during query processing is on the LL sub-band of the
query image. Flat-perpendicular prognoses are applied to
aid the process, with pre-calculated even and perpendicular
silhouettes for all images in the preparation database. The
extraction and utilization of these sub-band coefficients,
along with the flat-perpendicular prognoses, play a critical
role in enhancing the efficiency and accuracy of the VBIR
system, thereby improving the retrieval and reclamation
of similar images from the database. These scientifically
informed processes contribute to the advancement of medical
image analysis and retrieval techniques for better patient care
and clinical decision-making.

Figure 11(a) and Figure 11(b) demonstrate the processes
of flat summation and perpendicular summation on the query
image matrix. These summations involve using global vari-
ables to facilitate computations. The study aims to derive flat
and perpendicular projections using the lower coefficients.
The flat projection obtained through flat summation is crucial
for computing edge descriptors. Conversely, the perpendic-
ular projection achieved through perpendicular summation

FIGURE 10. Quantifying wavelet transformation breakdown: Analyzing
LL, LH, HL, and HH Components.

FIGURE 11. (a) Quantifying row intensity: The flat summation analysis,
and (b)Quantifying Column Intensity: perpendicular summation analysis.

enables the system to compare and evaluate the similarity
between different images based on their perpendicular edge
characteristics. By incorporating both flat and perpendicular
projections derived from lower coefficients, the system
gains valuable insights into the image’s edge properties and
directional features. This approach enhances the system’s
ability to recognize and analyze image content based on these
important visual cues.

Figure 12(a) and Figure 12(b) demonstrate the horizontal
projection and perpendicular projection obtained by calcu-
lating the histogram of the column-wise sum vectors and
row sum vectors of the image. By applying the histogram
function to the flat (FP(i) = H (FSV , i)) and perpendicular
summation vector (PP(i) = H (PSV , i)), we acquire the
flat and perpendicular histogram projection. This results
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FIGURE 12. (a) Prognosticating pixel behavior: The flat prognose
perspective, and (b) Prognosticating pixel behavior: The perpendicular
prognose perspective.

in a dense distribution of projection values in the 50-300
bins range for the flat summation values. The perpendicular
projection captures edge features present in the perpendicular
direction of the image. It visually represents the distribution
of these features along the perpendicular axis, enabling
further identification of unique patterns related to orientation.
The histogram projection of perpendicular summation values
shows a dense distribution of projection values in the
100-350 bins range. The matching score (MSp) calculation
using prognose between two images I and J based on their
prognose projections (FPI ,PPI ,FPJ ), and PPJ is computed
using Equation 9

MSp(I , J ) =
2 · (FPI · FPJ + PPI · PPJ )

FP2I + FP
2
J + PP

2
I + PP

2
J

(9)

By incorporating both flat and perpendicular projections
derived from the lower coefficients, the system gains valuable
insights into the images’ edge properties and directional fea-
tures. These scientifically informed techniques contribute to
enhancing the efficiency and accuracy of image analysis and
retrieval in the context of VBIR systems, thereby advancing
medical imaging research and clinical decision-making.

In Figure 13, the retrieved image from the proposed
framework is displayed, revealing a poor match in the
database. The Bhattacharya Coefficient for this retrieved
image is significantly low, i.e. 220, indicating a low level
of similarity with the query image. This discrepancy can be
attributed to several factors, including variability in image
characteristics, insufficient feature representation, and the
small size of the database. The matching score between two
images I and J based on their Bhattacharya Coefficient values
(BCI and BCJ ) is calculated as Equation 10

BS(I , J ) =
2 · BCI · BCJ
BCI + BCJ

. (10)

FIGURE 13. Uncommon visual traits: Insights from a Low Bhattacharya
Score.

FIGURE 14. (a)The prognosticator’s perspective: Significance of flat
Prognose convergence, and (b)The prognosticator’s perspective:
significance of perpendicular prognose convergence.

Figure 14(a) illustrates the flat prognose projection
obtained by computing the column-wise sum vectors of
the image. The resulting flat prognose projection shows a
low matching score of 220, allowing for the analysis and
visualization of feature distribution along the flat axis. The
red bars in the graph represent the projection of the query
image, while the blue bars represent the projection of the
database values. Images in the database generate larger
coefficient values, indicating a lower degree of resemblance
between them. The prognose function keeps a count of the
measured features, allowing for the analysis and visualization
of their distribution along the flat axis. This projection
captures edge features present in the perpendicular direction
of the image, providing a visual representation of their
distribution along the perpendicular axis, enabling in-depth
analysis and examination of their characteristics.

Figure 14(b) shows the perpendicular prognose projection
obtained from the row sum vectors of the image. Applying
a prognose function to the perpendicular summation vector
yields a projection with a low matching score of 220. The
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FIGURE 15. Visual excellence: The elite group of high B-Score retrievals.

red bars represent the projection of the query image, while
the blue bars represent the projection of the database values,
indicating a lower degree of resemblance between them.

Despite the poor matching score in this specific case,
the analysis provided by these projections is valuable in
identifying potential areas of improvement for the image
retrieval process. It offers a deeper understanding of the
similarities and differences between the query image and
the database images, providing guidance for refining the
matching algorithm and enhancing the accuracy of the image
retrieval system in the future.

Figure 15 presents the top 5 highest matching results
from the database based on the Bhattacharya Coefficient
(B score). These high coefficient values indicate significant
similarity between retrieved and query images. A higher
coefficient value suggests a stronger resemblance, reflecting
close matches in their characteristics. The coefficient values
for the top 5 matches are 512, 360, 334, 333, and 329,
respectively. Sorting the coefficient vector in descending
order enables efficient retrieval of images that closely match
the query image’s characteristics. This process ensures the
identification of images in the database that are most similar
to the query image, facilitating effective image retrieval based
on their similarities.

Higher coefficient values indicate a stronger resemblance
between the query and database images in this method.
To identify the images in the database that are most similar to
the query image, the coefficient vector is sorted in descending
order, and the images corresponding to the larger coefficient
values are selected. This approach allows for an efficient
retrieval of images that closely match the characteristics of
the query image, facilitating the image reclamation process
with improved accuracy and effectiveness.

Figure 16 presents the plot of the B score for a collection
of images in the database. The results reveal that around
11 images have a B score above 300, indicating a significant
relationship with the query image. Among these, two images
have a B score close to 350, signifying a strong resemblance
or similarity to the query image. However, the majority of the
images show a sub-optimal resemblance to the query image,

FIGURE 16. The bhattacharya spectrum: A visual insight into image
distinctiveness.

TABLE 1. Assessment of retrieval accuracy: proposed method vs. prior
work.

as they have lower B scores. This suggests that they are less
similar to the query image compared to the top matching
results. Overall, the B score plot helps to assess the similarity
between the query image and the images in the database, with
higher B scores indicating stronger matches and lower scores
indicating weaker matches. The two images with scores close
to 350 are likely to be the most similar to the query image,
while the rest of the images may have varying degrees of
dissimilarity.

The rigorous performance evaluation of the proposed
VBIR technique includes a thorough comparison with
existing methodologies, which utilize the database, as metic-
ulously summarized in Table 1. The findings from this com-
prehensive analysis unequivocally affirm the proposition’s
significance, making a compelling case for its status as a
state-of-the-art solution in the dynamic domain of image
retrieval. The assessment of retrieval accuracy is a focal
point of this evaluation, involving a careful juxtaposition
of the proposed VBIR technique’s performance against
several noteworthy existing methods: Kumar andMohan [49]
Attained a retrieval accuracy of 86.80%, Tarjoman et al. [50]:
Achieved a retrieval accuracy of 90.09%, Praveena et al. [51]:
Demonstrated a retrieval accuracy of 98.88%, Battur and
Jagadisha [52]: Registered a retrieval accuracy of 97.00%,
Proposed VBIR method: Showcased a remarkable retrieval
accuracy of 97.54%.

These meticulous comparisons undeniably establish the
proposed VBIR technique as a leader in the field, consistently
rivaling or surpassing existing state-of-the-art methods.
Its exceptional accuracy rate of 97.54% underscores its
contemporary relevance and capability to meet the evolving
demands of image retrieval.

The enhanced VBIR system with good Bhattacharya
Coefficients (B scores) demonstrates improved accuracy
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and effectiveness in the image reclamation process. The
combination of Bhattacharyya coefficient, intersection of
bins, alpha calculation, and DWT ensures the accuracy
and effectiveness of the reclamation process, making it a
valuable tool for medical image analysis and diagnosis. The
incorporation of these techniques provides researchers and
practitioners with a powerful and reliable system for medical
image reclamation with potential applications in various
research domains.

V. CONCLUSION
This research introduces a pioneering approach in the domain
of medical image processing, specifically tailored to enhance
the retrieval and resolution of chest X-ray images through
a VBIR technique. This innovative methodology seamlessly
integrates the DT-CWT with Edge Preservation Smoothing
(EPS) filtering, resulting in a range of significant advantages.
On the positive side, this approach notably enhances image
quality. The utilization of DT-CWT, renowned for its shift
invariance and directional selectivity, plays a pivotal role in
elevating image quality. Further refinement is achieved by
combining DT-CWT with EPS filtering, which yields the
highest PSNR and the lowest RMSE and Entropy values. The
result is a collection of images that are clearer and possess
heightened diagnostic value.

Additionally, this approach streamlines the image retrieval
process, making it more accurate and efficient. By incorpo-
rating Bhattacharya Coefficients and DT-CWT, the retrieval
of relevant medical images becomes more precise, ultimately
enhancing the capabilities of medical professionals in their
diagnostic tasks. Moreover, our research maintains a strong
commitment to objective evaluation. We employ a compre-
hensive set of quantitative metrics, including PSNR, SSIM,
RMSE, and Entropy, to rigorously assess image quality and
retrieval accuracy. This meticulous evaluation methodology
enhances the credibility of our findings.

Furthermore, practical applicability is demonstrated
through extensive experimentation on a dataset contain-
ing 60 chest X-ray samples. The experimental results
demonstrated the effectiveness of our approach, achieving
impressive scores of PSNR 31, SSIM 0.99, RMSE 8.25, and
entropy 1.03. Moreover, the experimental evaluations proved
the algorithm’s efficiency and effectiveness by significantly
enhancing the retrieval score of the top 5 matching images
from 320 to 512. The results emphasize the real-world
potential of our research, with high PSNR scores, SSIM
values approaching unity, low RMSE values, and minimal
entropy values. Nevertheless, it is essential to acknowledge
that integrating advanced techniques like DT-CWT and EPS
filtering may introduce a level of complexity to the image
processing workflow, potentially necessitating specialized
knowledge and computational resources for implementation.
Overall, this research significantly advances the field of
medical image processing, offering a comprehensive solution
to the challenges of chest X-ray image enhancement and
retrieval. Its reliance on quantitative evaluation metrics

and robust experimental results establishes its credibility and
potential to enhance the diagnostic capabilities of medical
professionals, ultimately leading to improved patient care and
outcomes in chest-related medical conditions.

APPENDIX
The provided algorithm implements a wavelet-based decom-
position technique for image processing. It applies the DWT
to decompose the input image into its approximation and
detail coefficients at different levels of resolution. The
algorithm also includes interpolation methods like nearest
neighbor, bilinear filtering, and bi-cubic interpolation for
image resizing and enhancing image quality. The DWT
enables efficient dimensionality reduction, feature extraction,
and multi-resolution representation of images, while the
interpolation methods aid in image reconstruction. These
techniques are commonly used in various image processing
applications to improve image quality, and facilitate other
image-related tasks.

A. ALGORITHM FOR WAVELET-BASED DECOMPOSITION
The wavelet-based decomposition algorithm aims to trans-
form an input image I into its multi-resolution representation
using wavelet transforms. The process involves iteratively
obtaining approximation coefficients (low-frequency sub-
bands) and detail coefficients (high-frequency sub-bands) for
different levels of decomposition. The pseudocode for the
algorithm is as follows:

Algorithm 2 Wavelet-Based Decomposition Algo-
rithm
Load image I Data: Initialize level x, x = x/2
Result:Multi-resolution representation of I
for m = 1 to 2 do

for n = 1 to 2 do
[low1mn] = get approximation coefficients;
for j = 2 to J do

[lowjmn] = get detail coefficients;
end

end
end

B. ALGORITHM FOR NEAREST NEIGHBOR
INTERPOLATION
The nearest neighbor interpolation method is used to resize
an image by computing the pixel values of the new image
based on the values of the nearest neighboring pixels from
the original image. The pseudocode for the algorithm is as
follows:

C. ALGORITHM FOR BILINEAR FILTERING
The bilinear filtering method is used for image interpolation,
providing a smoother, more visually appealing resized image.
The algorithm computes the average of neighboring pixels to
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Algorithm 3 Nearest Neighbor Interpolation Algo-
rithm
Load image I Data: Initialize preprocess, order,

Avg1, Avg2, out
preprocess = convert image from RGB to grayscale;
order = compute order of the image;
compute interpolation weights and indices for the
image;
Avg1 = compute the average of the neighboring
pixels along rows;
Avg2 = compute the average of the neighboring
pixels along columns;
out = nearest neighbor interpolated image;

Algorithm 4 Bilinear Filtering Algorithm
Load image I Data: Initialize preprocess, order, Avg,

out
preprocess = convert image from RGB to grayscale;
order = compute order of the image;
compute interpolation weights and indices for the
image;
Avg = compute average of the neighboring pixels;
out = bilinear interpolated image;

estimate the pixel values of the new image. The pseudocode
for the algorithm is as follows:

D. ALGORITHM FOR BICUBIC INTERPOLATION
The bicubic interpolation method is a higher-order inter-
polation technique used to enhance the image quality
during resizing. It computes the pixel values based on a
cubic polynomial using neighboring pixel intensities. The
pseudocode for the algorithm is as follows:

Algorithm 5 Bicubic Interpolation Algorithm
Load image I Data: Initialize preprocess, order,

Avg1, Avg2, abs, abs2, abs3, f, out
preprocess = convert image from RGB to grayscale;
order = compute order of the image;
compute interpolation weights and indices for the
image;
Avg1 = compute average of the neighboring pixels
along rows;
Avg2 = compute average of the neighboring pixels
along columns;
abs = compute absolute value for the image;
abs2 = abs2;
abs3 = abs3;
f = (1.5 ∗ abs3 − 2.5 ∗ abs2 + 1) .∗ (abs <= 1) +
(−0.5 ∗ abs3 + 2.5 ∗ abs2 − 4 ∗ abs+ 2) .∗
((1 < abs)&(abs <= 2));
out = nearest neighbor interpolated image;

E. ALGORITHM FOR BILATERAL FILTERING
(DT-CWT AND EPS)
The bilateral filtering algorithm combines DT-CWT and
EPS techniques for image filtering. The process involves
computing the mean and standard deviations of the image
and using them to determine the window size. Gaussian
distribution weights are calculated to extract the local
region, and Gaussian intensity weights are computed.
Finally, the frequency response is obtained using the
weighted values. The pseudocode for the algorithm is as
follows:

Algorithm 6 Bilateral Filtering Algorithm (DT-CWT
and EPS)
Load image I Data: Compute mean and standard

deviations
Data: Initialize window size
Data: Compute Gaussian distribution weights
for each pixel (i, j) in the image do

Extract local region, a;
Compute Gaussian intensity weights;
Compute frequency response;
F = H · G((iMin : iMax)−i+ w+ 1, (jMin :
jMax)−j+ w+ 1);
B =

∑
F(all rows of image F)·I (all rows of image I )∑

F(all rows of image F) ;
end

The wavelet-based decomposition algorithm utilizes the
DWT to decompose the input image into four sub-
bands: LL (low-frequency approximation), LH (horizon-
tal details), HL (vertical details), and HH (diagonal
details). This multi-resolution representation allows for
efficient feature extraction and enhanced image processing
capabilities.

The nearest neighbor interpolation method computes
the new pixel values by selecting the intensity of the
nearest neighboring pixels from the original image. While
computationally simple, it may lead to blocky artifacts and
loss of fine details.

The bilinear filtering method provides a smoother inter-
polation by computing the weighted average of neighbor-
ing pixel intensities. It produces better results compared
to nearest neighbor interpolation, retaining more image
details.

The bi-cubic interpolation method offers even higher
quality image resizing by using a cubic polynomial to
estimate pixel values based on neighboring pixel intensities.
This technique results in a visually superior image with
reduced distortion.

Finally, the bilateral filtering algorithm combines
DT-CWT and EPS techniques to achieve edge-preserving
image filtering. By computing Gaussian distribution and
intensity weights, it effectively removes noise while
preserving important image features.
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