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ABSTRACT High-precision load forecasting is crucial for the power system planning and electricity market
transactions. Recently, deep learning models have been widely used due to their powerful data mining
capabilities. However, the existing research mainly focus on model structure adjustment and input feature
selection, ignoring the influence of model ensemble on prediction. A single deep learning model is not
yet able to address the various complex challenges that arise in short-term load forecasting. To improve
the accuracy of short-term load forecasting, this paper proposes a novel multi-scale ensemble method and
multi-scale ensemble neural network. This neural network uses long short-term memory, gate recurrent
units, and temporal convolutional network as the basic model. By coupling the stochastic weight averaging
ensemble method and differential evolution ensemble method, these deep learning networks were assembled
from single-model scale and multi-model scale, respectively, thereby effectively improving the model
prediction accuracy. For predicting the power load of Hubei Province in China, meteorological features and
time features were in consideration. The proposed model was trained and compared with eleven intelligent
short-term load forecasting models, including machine learning, deep learning and ensemble deep learning
models. Simulations show that the proposed model has the best comprehensive prediction performance. This
study highlights the power of ensemble deep learning models coupled with multiple ensemble techniques
and the promising prospect of our proposed model in short-term load forecasting.

INDEX TERMS Short-term load forecasting, ensemble model, stochastic weight averaging, deep learning,
differential evolution algorithm.

I. INTRODUCTION
Accurate load forecasting is an indispensable component
in power system planning and electricity market transac-
tions [1]. With the proposed emission reduction target,
it is an inevitable trend to construct a new power system
with new energy as the main body [2]. According to the
forecasting period, load forecasting can be segmented into
four categories: ultra-short-term, short-term, medium-term,
and long-term forecasting [3], the most widely studied is
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short-term load forecasting (STLF), which generally refers
to predicting the load of the next day and week [4]. Three
research methods are mainly used for STLF: statistical, data-
driven, and ensemble models [5].

The statistical model determines the potential rules from
historical load samples according to statistical formulas or
known relationships [6], including multiple linear regres-
sion (LR) [7], exponential smoothing [8], and autoregressive
integrated moving normal algorithms (ARIMA) [9]. In [10],
the paper integrates ARIMA and the nonlinear grey model
(MNGM) into a combined MNGM-ARIMA model. The
datasets from the three countries demonstrate the proposed
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model has shown sound performance. In [11], ARIMA and
seasonal ARIMA methods were combined to measure future
primary energy demands, and this combined model is being
used with success in a real-time control system. However,
due to the nonlinear identities of the power load time series,
statistical methods perform fast in the calculation but perform
poorly in STLF owing to their limitations. In contrast, data-
driven models can better handle the nonlinear characteristics
of load sequences and are widely used in STLF [12].
The data-driven model generates prediction by estab-

lishing a mapping model between input and output [13].
Typical data-driven includes decision tree [14], support
vector machine (SVM) [15], and artificial neural network
(ANN) [16]. The most commonly used are ANNs, including
reinforcement [17], feedforward [18], regression [19], gen-
eralized [20] and wavelet [21] neural networks. A method
that combines the ANN and wavelet denoising algorithm has
been demonstrated to significantly improve the accuracy of
STLF [22]. Due to the rapid development of computer science
and technology, deep learning networks on the strength of
ANN have gained extensive attention [23]. Deep learning
neural networks can handle data non-stationarity and long-
range dependencies owing to their powerful deep learning
framework with multiple hidden layers [24]. Representative
algorithms include long short-term memory (LSTM) [25],
gate recurrent units (GRU) [26], and temporal convolutional
networks (TCN) [27]. In the STLF tasks, the improved LSTM
model considering relevant factors was adopted, and hyper-
parameter optimization was implemented on the Bayesian
optimization algorithm (BOA), the proposed method is val-
idated by seven benchmark methods [28]. In [29], TCN
and attention mechanism (AM) are combined to enhance
the forecast performance. Simultaneously, fuzzy c-means
(FCM) joined with dynamic time warping (DTW) are for
data processing. The experiment results illustrate that the
improved TCNmodel ismore effective than the contrast mod-
els. Data-driven models have captured widespread concern
from researchers in load forecasting, owing to their excellent
generalization ability, global optimal solution, and fast cal-
culation property [30]. However, there are still limitations in
prediction accuracy for a single model. Existing studies have
demonstrated that ensemble models have more accuracy and
robustness than single models [31].

Ensemble models can obtain superior generalization per-
formance by using specific ensemble learning techniques.
According to different ensemble learning techniques, ensem-
ble models can be further divided into bagging-based ensem-
ble models, boosting-based ensemble models, stacking-based
ensemble models, and ensemble deep learning models [32].
Bagging-based ensemble models [33], which use bootstrap
aggregation ensemble technology, are one of the first pro-
posed ensemble learning models. The core idea of them
is to independently train multiple weak learners and con-
nect them in parallel. Random forest [34] is a widely used
bagging-based ensemble model. In contrast, boosting-based

ensemble models [35] are a special model that uses the
boosting ensemble technology. The main idea behind them
involves iteratively applying the weak learners to transform
them into strong learners through a series of connections.
Typical boosting-based ensemble models applied to load
forecasting include extreme gradient boosting (XGBoost)
[36] and light gradient boosting machine (lightGBM) [37],
etc. Besides, models with stacked generalization technol-
ogy are called stacking-based ensemble models [38]. Unlike
the above ensemble models, stacking-based ensemble mod-
els usually consider heterogeneous weak learners (different
learning algorithms are combined) and adopt meta-models
to combine base models. In [39], a novel load forecasting
method combining SVR and stacked generalization tech-
nology is proposed for STLF and the results validate the
effectiveness of the stacking-based ensemble. With the devel-
opment of deep learning, the idea of the ensemble was
gradually applied to deep learning, and the ensemble deep
learning model came into being. Lai et al. [40] paralleled
multiple radial basis function neural networks into a deep
ensemble model and verified its effectiveness on three differ-
ent load datasets. Niu et al. [41] proposed a new ensemble
deep learning model for STLF by concatenating a convo-
lutional neural network (CNN) and bidirectional recurrent
unit (BiGRU). The results show that the ensemble model
has a higher generalization ability. The above studies initially
demonstrate the powerful potential of ensemble deep learning
models in dealing with STLF problems. However, in general,
the use of ensemble for deep learning models is not nearly as
widespread as it is for other models.

The above research all belong to the classical multi-model
scale ensemble, which ensembles multiple models in series
or in parallel. This approach offers a more competitive model
but inevitably leads to an increase in the amount of com-
putation. In recent years, an advanced single-model scale
ensemble technique stochastic weight averaging (SWA) [42]
has emerged in the deep learning field. Unlike traditional
multi-model scale ensembles, this technique can ensemble
multiple same models without incurring any additional com-
putational cost. In summary, considering that the existing
research in the STLF field mostly focuses on multi-model
scale ensembles, the application of single-model scale ensem-
ble is ignored, let alone the coupling of multiple-scale
ensemble. Thus, this study pays close attention to the applica-
tion of the multi-scale ensemble technique in the STLF field.
The contributions of this article include:

(1) By introducing the advanced SWA technique and dif-
ferential evolution (DE) ensemble approach from different
scales, a patent multi-scale ensemble method (MSEM) for
deep learning models is proposed in this study, which can
enhance the generalization ability of models efficiently. This
approach can provide a general paradigm for the ensemble of
deep learning models.

(2) Performing the proposed MSEM to three typical deep
learning models, the paper proposes a novel multi-scale
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FIGURE 1. The Structure of proposed MSENN model.

ensemble neural network (MSENN) for load forecasting.
By reducing the generalization error frommultiple scales, the
model can achieve high-precision fitting of future unknown
samples in power load forecasting. This work can not only
provide a competitive alternative model for grid workers but
also enrich the diversity of STLF models.

(3) A comprehensive experimental contrast analysis is
conducted among twelve models, which contain machine
learning models, deep learning models, and ensemble deep
learningmodels. The empirical results tested on three datasets
show that the proposed MSENN surpasses other comparative
models in comprehensive forecast performance.

The remainder of this study is structured as follows.
Section II introduces the background of relevant meth-
ods, including deep learning models, the model ensemble
method MSEM, and the process of the proposed method
MSENN. Section III elaborates on the experiments and
analyses of the proposed approach. The model results
and discussion in contrast are illustrated in Section IV.
Finally, Section V sketches out the conclusions of the
paper.

II. METHODOLOGY
The paper proposes a novel multi-scale ensemble neural net-
work MSENN to deal with STLF problems. The MSENN
is constructed by ensemble LSTM, GRU and TCN from
single-model scale and multi-model scale, respectively. The
structure of the proposed MSENN is shown in Fig. 1. The
details of the model will be introduced in the following
subsections.

A. DEEP LEARNING MODELS
1) LONG SHORT-TERM MEMORY (LSTM)
The LSTM network is a memory-strengthened version of the
RNN originally proposed by Hochreiter and Schmidhuber
in 1997 [43]. The LSTMmodule consists of two hidden states
and three control gates. The control gates include the forget,
input, and output gates [44]. The internal operation of LSTM
is presented in Fig. 2.

FIGURE 2. Structure of LSTM unit.

FIGURE 3. Structure of GRU unit.

2) GATED RECURRENT UNIT (GRU)
The GRU only has two gates: the reset and update gates [45].
The internal GRU operation is shown in Fig. 3. The reset gate,
update gate, output candidate, and GRU output are computed
as follows [46].

3) TEMPORAL CONVOLUTIONAL NETWORK (TCN)
The TCN is a time series data analysis neural network [47].
TCN incorporates causal convolution, dilated convolution
and residual connection. Residual block is applied to avoid
gradient descent, thus facilitating the gradient propagation
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FIGURE 4. Structure of dilated casual convolution.

throughout the neural network [48]. The TCN structure is
presented in Fig. 4.

B. MULTI-SCALE ENSEMBLE METHOD
A novel deep learningmulti-scale ensemble method (MSEM)
for load forecasting is proposed in this section. which com-
bines SWA ensemble method and DE ensemble method.

1) STOCHASTIC WEIGHT AVERAGING (SWA)
In the proposed MSEM, SWA [42] was employed to ensem-
ble same models from a single-model scale. It is a deep learn-
ing single-model weight ensemble technique that employs a
simulated annealing cyclic learning rate strategy to explore
the optimal solution space. The principle of SWA is intro-
duced as follows. First, in the perspective of stochastic convex
optimization, each trained model is a point in the weight
space. The local minimum generated at the end of single
learning rate cycle, inclining to scrape up on the border of
the loss surface where the value is small. By averaging these
points, obtaining a global optimal solution that tends toward
the center of the region and has a small loss function value is
extremely probable, as shown in Fig. 5.
For better understanding, Fig. 6 presents the sketch map

of simulated annealing learning rate. As can be seen from the
figure, simulated annealing learning rate α reduces within the
range (α2, α1), and the pace of reduction varies from slow
to fast to slow. After the minimum learning rate is reached,
then start directly from the maximum learning rate, so it is
discontinuous. Then repeating the same cycle to acquire mul-
tiple local minima. By saving and averaging multiple local
optimal model weights, the generalization ability of deep
learning models can be effectively improved. In addition,
the method can enhance the stability of the training process
without incurring additional cost.

In summary, SWA method can permit the model to
converge faster and more stable, which can improve the gen-
eralization ability and prediction accuracy of model without
additional computational cost from single-model scale.

2) DIFFERENTIAL EVOLUTION (DE)
To further integrate the advantages and improve the overall
accuracy of multiple models, this study then introduces DE
algorithm [49]. The method focuses on model ensemble from

FIGURE 5. Train loss surface of model; (W1, W2, and W3 are the weights
of model; WSWA is the average of W1, W2, and W3).

FIGURE 6. Simulated annealing learning rate of SWA.

multi-model scale. In detail, the core idea of this method
is adaptively assigning weights according to the prediction
accuracy of each sub-model on the validation set. Instead of
manual setting or mean value of weights in general method,
DE method is capable of obtaining adaptive weights by its
embedding optimization mechanism to focus on the advan-
tages of multiply models. DE receives output from multiple
models, which is then optimal weight averaged to acquire
comprehensive output. The DE algorithm flowchart is shown
in Fig. 7. In summary, DE is capable of assigning different
weights according to the performance of sub-models, which
can significantly improve the overall prediction accuracy of
ensemble from multi-model scale.

C. DEEP LEARNING MULTI-SCALE ENSEMBLE MODEL
To enhance the prediction performance and calculation speed
of model, a novel MSENN model on the strength of the
MSEMmethod is brought forward. The specific implementa-
tion procedure of the proposed model is presented as follows.

1) ENSEMBLE MODEL SELECTION
The first step of constructing a novel ensemble model is to
select the suitable fundamental neural network. The choice
of model structure and number of sub-models has no restric-
tions. LSTM, GRU and TCN are sorted as basis of the
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FIGURE 7. Sketch map of differential evolution ensemble method.

ensemble model. After selecting the base models, the pro-
posed approach ensembles them at two different scales:
single-model and multi-model ensembles. Details are pre-
sented in the following subsections.

2) SINGLE-MODEL SCALE ENSEMBLE
In our proposed MSENN, SWA is adopted to ensemble the
model from a single-model scale. The core of SWA method
is to adopt a special learning rate on the loss surface to
visit several local minima, and converge to expected optimal
solution by averaging the local minima weights. Currently,
SWA supports two types of annealing learning rate strate-
gies, including cosine and linear learning rate. In this study,
a discontinuous cosine annealing learning rate strategy was
adopted [50], which has been demonstrated to performwell in
global optimization. Cosine annealing can urge the model to
converge towards the direction of local minima after several
epochs. The learning rate α of the epoch i, is calculated as
follows:

α(i) = (1 − t(i))α1 + t(i)α2, α1 ≥ α2

t(i) =
1
c
( mod (i− 1, c) + 1) (1)

where α(i) decreases from α1 to α2; c represents the cycle
length; and i denotes epoch.

Raising the cosine annealing learning rate after several
epochs, the weights of model will be stored for yielding
average ‘‘SWA’’ weights. The model weights are denoted as
w = {w0,w1,w2, · · · ,wn}, n is the total number.
The calculation formula is as follows:

wSWA =
1
T

T∑
t=1

wnoct (2)

where wSWA represents the average weight of the model;
T denotes the number of cycles of the cosine annealing strat-
egy; wnoct is the weight value corresponding to the minimum
learning rate at the end of t-th cycle.

3) MULTI-MODEL SCALE ENSEMBLE
After the single-model ensemble is completed using the
SWA, the next step is to ensemble model from a multi-model
scale by DE. In this study, the multi-model scale refers to
the ensemble within several models, i.e., SWA-LSTM, SWA-
GRU and SWA-TCN, which is ensembled between the output
of several models. The number of models is defined asN. The
objective function Fobj is as follows:

minFobj =

(
N∑
n

(
Wn · L lossn

))
(3)

where Fobj represents the minimum value of the right-hand
side, Wn and L lossn represent the weight and loss value of the
n-th model, respectively.

After the best weight W best
n between models through the

objective function Fobj is settled, the final output can be
obtained:

Y final =

N∑
n

(
W best
n · Yn

)
(4)

where Y final denotes the final output after the implementation
of multi-model scale ensemble. Yn = {y0, y1, y2, · · · , yi} ,

Yn is the predicted value of n-thmodel, i is the number index.

D. PERFORMANCE EVALUATION METRICS
To evaluate the model performance comprehensively, four
typically used metrics for prediction accuracy are selected:
root mean square error (RMSE), mean absolute percentage
error (MAPE), mean absolute error (MAE), coefficient of
determination (R2), maximum error (ME) and calculation
time (CT) [51].

RMSE =

√√√√1
I

I∑
i=1

(
yi − yobsi

)2
(5)

MAE =
1
I

I∑
i=1

∣∣∣yi − yobsi

∣∣∣. (6)

MAPE =

I∑
i=1

∣∣yobsi −yi
∣∣∣∣yobsi

∣∣
I

(7)

R2
= 1 −

I∑
i=1

(
yobsi − yi

)2
I∑
i=1

(
yobsi − ȳ

)2 (8)

ME = max(
∣∣∣yobsi − yi

∣∣∣) (9)

where yi, yobsi , and I represent the predictand, observations,
and number of observations, respectively. ȳ denotes the
mean of the observations. CT denotes the calculation time
of models.
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FIGURE 8. Hourly load of Hubei in 2015.

III. EXPERIMENTAL STUDY
A. STUDY AREA AND DATA DESCRIPTION
The data used in this study are the hourly loads of Hubei
Province from January 1, 2015 to December 1, 2015; the
data are from the Central China Power Grid. The hourly load
fluctuations are shown in Fig. 8 for visual display. Moreover,
the meteorological data of Hubei Province were obtained
from Tianhe weather station in Wuhan.

B. DATA PREPROCESSING
1) DIVISION OF DATASETS
To increase the validity of this study, the sliding window
method was adopted to divide the original data into three new
datasets. The length of the sliding window accounted for 80%
of the original data, and 10% of these data slid each time.
Furthermore, in the sliding window, the first 70% and the next
10% data are adopted as the training set and validation set
respectively, the last 20% are as the test set. A schematic of
the dataset partition is presented in Fig. 9. As illustrated in
the figure, the original data are classified into three datasets
by the data sliding window method, namely datasets A, B,
and C.

2) FEATURE FACTOR PROCESSING AND SELECTION
Load variations are closely related to meteorological condi-
tions. This study introduces a combination of meteorological
elements to increase the performance of load forecasting.
The combination of meteorological factors includes average
temperature, dew point, and relative humidity. In addition,
the time feature was strongly correlated with load changes.
To reflect the influence of time feature on load, weekdays
were mapped as 1, and weekends were mapped as 0.8 in this
study. In this way, all times are converted into corresponding
time features, for example, the features of one full week are
[1, 1, 1, 1, 1, 0.8, 0.8] and the features are the same within a
day.

3) NORMALIZED PROCESSING
To exclude the influence of variable dimension and variation
range, the data were min-max normalized. All values are
mapped to the [0,1] interval by min-max normalization. The
normalized processing is applied to the training, validation

FIGURE 9. Schematic of dataset partition (The yellow, green and pink
blocks represent the training set, validation set and test set,
respectively).

and test set separately. The specific calculation formula is
given by Eq. (10):

x ′
=

xi − xmin

xmax − xmin
(10)

where x ′ represents the normalized values; xi denotes the
i-th real values; xmin and xmax represent the minimum and
maximum values, respectively.

C. MODEL DEVELOPMENT AND PARAMETER SETTINGS
To verify the performance of the MSENN model, eleven
models of three types are selected for comparison. 1)Machine
learning model, such as ridge regression (RR). 2) Deep learn-
ing networks (such as LSTM, GRU and TCN). 3) Ensemble
deep learning models. The first is single-model scale ensem-
ble of deep learning models LSTM, GRU and TCN combined
with the SWAmethod (namely SWA-LSTM, SWA-GRU and
SWA-TCN). The second is ensemble of LSTM, GRU and
TCN model based on the DE algorithm, which is named
weight ensemble neural network (WENN). Additionally,
we have selected two state-of-the-art ensemble models. One
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TABLE 1. Hyper-parameter optimization results of TWELVE MODELS.

TABLE 2. Comprehensive performance results of TWELVE MODELS on dataset A.

is ensemble LSTM, GRU and TCN based on grid search
method [52], which is named contrast ensemble model 1
(CEM-1) in this study. The other is a stacking ensemble
model based on random forests (RF), LSTM,ANN and evolu-
tionary trees (Evtree) [53], which is named contrast ensemble
model 2 (CEM-2) in this study. At last, non-meteorological
data (days and consumption only) was as input to MSENN
to evaluate the effect of meteorological data, the reorganized
model is called MSENN-D in this study.

The daily load fails to embody the accumulated influence
of the past few days, so one week (168h) is taken as the input
and 1h as the output in this study. The Bayesian optimization
algorithm was used to optimize the hyperparameters of all
models. In SWAmechanism, the bound limits of the learning

rate are 0.005 and 0.0005, respectively. The total number of
iterations was 200, the cosine annealing learning rate was set
to be executed from 80% of the total number of generations
(i.e., the 160th generation). Every cycle epoch was five gen-
erations. In DE algorithm, the scaling factor was set to 0.5,
the crossover probability was set to 0.7 and the number of
iterations is set to 100. The detailed parameter settings of all
the models are listed in Table 1.

IV. RESULTS AND DISCUSSIONS
In this section, the predictions based on the three datasets
are presented in the form of tables and figures. The average
forecast results after running 10 times of the 12 models on
dataset A, dataset B and dataset C are listed in Table 2, Table 3
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TABLE 3. Comprehensive performance results of TWELVE MODELS on dataset B.

FIGURE 10. Comparison of multi-model prediction performance for three-day on dataset A.

and Table 4. Where, dark gray and light gray represent the
best and sub-best results among these models.

In general, in Table 2, Table 3 and Table 4, the proposed
MSENN has the best performance on the dataset A and
dataset C, and CEM-2 has the best performance on the dataset
B. In contrast, the RR model has the worst performance on
all three datasets. The above results preliminarily demon-
strate the superiority of the ensemble deep learning model.
To visually demonstrate the forecasting effect of 12 models,
the predicted results of 12 models for a time horizon of
72h (three-day) forecasting are presented in Fig. 10, Fig. 11
and Fig. 12. As can be seen from the figures, MSENN
effectively tracks multiple inflection points of true values
on dataset A. Almost all models have captured the fluc-
tuation trend of the real load, but the predicted value of
MSENN is closer to the real load as a whole. Furthermore,
Fig. 13 presents predicted and observed hourly load scat-
ter plots on three datasets of seven representative models,

including MSENN, WENN, RR, LSTM, SWA-LSTM,
CEM-1, CEM-2.

It is clearly visible that the results of the MSENN exhibit
the closest fit with the ideal line on the dataset A and
dataset C. These results all illustrate that the MSENN has
strong nonlinear fitting ability and excellent predictive perfor-
mance. Overall, the above results preliminarily demonstrate
the superiority of the proposed model in dealing with STLF
problems.

Note that all models, both for dataset A, dataset B and
dataset C, yielded almost identical results. Therefore, we take
dataset A as an example to carry out further detailed analysis.
Start by comparing the performance of non-ensemble model.
It can be observed from Table 2 that the machine learning
model RR performs the best in CT, but performs the worst
in other accuracy indicators. Compared with RR, the RMSE
of deep learning models, LSTM, GRU and TCN decreased
by 12.77%, 7.82% and 1.90%, ME increased by 12.77%,
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TABLE 4. Comprehensive performance results of TWELVE MODELS on dataset C.

FIGURE 11. Comparison of multi-model prediction performance for three-day on dataset B.

7.82% and 1.90%, respectively. These data shows that LSTM,
GRU and TCN have higher load prediction accuracy than RR
model in this study.

Secondly, the effect of the SWA ensemble method on
deep learning models is analyzed. It can be clearly seen
from the table that the model with SWA has higher accuracy
than its original model. Compared with TCN, LSTM and
GRU, the RMSE of the single-model scale ensemble models
(i.e., SWA–TCN, SWA–LSTM and SWA–GRU) decreased
by 7.63%, 9.21% and 6.83%, respectively. ME decreased by
22.22%, 19.15% and 9.22%. R2 increased by 0.39%, 0.33%
and 0.41%. Moreover, the calculation time of the model with
SWA is almost the same as its original model. This result
shows that SWAmechanism can improve the prediction accu-
racy of a single model without adding additional calculation
time. Furthermore, to visualize the effect of SWA on model
ensemble, detailed loss curve is presented in Fig. 14. Evi-
dently, the loss curve rises and falls periodically starting from

the 160th epoch. This phenomenon is due to the special learn-
ing rate mechanism of SWA, which can make a single model
converge tomultiple local optima in one training session. This
trait effectively expands the insight of a single model on the
search area, thereby enhancing the generalization ability of
the model. Moreover, the models with SWA method have
lower loss curve, indicating that the SWA method is able
to enhance the searching ability of the model. In summary,
SWA technology can effectively promoting the forecast per-
formance from the single-model scale.

Thirdly, the effect of the DE ensemble method on the deep
learning models is elaborated. It can be clearly seen from
the table 2 that the model with DE ensemble method has
higher accuracy than its sub-models. Compared with LSTM,
GRU and TCN, the RMSE values of WENN decreased by
10.76%, 15.55% and 20.65%, respectively. Similarly, com-
pared with SWA–LSTM, SWA–GRU and SWA–TCN, the
RMSE ofMSENN significantly decreased by 7.86%, 15.04%
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FIGURE 12. Comparison of multi-model prediction performance for three-day on dataset C.

FIGURE 13. Load predictand by seven models against
observation:(a) dataset A; (b) dataset B; (c) dataset C.

and 19.47% separately. Fig. 15 presents the intuitive results
for weights allocation. As presented in the figure, the allo-
cated weights of the sub-models are negatively correlated

with their RMSE scores; that is, sub-models with low RMSE
scores tended to be assigned higher weights. The data analysis
shows that the DE ensemble method is extremely scientific
and rigorous in terms of weight distribution. It focuses on the
strengths and avoids the weaknesses of each sub-model. This
gives full play to the advantages of each sub-model, thereby
obtaining better prediction results. Additionally, the above
results also reveal that the simultaneous use of SWA and DE
does not conflict, which verifies the rationality of the MSEM
proposed in this paper as well.

Fourthly, a comparison with state-of-the-art ensemble deep
learning models is demonstrated. In general, MSENN has a
more outstanding comprehensive performance than CEM-1
and CEM-2. In more detail, although CEM-1 and MSENN
have the same sub-model, MSENN has a 26.92% and
11.12% improvement over CEM-1 in terms of ME and CT,
respectively. This phenomenon can be explained from two
aspects. On the one hand, MSENN adopts the SWA ensemble
mechanism, which improves the prediction accuracy of the
sub-model from the single-model scale, soMSENNhas better
prediction performance. On the other hand, CEM-1 adopts an
ensemble strategy based on grid search method instead of DE
ensemble. The grid searchmethod is essentially an exhaustive
search method, which needs to traverse all possible weight
combination results, resulting in poor computational effi-
ciency. So, the computational efficiency of CEM-1 is worse
than that of MSENN. As for CEM-2, its prediction accuracy
is slightly lower than that of MSENN, but it is far behind
MSENN in terms of computational efficiency. Compared
with CEM-2, MSENN has an improvement of 6.70% and
41.35% on ME and CT, respectively. This result shows that
stacking ensemble is an effective ensemble strategy to reduce
prediction error, but the complicated implementation and low
computational efficiency make it not competitive.

Fifthly, the effect of meteorological factors on the model is
discussed. Compared with MSENN-D, the RMSE and ME
of MSENN decreased by 18.43% and 25.62%. The exper-
imental results found that the model using only date and

111972 VOLUME 11, 2023



Q. Shen et al.: STLF Based on Multi-Scale Ensemble Deep Learning Neural Network

FIGURE 14. Comparison loss function curves among representative models: (a) comparison between LSTM and SWA-LSTM; (b) comparison
between GRU and SWA-GRU; (c) comparison between TCN and SWA-TCN.

FIGURE 15. Visualization results of DE weights allocation. (a) WENN;
(b) MSENN.

consumption is less effective, which indicates that meteoro-
logical data can improve the accuracy of load forecasting to
a certain extent.

In summary, the above analysis on the one hand illustrates
the effectiveness of the MSEM, and on the other hand also
verifies the superiority of the proposed MSENN.

V. CONCLUSION
This study proposes a novel deep learning ensemble
technique, called multi-scale ensemble method MSEM,
to enhance the forecast performance of deep learning mod-
els in STLF. By coupling SWA and DE ensemble methods,
the method enhances the generalization ability of forecast-
ing model from single-model scale and multi-model scale,
respectively. Furthermore, performing the proposed MSEM
to three typical deep learning models, the paper proposes
a novel multi-scale ensemble neural network (MSENN)
to deal with STLF problems. Finally, by considering the
hourly load of Hubei Province in China in 2015 for
instance, eleven models covering machine learning, deep
learning, and ensemble deep learning models (RR, LSTM,
GRU, TCN, SWA–LSTM, SWA–GRU, SWA–TCN, WENN,
CEM-1, CEM-2 and MSENN-D) and three datasets are
employed for comparison. Simulations show that the pro-
posed MSENN has the best comprehensive prediction per-
formance, which also verifies the effectiveness of theMSEM.
Moreover, the following conclusions are found: 1) Meteoro-
logical factors have a certain positive effect on the accuracy
of STLF. 2) Model ensembled from any scale can improve
the model prediction performance. 3) Simultaneous model
ensemble frommultiple scales does not conflict; rather, it can
promote the overall performance of the model in various
ways.

Notably, STLF is also influenced by other factors, such as
human behavior. In future research, we will consider more
influencing factors and adopt different methods or networks
to enable the forecast accuracy. Moreover, it may be worth
investigating to implement this technique to the power gener-
ation photovoltaic power and wind power.
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