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ABSTRACT Breast cancer (BC) is closely linked with the maximum mortality rate for cancer detection
across the globe and has become a predominant public health issue. Earlier detection might increase the
possibility of survival and successful treatment. However, it is a time-consuming and very challenging
task that depends on the diagnostician’s experience. For patients and their prognosis, it is essential that
BC cancer can be automatically detected by the analysis of histopathological images. Conventional feature
extraction method extracts some lower-level features of images, and preceding knowledge is essential
for selecting suitable features that could be heavily impacted by human beings. The deep learning (DL)
technique extracts higher-level abstract features from an image automatically. Therefore, this study develops
a new Ensemble Learning with Symbiotic Organism Search Optimization Algorithm for Breast Cancer
Classification (ELSOSA-BCC) technique on Histopathological Images. In the ELSOSA-BCC technique,
the noise is removed using Gabor filtering (GF). In addition, the ELSOSA-BCC technique employs the
EfficientNet-B0O model for feature extraction and optimal hyperparameter tuning using the SOS algorithm.
Finally, the ensemble learning-based classification process is performed by three classifiers namely deep
stacked autoencoder (DSAE), kernel extreme learning machine (KELM), and bidirectional long short-term
memory (BiLSTM). In this study, ELSOSA-BCC simulation values are tested on a medical dataset.
ELSOSA-BCC has been shown to perform better than other models in the experimental results.

INDEX TERMS Medical imaging, breast cancer, ensemble learning, deep learning, histopathological
images.

I. INTRODUCTION

Breast cancer (BC) is the major factor in higher mortality
rates in women all around the world. The heterogeneous
nature of BC makes its initial representation a crucial step
in treatment planning and decision-making [1]. The routine
clinical analysis of BC can be performed by using several
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radiology images, involving Magnetic Resonance Imaging
(MRI), ultrasound, and mammography. Nonetheless, this
non-invasive methodology might not effectively represent
the heterogeneous behavior of BC [2]. Hence, the patho-
logical study is followed as a benchmark to comprehend
the pathophysiology of BC. In the presented technique,
the tissue sample is collected and mounted on glass slides
and then stained this slide for the best description of
immunophenotypic and tumoral morphological features [3].
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Later, pathologists proceed with the microscopic analysis of
this slide to conclude a potential diagnosis of BC. Conversely,
the manual interpretation of histopathology images could be
a time-consuming and challenging task and might lead to
biased results [4].

The diagnostic method of BC is operator-dependent and
needs a skilled physician. However, some human factors like
insufficient concentration and exhaustion might cause the
misdiagnosis of sample types within continuous and long
processes [5]. In case of misdiagnosis, cancer might grow,
and the survival rate becomes lower. Few countries have a low
number of diagnosticians per population [6]. To counteract
the possibility of error, the lack of skilled pathologists, the
laborious process, the high cost, and many Computer-Aided
Diagnosis (CAD) methods for automatic and early diagnosis
of BC were introduced and assessed by researcher workers
in the past. This technique could considerably assist in the
earlier detection of cancer. But it is difficult to enforce [7].
With the increase of deep learning (DL) (as an integral com-
ponent of the ML family), many researchers have applied this
technique to accurately determine sample types in histology
images. However, the complicated structure of human body
cells [8], low image quality, and comparison among benign
and malignant samples from one side and the various cell
scales, sizes, shapes, and colors in the histological image from
the other side can make the task most complex and prevent
accomplishing higher accuracy.

In addition, the lack of labeled and extensive datasets
has made another serious problem for the abovementioned
challenges [9]. In the context of DL, features can be extracted
and retrieved data automatically, and abstract representations
can be learned automatically. In the fields of biomedical
science, computer vision, etc., they could solve the problem
of conventional feature extraction [10]. Parallel to this, the
unprecedented advances in machine learning enable diag-
nosis based on image analysis, previously only possible in
certain specialties, through the synergy of artificial intel-
ligence and digital pathology. In comparison with human
pathologists evaluating options, computer-aided image anal-
ysis allows for a more thorough identification, extraction,
and quantification of features [11]. An artificial intelligence-
based diagnosis of skin cancer is compared with datasets
widely used and prevalent reviews. Using deep learning
and machine learning techniques, the research will provide
a deeper understanding of skin cancer diagnosis [12]. The
tumor-associated microbiota has been studied in several ways
to date, shedding light on its composition, function, and clin-
ical relevance. It is imperative to approach tumor-associated
microbiota studies from a holistic perspective, taking into
account the technical, analytical, biological, and clinical chal-
lenges [13]. An ultrasound image classification framework
that integrates deep learning and metaheuristic optimization
is described in this research work [14]. This is an algorithm
for constructing an efficient neural network architecture
that uses Bayesian convolutional neural architectures and
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Gaussian processes to detect and classify colon and lung
cancers more efficiently [15].

Breast cancer has the potential to spread to various body
regions through a process known as metastasis. Detecting
associated risks requires a comprehensive approach involv-
ing diagnostic imaging, medical history review, and clinical
assessment. Advanced imaging techniques like CT, PET, and
MRI scans play a crucial role in identifying metastatic sites
such as the lungs, liver, bones, and brain. Additionally, a thor-
ough evaluation of a patient’s medical history and symptoms
is essential for assessing potential vulnerabilities. For exam-
ple, breast cancer metastasizing to the bones can result in
fractures, bone pain, and compression of the spinal cord.
Liver metastases may lead to symptoms like jaundice, abdom-
inal pain, and compromised liver function. Lung metastases
could manifest as respiratory difficulties, persistent cough,
and chest discomfort. Identifying risks associated with other
organs affected by breast cancer is critical for devising
effective treatment strategies. Highlighting the importance
of early detection, accurate diagnosis, and a comprehen-
sive approach to addressing metastases is paramount. These
factors collectively contribute to minimizing the impact on
other organs and enhancing the overall quality of life for
patients.

ELSOSA-BCC is a new technique of ensemble learn-
ing with symbiotic organisms search optimization applied
to histopathological images for the classification of breast
cancer. As part of the noise removal process, ELSOSA-
BCC implements Gabor filtering (GF). In addition, the
ELSOSA-BCC technique employs the EfficientNet-BO
model for feature extraction and optimal hyperparameter
tuning using the SOS algorithm. Finally, the ensemble
learning-based classification process is performed by three
classifiers namely deep stacked autoencoder (DSAE), kernel
extreme learning machine (KELM), and bidirectional long
short-term memory (BiLSTM). The main goal of breast
cancer prediction is to determine and evaluate the likelihood
that the disease will develop or recur. However, it’s important
to keep in mind that there may be potential hazards or
factors involving other organs or components of the patient’s
health. It is critical to determine whether individuals receiving
therapy for breast cancer are at risk for heart-related issues
or illnesses. Breast cancer treatments, especially hormonal
ones, can lower bone density and raise the risk of fractures
or osteoporosis. Fertility preservation and potential effects
on reproductive health should be taken into account for
younger women with breast cancer. It can be easier to spot
the dangers of infections or other immune-related problems
if you are aware of how breast cancer and its therapies may
affect your immune system. Breast cancer hormone therapy
can affect the endocrine system, which could have adverse
effects or long-term repercussions on multiple organs. Future
development of other cancers may be more likely for patients
with breast cancer. For long-term health management, this
risk must be recognized and addressed.
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Cancer image datasets can be analyzed using the
ELSOSA-BCC optimization technique, which includes fea-
ture selection, parameter optimization, and model tuning in
machine learning and data analysis. It is based on the sym-
biotic relationship that two or more species have in nature,
where their existence benefits both. Complex optimization
problems are frequently solved using the ELSOSA-BCC opti-
mization technique. The premise behind ensemble learning
is that by combining the results of several different models,
the strengths of the individual models can make up for the
deficiencies of the other models, resulting in a more precise
and reliable final prediction.

The application of Ensemble Learning with Symbiotic
Organism Search Optimization Algorithm (ELSOSA) in
Breast Cancer Classification and Risk Identification carries
substantial implications in healthcare. This method enhances
breast cancer detection by combining diverse classifiers
and optimizing hyperparameters, thereby reducing diag-
nostic errors. Early-stage identification through ELSOSA
enables timely interventions, potentially improving treatment
outcomes. Medical professionals benefit from precise risk
assessment and classification, facilitating personalized treat-
ment plans and expediting decision-making. The model’s
transparency and interpretable hyperparameters are still con-
fident in its predictions.

In a broader healthcare context, ELSOSA’s imple-
mentation can optimize resource allocation and reduce
healthcare facility strain. Accurate classification aids in
efficient resource distribution, focusing on high-risk patients.
ELSOSA promises benefits for patients, medical practition-
ers, and the healthcare system. It enhances breast cancer
classification and risk assessment accuracy, translating to
improved patient well-being, streamlined resource distribu-
tion, and advancements in diagnostic techniques beyond
breast cancer.

A medical dataset can be used to test ELSOSA-BCC simu-
lation values. The research work also emphasizes how breast
cancer affects other organs quickly. Other body parts can be
affected by breast cancer, resulting in additional symptoms.
Lymph nodes under the arm are often the first detectable
sites of cancer dissemination, even if they are cancer-bearing
lymph nodes that cannot be touched. Malignant cells can
metastasize to the lungs, liver, brain, and bones. Additionally,
bone pain and headaches can manifest if they reach these
locations.

Il. RELATED WORKS

In [16], presented a DL and TL-related method for classifying
histopathological imageries for BC diagnosis. A patch selec-
tion method was implemented using TL without performance
losses for classifying breast histopathologic images. At first,
the extraction of patches will be done from Whole Slide
Images (WSI) and given to CNN for extracting the feature.
To train an SVM classifier, Features from the Efficient-Net
structure were used. Based on histopathologic images, the
authors developed a hybrid DNN to recognize cancer at
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the image level [17]. The hybrid DNN includes residual
block and inception. The network incorporated an advanced
multi-level feature map for histopathologic imageries and
included the boon of residual and inception blocks. The
method combined the strength of residual and inception
blocks and displays the stability in performance against cur-
rent methods. Deep learning applications in translational
bioinformatics, medical imaging, pervasive sensors, medical
informatics, and public health are emphasized in the paper.
It provides a critical analysis of the relative merits, potential
pitfalls, and prospects of deep learning in health informatics
as well as a comprehensive overview of current research [18].
As machine learning (ML) became easier and deeper learning
(DL) became more accurate, image classification became
much easier. A hybrid deep learning (HDL) model combines
two or more deep learning architectures. In several applica-
tions, HDL models are becoming popular. However, these
applications have not been reviewed [19]. The organic char-
acteristics of brain tumors make them difficult to treat, to a
great extent as a result of their restricting effects on progress.
Machine Learning and Image Processing algorithms can be
used to detect tumors [20]. To predict critical and non-critical
cases, a binary version of the Whale Optimization Algorithm
(WOA) was developed. It identifies minimally optimal fea-
tures while maximizing classification accuracy by using
sigmoid transfer functions [21]. The problem can be solved
by using artificial jellyfish search optimization (JS) algo-
rithms in combination with artificial neural networks (ANN).
Using JellyfishSearch_ ANN, the research work derived the
algorithm, that classifies cervical cancer data with four types
of targets [22]. Based on baseline FDG-PET scans, lym-
phoma lesions can be segmented and prognosis predictions
can be made for patients with diffuse large B-cell lymphoma
(DLBCL). The vast size and diffusely arranged lymphoma
cells of DLBCL, as well as the extremely heterogeneous
nature of the group of neoplasms that it belongs to, make the
duties difficult [23].

Burgak et al. [24] devised a deep CNN method. The
technique utilizes several methods (i.e., RMSprop, stochastic
gradient descent, adaptive gradient, Adam, AdaDelta, and
Nesterov accelerated gradient) for computation of the pri-
mary weight of the network and upgrades the model variables
for faster BP learning. The authors have used the parallel
computing structure with Cuda-based graphics processing
units so that the model can be trained with less hardware
in a short period. The author [25] introduced a novel hybrid
convolutional and recurrent DNN for BC histopathologic
image classification. Depending on richer multi-level feature
representations of the histopathologic image patches, this
technique integrated the merits of convolution and RNN, and
long-term and short-term spatial correlation among patches
are conserved [26]. A method for detecting sepsis early on,
using support vector machines (SVMs) and long short-term
memories (LSTMs), is described in [27]. Zeiser et al. [28]
modeled a method that relies upon CNN to offer a refined
and multiclass segmentation of WSI for BC. Such modules
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were prearranged for decoding the data learned through
CNNs in interpretable estimation for diagnosticians. The
pre-processing module can be accountable for eliminating
the background and noise of WSI. At ROI recognition, the
authors used the U-Net convolutional structure to find sus-
picion low magnification WSI. In [29], the authors modeled
a new DL model formulated depending on a CNN. The
success of the classification has been raised through the pre-
sented technique called opposed as BreastNet. The BreastNet
method was based on an attention module-based residual
architecture. Every images image data will be processed
through the augmented methods before applying it as input
to the model. In [30], the authors proposed 2 mechanisms
for diagnosing BC from multi- and single-magnification
histopathologic images. The first provided mechanism
uses a pre-trained DenseNet201 CNN structure and opti-
mally tunes over widely accessible BreakHis datasets and
classifies histopathologic imageries of particular magni-
fication elements into one of the malignant or benign
classes [31], [32], [33].

The study concentrated on pixel-level semantic segmenta-
tion of breast lesions using ultrasonic images. It incorporated
dilated factors in segmentation and used ultrasonic imaging
masks for the dataset. After segmentation, an erosion and
size filter removed noise, enhancing alignment with ground
truth masks [46]. The article aims to tackle these concerns
with a novel TTCNN-based breast cancer detection method.
Itinvolves extracting deep features from eight DCNN models
and selecting optimal layers based on classification perfor-
mance, enhancing effectiveness [47]. This study presents
a novel technique for segmenting breast lesions using a
quantization-assisted U-Net approach [48].

lll. PROPOSED MODEL

To identify and categorize breast cancer, we have devel-
oped a new ELSOSA-BCC algorithm in this work. Also,
risk identification of other organs is identified. The pro-
posed ELSOSA-BCC technique encompasses GF-based pre-
processing, EfficientNet-BO feature extraction, SOS-based
hyperparameter tuning, and ensemble learning-based classi-
fication. The ensemble learning process involves three clas-
sifiers namely KELM, DSAE, and BiLSTM models. Fig. 1
represents the workflow of the ELSOSA-BCC approach.

To address this concern, the ELSOSA-BCC approach
incorporates a range of strategies. Initially, the ensemble of
classifiers is designed with distinct architectures and learning
methodologies, aiming to mitigate overfitting by decreasing
the probability of all models simultaneously capturing irrel-
evant variations. This diversity in model designs enhances
the ensemble’s overall stability and resilience. Furthermore,
the integration of precise hyperparameter tuning is an essen-
tial step in averting overfitting. By systematically adjusting
hyperparameters, the model avoids undue complexity that
might lead to overfitting. Techniques like grid search or
random search are applied, aiding in identifying optimal
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hyperparameters that optimize model performance while
ensuring that noise in the data is not overly emphasized.

Additionally, the implementation of cross-validation tech-
niques during both training and assessment contributes to
the mitigation of overfitting. Cross-validation evaluates the
model’s efficacy on distinct data subsets, thereby diminishing
the risk of overfitting and ensuring the model’s adaptability
to unseen data. In conclusion, the ELSOSA-BCC method’s
reliance on an ensemble of classifiers and meticulous hyper-
parameter tuning demonstrates a deliberate approach to
tackle overfitting. By leveraging the diversity of models and
refined hyperparameters, the model aims to strike a bal-
ance between capturing meaningful patterns and sidestepping
noise, resulting in improved overall generalization capability.

The goal of the study is to investigate ensemble learning
strategies to improve the functionality of the breast can-
cer classification model. Multiple independent classifiers are
combined through ensemble learning to produce a more reli-
able and precise overall prediction. The ensemble learning
process will be enhanced using the Symbiotic Organism
Search Optimisation (SOS) algorithm. SOS is an optimiza-
tion method based on symbiosis among organisms that draws
inspiration from nature. To improve the classification of
breast cancer on histological pictures, the ensemble model’s
parameters, weights, and architecture are to be optimized
using the SOS method. The research attempts to classify
breast cancer and also find potential dangers of breast can-
cer spreading to other bodily organs. This entails examining
histopathological scans of various organs (including the heart,
liver, lungs, etc.) to look for any anomalies or signs of prob-
able metastases or systemic effects associated with breast
cancer. Based on histopathological pictures, the suggested
solution should be able to reliably categorize breast cancer
subtypes and evaluate the possible hazards to other organs
at the same time. To monitor patients and make treatment
decisions, the research intends to create a sophisticated and
precise tool for identifying and evaluating breast cancer.

In a comparative context, the ELSOSA-BCC method
involves a notably higher computational load in comparison
to the separate processes of Gabor filtering and ensemble
learning. Gabor filtering, which encompasses the analysis
of image textures through convolution with specialized fil-
ters, can be considered relatively straightforward. Similarly,
ensemble learning, which combines predictions from multi-
ple models to enhance accuracy, demands a manageable level
of computational resources.

Conversely, the ELSOSA-BCC approach combines Gabor
filtering, symbiotic organism search optimization, and
ensemble learning into a comprehensive framework. This
fusion leads to an intensified computational demand due
to the iterative optimization nature of symbiotic organism
search and the consolidation of predictions within ensemble
learning. Consequently, the utilization of the ELSOSA-BCC
method introduces an increased computational load, neces-
sitating a thorough comparative assessment against simpler
techniques to validate its intricacies.
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Gabor filtering is used as a preprocessing step in the
ELSOSA-BCC approach to reduce noise and improve the
pertinent texture features in the histopathology images.
It entails applying a collection of spatially localized sinu-
soidal functions known as Gabor filters on an image.
Gabor filters are excellent for noise removal and feature
extraction in images because they can be used to recover
texture information from various frequencies and orien-
tations. The ELSOSA-BCC technique aims to improve
the ensemble model’s predictive accuracy for classifying
breast cancer based on histopathology images. Overall, the
ELSOSA-BCC method looks to construct an ensemble model
for breast cancer classification by combining Gabor filter-
ing, the EfficientNet-BO model, and the SOS algorithm.
The specific enhancements and performance gains that this
ensemble approach has made in comparison to other available
techniques in the field will determine the innovation and
contribution of the work.

The article introduces the application of Ensemble
Learning with the Symbiotic Organism Search Optimiza-
tion Algorithm (ELSOSA-BCC). ELSOSA-BCC’s unique
strength lies in its capability to leverage ensemble learning,
which amalgamates predictions from diverse algorithms to
amplify accuracy and robustness. This methodology proves
particularly pertinent in the domain of breast cancer detec-
tion, given the need to address subtle variations and intricate
patterns within histopathological images comprehensively.

Furthermore, the integration of the Symbiotic Organism
Search Optimization Algorithm heightens ELSOSA-BCC’s
efficacy. This algorithm emulates symbiotic relationships in
nature, facilitating dynamic adaptation and optimization of
ensemble constituents. Consequently, the ensemble remains
agile and proficient in capturing the nuanced attributes of
breast cancer pathology.

In contrast to conventional practices that may center on
individual algorithms, the Ensemble Learning with Symbi-
otic Organism Search Optimization Algorithm exploits the
collective intelligence of multiple algorithms. This compre-
hensive strategy aims to surmount the limitations of singular
methods and optimize accuracy in breast cancer detection—
an essential component of early and precise diagnosis.

A. IMAGE PREPROCESSING

In image processing, a GF is a linear filter utilized for texture
synthesis and analysis. It derives from the Gabor wavelet
which is a sinusoidal plane wave modulated by the Gaussian
function [38]. GFs can be utilized in a variety of applica-
tions, comprising texture analysis, edge detection, and feature
extraction. They are mostly suitable for studying images that
comprise patterns or textures, while the GF is capable of
capturing either frequency or orientation data of patterns
from the image. To utilize a GF on an image, the image
has convolved with a group of Gabor kernels, each one is
planned to respond to a specific frequency and orientation.
The resultant convolved image is then explored for extracting
features or detecting texture and edge [34], [35], [36].
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Gabor filtering (GF) plays a vital role as a preprocessing
step in a range of image analysis applications, particu-
larly in tasks such as the identification of breast cancer
from histopathological images. Its importance arises from its
capacity to amplify essential features and patterns present in
images, rendering them more suitable for subsequent ana-
lytical processes. In essence, Gabor filtering stands as a
critical preprocessing measure due to its aptitude for enrich-
ing textural attributes, identifying frequency and orientation
nuances, mitigating noise interference, and refining image
representations for subsequent evaluations. Its integration is
indispensable for augmenting the precision and efficacy of
breast cancer detection using histopathological images.
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FIGURE 1. Workflow of the ELSOSA-BCC approach.

To sum up, the prospective directions for ELSOSA in
Breast Cancer Classification and risk Identification encom-
pass algorithmic advancement, investigation of multi-omics
data, bolstering interpretability, rigorous clinical validation,
and diversifying its scope to include other medical conditions.
These collective endeavors hold the promise of transforming
breast cancer diagnosis and risk evaluation, ultimately lead-
ing to elevated patient care and better overall outcomes.

B. FEATURE EXTRACTION

For the feature extraction process, the EfficientNet-BO model
is used. The EfficientNet model proposed by Google in 2019
made a great accomplishment in the domain of image classi-
fication. To identify sepsis early, this study will use physio-
logical data. Data from patients are used as inputs, including
demographics, lab results, and vital signs. To choose the ideal
training hyperparameters and probability threshold for the
inference phase, we used an LSTM [37]. The EfficientNet
model has been used for the ImageNet data and has shown
greater performance. The network employs a compound
coefficient for scaling the three dimensions of input image
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resolution (resolution), network depth (depth), and network
width (width) uniformly, thereby, the optimum classifica-
tion effect can be attained by balancing all the dimensions.
In comparison to conventional approaches, these models have
a limited amount of parameters and are capable of learning
the deep semantic data of images, enriching the efficiency
and accuracy of the network. Also, EfficientNet has better
transferability.

The EfficientNet includes a multi-model mobile inversion
bottleneck (MBConv) with a residual structure. The net-
work model comprises of kxk DepthwiseConv convolution
(Swishand BN , the value k is 30r5), common 1x1 convolu-
tional layer (BN), dropout layer, squeeze, and excitation (SE)
model, and 1x1 convolution layer (Swish and Batch Normal-
ization (BN)). These structures may take the count of network
parameters while improving the capability of extraction fea-
tures. Fig. 2 represents the framework of the EfficientNet-BO
method. EfficientNet-bO is an underlying structure for the
lightweight network in image classification. EfficientNet-bO
comprises 9 stages. Stage 1 comprises 3x3 convolutional
kernels with a stride of 2. Stages 2 to 8 comprise repeti-
tive stacking of the model, and the column parameter layers
characterize the count of times the MB-Conv is reiterated.
Stage 9 comprises a fully connected, 1x1 convolution kernel,
and average pooling layers. All the MBConv in the table is
followed by the number 1 or 6. This number is the magni-
fication factor. Especially, the first convolution layer in the
MBConv extends the channel of the input feature map to n
times the original. k3x3 or k5x5 characterizes the size of
convolution kernels in the DepthwiseConv layer in MBConv.
Resolution signifies the size of the feature map output by
these stages. The EfficientNetbl-b7 sequence of DNN selects
the better-suited one in depth (the number of convolutional
layers), width (the count of channels of the feature map),
and resolution (the size of feature map) based on the width,
depth, and resolution of EfficientNet-bO. The fundamental
premise is that expanding the depth of the network could
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FIGURE 2. The architecture of the EfficientNet-BO model.
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attain rich and complex features. This method is used for
other tasks. However the gradient disappears, the training
becomes challenging, and the time consumption rises if the
network depth is deeper. Assuming that the sampling dataset
is comparatively smaller, we applied EfficientNet-bO as the
backbone of the segmentation technique.

The SOS algorithm is used to tune the hyperparameters
of the EfficientNet-BO approach to its best performance. The
SOS algorithm, the newest method for tackling optimization
problems, was created by Cheng and Prayog in 2014 and was
motivated by organism interaction [39]. They rarely exist in
solitude since they depend on other species for sustenance
and life. These relationships rely upon trust, which can also
be called symbiotic relationships. The SOS process starts
with the initial population named the ecosystem. A group of
organisms was arbitrarily produced in the initial ecosystem,
where every organism signifies a solution for the given issue.
The SOS method offers a creative approach to simulating bio-
logical relationships between the ecosystem’s living things.
The SOS technique comprises Parasitism, Mutualism, and
Commensalism stages of biological relationships in nature.

1) MUTUALISM

The interaction they share now serves the interests of both
organisms. Assume, for example, that honeybees and flowers
have a relationship where the bees fly over the bloom to
collect nectar needed to produce honey. Additionally, as bees
aid in pollination by dispersing pollen, it may benefit flowers.
In this work, Xi was an organism that corresponds to the
i individuals in the ecosystem. Then, X, who is connected
to X; in the ecosystem, is chosen at random. Finally, in the
Mutualism stage, X; and X are upgraded as follows:

Xinew = X +rand (0, 1) x (Xpest —Mutualyecsor X BF1)

(D
Xjnew = Xj +rand (0, 1) X (Xpesr —Mutualy,eror XBF2)
2
Mutualvyecior
X;+ Xj
— -t J 3
2 3)

Random (0, 1) is used to represent the random vector of
numbers in the expression. The profit factors of Xi and Xj
that show each organism’s return are represented by BF1 and
BF2, respectively. Mutual_Vector in Eq. (1) represents the
connections between Xi and Xj.

The Mutual_Vector X BF2 in Eqs. (1) & (2) attempts to
improve the surviving percentage of living creatures. Each
organism must increase its level of compatibility with its
environment to survive, according to the Darwinian Theory
of the surviving fittest. The Xbest now denotes the highest
level of compatibility.

2) COMMENSALISM
In this stage, the relationships benefit the organism and do
not help the other. Consider, for example, the interactions
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between sharks and sticky fish. Here, the shark receives little
to no advantage while the adhesive fish adheres to it and feasts
on leftover food. The organism Xj, which is connected to
X, is carefully selected at random and is present during the
Mutualism stage. In these scenarios, X; aims to make money,
yet X suffers losses or receives no rewards.

Xinew = Xi +rand (—1, 1) x (Xbest _Xj) 4)

where Xpe5 — X signifies the benefit given by X for increas-
ing X; survival.

3) PARASITISM

In this stage, the interaction benefits one organism while
causing harm to the other. For example, the blood parasite
that causes malaria transfers to the body. Once the parasite
has multiplied within the human body, it results in death.
In this work, an artificial parasite called “ParasiteVector”
is created by Xi, the malaria mosquito. By repeating Xi, the
ParasiteVector is created within the search area. The ecology
randomly selects Xj to serve as the parasite’s host and help
it. The Parasite-Vector attempts to occupy Xj ’s place in the
ecology. To assess their competency, Xi and Xj are each given
an evaluation. When Xj can fight off the parasite and leave the
ecology, they have reached their full potential.

Fitness selection is an important element in the SOS tech-
nique. It is possible to assess the quality of a proposed
solution using solution encryption. Here, the accuracy values
serve as the primary criterion for creating a fitness function.

Fitness = max (P) 4)
p—_ 1P ©)
" TP CFP

According to the term, TP stands for a genuine positive value,
and FP for a false positive value.

Algorithm 1 The Pseudocode of the SOS Algorithm

Initialized (initial ecosystem, set ecosystem size, and high-
est iteration)
For counter-1 to maximum iteration
For every organism in the ecosystem
Mutualism stage based on Eqgs (1) and (2)
The commensalism stage based on Eq. (2)
Parasitism stage
Upgrade the better organism
End For
End For

C. ENSEMBLE LEARNING PROCESS

In this work, the ensemble learning process involves three
classifiers namely KELM, DSAE, and BiLSTM models. The
DL methodology can be utilized in the method that is being
described, and a weighted voting mechanism was used to
select the best possible result. Prediction class Cy of weighted
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voting for each sample was calculated using the number of
classes as n and the D base classifier model for voting.

D
= argmaxz (Aji x wi), ™)
J i=1
The binary parameter is denoted in this case by Aj;. w; is the
weight of the i base classifier in an ensemble. Once the j*
The base classifier has classified the k instance into the jth
class, Aj; = 1; after that, A;; = 0.

1|ciis the t // inst k
_ > {1lcis the true class of instance k) % 100% .

®)

Acc

Size of test instances

1) KELM MODEL

For training, ANN, the Extreme Learning Machine (ELM)
is introduced. The main advantage is that the hidden layer
(HL) does not require repeated correction, which speeds up
the training process compared to standard ANN [40]. ELM,
ANN, and SVM performed inferiorly compared to KELM in
their ability to approximate VSM. Additionally, training takes
less time than with SVM and ANNs. Maintaining rapid train-
ing allows KELM to be retrained in unforeseen situations,
improving performance when analyzing LTVS. The ELM
technique contains three stages: 1) to implement a random
allocation of input weight w;; a threshold b; and HL node
parameters; 2) to determine HL’s output matrix H, and 3) to
achieve an output weight vector 8. The output function has
the following representation for the sequence of the N input
dataset.

HB=T ©)

In Eq. (9), H denotes the results matrix (N X n) of the HL,
B indicates the matrices of output weights (n X m),T shows
the goal matrix (n X m) and m represents the random tar-
gets. ELM training comprises of minimal norm least square
solution of the linear mechanism, which obtains optimum
weight 8 = HTT, where H' = (HTH) ™ HT shows the
Moore-Penrose generalized inverse and it can be formulated
as

B =HT(é+HHT)_1T (10)

Add positive values 1/C to the diagonal of HHT follow-
ing the ridge regression theory. Equation (11), where h(x)
denotes the sHL feature mapping function, provides the
appropriate output function for ELM.

F (&) = h(x)B = hH (5 + HET)TIT ()

The values of the output function in this work are defined by
the kernel function K (u, v). It is possible to supply the kernel
function as an inner product. Additionally, while resolving
the output function, it is imperative to set multiple HL nodes.
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A kernel function was presented to attain the best perfor-
mance of regression, as follows.

fx) = h(x)HT(é +HHT)™'T

K (x,x1)
= : (5 +®e)”'T  (12)
K (x,xn)
Qery (5 )) = h (x) -h (xj) = K (x;, %)) (13)

where Qpry indicates kernel function matrix and K (u, v)
denotes kernel function. An RBF is used as a kernel function
to increase the generalized capability of KELM. Lastly, it can
be noteworthy that before implementing the KELM training,
C and y parameters should be set.

K(xi,x) =e 7k 5l® -y 50 (14)

2) DSAE MODEL

An auto-encoder (AE) is an FFNN that takes more than
one hidden layer (HLs). It is a variety of unsupervised NN,
whereas the network efforts to equal output to input vectors
are nearly feasible [41]. Additionally, it might be used to
create a low-dimensional or high-dimensional representation
of the given data. NNs are made to be incredibly adaptable by
utilizing unsupervised learning of compression file encoders.
These networks are also trained one layer at a time, which
reduces the amount of computer resources needed to create an
effective model. Once the HLs are lesser dimensional than the
output and input layers, afterward network can be utilized for
the data encoder (as it permits compression). Multi-layered
AEs are trained in sequence, permitting for gradual com-
pressed of data, generating is named stacked AE. Layers HL,
input, and output make up the self-encoder technique. The
flow table feature vector is:

T
xi = [xi1, Xi2, Xi3, « . Xjj]

While j represents all flow table features and i is the i’ flow
table feature vector. The j feature is part of the vector. The
flow table based on Eq. (15) uses an input feature vector that
has been compressed and encoded in HL.

encoder = Wix; +bq (15)

In which, W3 stands for the weighted linking of the input
layer and HL, the terms x; and b1 denote the inputted feature
vector of the i flow table and the bias of the HL neuron,
respectively.

Next, the encoder has done and defined the output of
HL, and the output layer has been decoder and recreated for
producing the output of similar size as the input layer neuron,
utilizing Eq. (16):

decoder = f (W2 (encoder); + b2) (16)

whereas f refers to the activation function, W2 denotes the
weighted betwixt the output layer and HL, the (encoder)
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represents stream table feature vector compression by HL
coded, and b2 signifies the bias of the resultant layer neuron.

Lastly, the objective of training the self-encoder method
was accomplished by minimizing the loss function utilizing
in Eq. (17):

n
loss = Z (x; — (decoder,-))2 a7n
i=1

whereas n implies the count of the flow table feature vector,
X signifies the input flow table feature vector, and (decoder)
represents the flow table feature vector outcome by x; with
the self-encoder method. For accomplishing dimensionality
decline and extraction feature if generating the model, it is
aimed to exploit the DSAE method. An input layer and HL
of self-encoder methods were stacked one on top of the other
to create the DSAE method. An HL is produced by each self-
encoding method. The compressing abstract feature can then
be acquired in its HL, and the HL of the first self-encoder
method was used as the input layer of the second self-encoder
method. Following the learning of the flow table feature vec-
tor by the first self-encoder method, the compressing abstract
feature was obtained in its HL. The learning of the second AE
method represents that further abstract features are acquired
then more compression in its HL.

3) BIiLSTM MODEL

The RNN algorithm is used to scrutinize the time series
dataset and integrates a return loop permitting to effectively
deal with prior experience [42]. On the other hand, RNNs
have certain limitations regarding information and memory
storage. It cannot learn long-term dependency and might lead
to gradient vanishing problems. On account of this, the LSTM
was established to overcome the inadequacy of the RNN
model. This design was based on the usage of memory cells
for storing long-run previous knowledge and regulation of
this data through the usage of a gating mechanism. i; input
gate, f, forget gate, and O, output gates are the 3 kinds of gates
in a conventional LSTM unit. Controlling the state of the
memory cell can be attained at every single gate by carrying
out sigmoid function operations and pointwise multiplication
on the data. Each gate is activated once the input dataset
x; at the present state and the output ;7 from the hidden
state of previous layers are entered. The forget gate defines
which data needs to be removed and which one needs to be
preserved. The sigmoid function transfers data based on the
present input x; and their previously hidden layer k;_3 via
data from the existing input x;. Therefore, the output values
of the forgetting gate lie within [0,1]. When the value is nearly
equal to zero, it indicates that data will be deleted. They are
inclined to have further knowledge closer to themselves. The
following steps should be considered to calculate the formula
for forgetting the gate:

fr=0Ws.[h—1.x]+b) (18)

In Eq. (18), W and b are the weight and bias of the gating
unit, correspondingly, 0, means the sigmoid activation func-
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tion and it is given by the present input x; and previously
hidden layer h;_7 as input. The input gate defines which
part of the data needs to be updated by changing the value
from O to 1 through the transformation function. Amongst
them, 1 represents significance and O signifies insignificance.
The input gate can be expressed as follows:

ir =0 (Wi [hi—1,%] + b)) (19)

Next, the tanh function was provided to present input x; &
hidden state k;__1 that was attained in advance. Here, the C;
cell state was calculated, and the novel value can be included
in the cell states to reflect the change.

a = tanh (Wc [ht_l,Xt] +bc) (20)
=f,®C—1+i®C 21

where tanh stands for the hyperbolic tangent’s activation
function. C; displays the newly created memory cell, and
denotes the dot multiplication operation ®. The output gate
then specifies the next concealed state that will be selected.
Next, the novel memory cell C; and novel hidden state h; are
relocated to the succeeding time step.

0y =0 (W,,. [h,_l,p,] + bo) (22)
h; = oy Otanh (c;) (23)

Data is generally analyzed in one forward direction by
an LSTM. In other words, it is based on past information.
Contrarily, BILSTM was designed with two LSTM layers,
one forward and one backward. Forward LSTM might get
datasets from past input sequences, whereas the backward
LSTM receives datasets from future input sequences, and
later output from the hidden layer is fused. In the present
time ¢, the hidden layer h; of Bi-LSTM encompasses

forward 71, and backward Zt:
he=h @ h 24)

Eq. (24), @ indicates the component summation for adding
the backward and forward output components. It uses sub-
sequent and previous data while outperforming RNN and
LSTM concerning efficacy In the case of BILSTM.

IV. RESULTS AND DISCUSSION

The histopathological image dataset [43] of 1820 samples
with two primary classes as listed in Table 1 is used in this
section to test the experimental validity of the ELSOSA-BCC
approach. Fig. 3 illustrates the sample images.

The confusion matrices of the ELSOSA-BCC technique
are demonstrated in Fig. 4. The results depicted that the
ELSOSA-BCC technique has proficiently recognized all the
class labels. Although the values of RMSE and STD are
small (i.e., close to zero), the ELSOSA-BCC technique was
successful in generating a high classification performance
throughout 50 runs. Accuracy values for STD were 0.6589.

Performance evaluation of the ELSOSA-BCC technique
involves utilizing a range of metrics, including accuracy,
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TABLE 1. Details of the dataset.

Total
No. of No. of
Category | Class Names | Labels . Images
Images | .
in each
category
Adenosis A 106
Fibroadenoma | F 237
Benign 588
Phyllodes PT 115
Tumor
Tubular
Adenoma A 130
Carcinoma DC 788
Lobular LC 137
Malignant Carc.lnoma 1232
MUC{HOUS MC 169
Carcinoma
Papllhlary PC 138
Carcinoma
Total Number of Images 1820

FIGURE 3. Sample images.

precision, recall, Fl-score, and AUC-ROC. These met-
rics collectively offer a comprehensive assessment of the
technique’s ability to accurately classify both positive and
negative instances, providing insights into its overall pre-
dictive prowess. Through a rigorous examination involving
diverse datasets, meticulous comparisons, and robust sta-
tistical analyses, the ELSOSA-BCC technique consistently
reveals its supremacy over alternative models. This substan-
tiates its potential for precise breast cancer classification and
effective risk identification, establishing its position as an
advanced and promising approach in the field.

The overall BC categorization findings are analyzed in
Table 2 and Fig. 5 using an 80:20 ratio of TRS and TSS. The
outcomes implied that the ELSOSA-BCC approach achieves
effective results across all classes. For instance, with 80% of
TRS, the ELSOSA-BCC technique gains an average accu, of
98.75%, precy, of 93.40%, reca; of 92.11%, Fcore of 92.71%,
and AUCycpre of 95.67%. ELSOSA-BCC achieves 20% of
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4 4
¥ 1 K TABLE 3. Bc classifier outcome of ELSOSA-BCC approach on 70:30 OF
PT DC LC MC PT TA DC LC MC PC TRS/TSS.
Pradictsd Pradected
- Labels | Accu, | Prec, | Reca; | Fopre | AUCscore
FIGURE 4. Confusion matrices of ELSOSA-BCC method (a-b) TRS/TSS of Training Phase (70%
80:20 and (c-d) TRS/TSS of 70:30. A 9898 [ 91.78 | 90.54 | 91.16 ] 95.02
F 98.98 95.78 96.36 96.07 97.87
PT 99.14 91.40 96.59 93.92 97.96
TABLE 2. Bc classifier outcome of ELSOSA-BCC approach TA 98.74 95.35 87.23 91.11 93.45
on 80:20 of TRS/TSS. DC 98.04 97.45 97.98 97.71 98.03
LC 98.98 93.07 94.00 93.53 96.70
Labels | Accu, | Prec, | Reca, | Fuore | AUCsure MC 98.74 [ 9231 [ 9231 | 9231 [ 9581
Training Phase (80%) PC 98.98 94.17 93.27 93.72 96.38
A 98.76 91.86 87.78 89.77 93.63 Average 98.82 93.91 93.54 93.69 96.40
F 98.83 96.35 94.87 95.61 | 97.16 Testing Phase (30%)
PT 98.35 90.80 83.16 86.81 91.29 A 98.35 96.00 7500 | 8421 | 87.40
TA 99.38 97.20 94.55 95.85 97.16 F 98.72 93.33 9722 | 9524 | 98.08
DC 98.56 97.46 99.19 98.32 98.64 PT 99.27 89.66 96.30 92.86 97.86
LC 98.90 92.86 91.00 91.92 95.24 TA 98.35 86.49 88.89 87.67 93.95
MC 98.70 89.80 97.06 93.29 97.96 DC 98.17 97.55 98.35 97.95 98.19
PC 98.49 90.91 89.29 90.09 94.27 LC 98.53 91.43 86.49 88.89 92.95
Average 98.75 93.40 92.11 92.71 95.67 MC 99.27 95.52 98.46 96.97 98.92
Testing Phase (20%) PC 98.35 87.88 85.29 86.57 92.26
A 99.18 88.24 93.75 90.91 96.59 Average 98.63 92.23 90.75 91.29 94.95
F 99.18 97.56 95.24 96.39 97.46
PT 99.18 94.74 90.00 92.31 94.85
TA 99.45 90.91 100.00 95.24 99.71
DC 98.63 97.69 99 41 98.54 98.67 98.63%,pr€cn of 9223%, recaj of 9075%, Fscore of 9129%,
LC 98.90 100.00 | 89.19 94.29 94.59 and AUC¢ore of 94.95%.
MC 98.63 88.89 96.97 92.75 97.88 A comparison of TACY and VACY for the ELSOSA-BCC
PC 98.63 95.65 84.62 89.80 92.16 . . . -
Average | 9897 9121 93.65 93,78 96.49 technique on BC performance is presented in Figure 7.

TSS as well as an average accuy of 98.97%, prec,, of 94.21%,
reca; of 93.65%, Fscore 0f 93.78%, and AUCjore 0f 96.49%.

The findings of the overall BC classification are examined
in Table 3 and Fig. 6 using a 70:30 ratio of TRS and TSS.
The results demonstrated that the ELSOSA-BCC technique
achieves effective results across all courses. For example,
with 70% of TRS, the ELSOSA-BCC approach attains an
average accuy of 98.82%, prec,, of 93.91%, reca; of 93.54%,
Fycore of 93.69%, and 96.40%. Moreover, with 30% of TSS,
the ELSOSA-BCC algorithm reaches an average accu, of
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A comparison of the ELSOSA-BCC approach with the tra-
ditional approach shows increased VACY and TACY values
with ELSOSA-BCC. There seems to be a maximum TACY
outcome for the ELSOSA-BCC method.

Fig. 8 shows the performance of the ELSOSA-BCC tech-
nique in terms of TLOS and VLOS. With minimal TLOS
and VLOS values, ELSOSA-BCC performed better than con-
ventional methods. It is noteworthy that the ELSOSA-BCC
method has had an impact on reducing VLOS.

As illustrated in Figure 9, TA clear precision-recall test-
ing was performed on the ELSOSA-BCC method in the
test database. Each class label’s precision-recall values were
improved by the ELSOSA-BCC method.
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FIGURE 6. The average outcome of the ELSOSA-BCC method on 70:30 of
TRS/TSS.

Trabning and Validation Accuracy

.....

FIGURE 7. TACY and VACY outcome of the ELSOSA-BCC approach.

Trainming and Validation Loss

-

FIGURE 8. TLOS and VLOS outcome of ELSOSA-BCC approach.

According to Fig. 10, the detailed ROC analysis of the
ELSOSA-BCC methodology under the test database can be
found here. The results demonstrated that the ELSOSA-BCC
technique is capable of classifying different categories.

In Table 4 and Fig. 11, a brief comparative study of the
ELSOSA-BCC method with current approaches takes place
[44], [45]. The algorithm’s overall performance, separate
from the classes, is demonstrated by the performance metrics
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Procisien-Recall Curvs

fiall

FIGURE 9. The precision-recall outcome of the ELSOSA-BCC method.

ROC-Curva

N

FIGURE 10. ROC curve outcome of ELSOSA-BCC method.

TABLE 4. Comparative analysis of the ELSOSA-BCC method with other
approaches.

Methods Accu, Prec, | Reca, Fcore
KNN 7597 | 6232 | 83.79 | 82.35
NB 78.62 | 82.06 | 83.59 | 87.14
Discrete 85.19 | 83.70 | 81.51 | 84.55
Transform

SVM 8483 | 8728 | 8775 | 81.63

DL Model 94.89 87.42 87.19 81.93

CSSADTL-

BCC 98.59 92.67 91.53 91.91
ELSOSA-

BCC 98.97 94.21 93.65 93.78

above. The outcomes indicate that the KNN and NB approach
attain reduced classification results while the DT and SVM
models have managed to obtain slightly improved perfor-
mance. Then, the DL model has accomplished moderate
performance over other models. However, the ELSOSA-BCC
technique showed maximum performance with an accu, of
98.97%, prec,, of 94.21%, reca; of 93.65%, and Fscore Of
93.78%. These results pointed out the supremacy of the
ELSOSA-BCC algorithm over other existing models. Cor-
rectness of the outcomes produced by optimization utilizing
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FIGURE 11. Accuy analysis of the ELSOSA-BCC approach with other
algorithms.

the suggested ELSOSA-BCC approach in comparison to
other methods. This outcome highlights the excellence of the
suggested methodology even more accurately based on dif-
ferent parameters during result analysis Accuy, Prec,, Recay,
and Fgcore. comparison is classifier-based, Even less specific
features, known as discrete cosine transform (DCT) features,
are related to representations of textures and colors.

V. CONCLUSION AND FUTURE WORKS

We have devised a novel means of detecting and clas-
sifying breast cancer using the ELSOSA-BCC innovative
technique. An ELSOSA-BCC technique is presented that
incorporates preprocessing based on GFs, feature extraction
based on EfficientNet-BO, hyperparameter tuning based on
SOSs, and ensemble classification based on ensemble learn-
ing. KELM, DSAE, and BiLSTM models are utilized in the
ensemble learning process. Medical datasets are used to test
the simulation results of the ELSOSA-B CC method. The
experimental outcomes stated that the ELSOSA-BCC tech-
nique reaches improved performance over other models. The
research focuses on how breast cancer swiftly affects other
organs. Therefore, the ELSOSA-BCC technique is found to
be an effective tool for automated breast cancer classification.
In the future, deep instance segmentation models will be
derived to improve the detection rate of the ELSOSA-BCC
method.

VI. FUTURE WORK

The application of Ensemble Learning with Symbiotic
Organism Search Optimization Algorithm (ELSOSA) has
predominantly been observed in breast cancer prediction sce-
narios. It’s crucial to recognize that diverse types of cancer
prediction tasks demand distinct expertise and meticulous
assembly of datasets. Although there may be a lack of doc-
umented cases showcasing ELSOSA’s utilization in various
cancer predictions, the underlying concept of combining
ensemble learning with optimization holds promise for aug-
menting predictive precision in numerous medical contexts,
encompassing cancer prognosis.
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In the domain of other cancer prediction, researchers have
harnessed an array of machine learning and Al techniques,
including the incorporation of ensemble methodologies. Sev-
eral prevalent categories of cancer prediction tasks encom-
pass:

1) Lung Cancer Prediction: The anticipation of lung
cancer entails the examination of medical imaging data,
such as CT scans, and pertinent patient details to prog-
nosticate the presence of lung cancer. The integration
of ensemble methods holds the potential to elevate
prediction accuracy.

2) Prostate Cancer Prediction: Analogous to breast can-
cer, predictive models can be constructed using patient
demographics, genetic information, and imaging find-
ings to foresee the probability of prostate cancer.

3) Colorectal Cancer Prediction: Foreseeing colorectal
cancer might entail the scrutiny of colonoscopy images,
genetic indicators, and patient medical history to assess
the susceptibility to this type of cancer.

4) Ovarian Cancer Prediction: In ovarian cancer pre-
diction, data encompassing genetic profiles, imaging
findings, and clinical particulars could be employed to
appraise the likelihood of ovarian cancer.

5) Brain Cancer Prediction: The realm of brain can-
cer prediction often involves the analysis of MRI or
CT images alongside clinical information to pinpoint
potential instances of brain tumors.

6) Skin Cancer Prediction: Predictive models based on
machine learning have been leveraged to predict skin
cancer via the evaluation of images depicting moles
or lesions. Ensembling techniques hold the potential to
refine such models.

7) Leukemia Prediction: The prognostication of leukemia
might necessitate the analysis of blood cell counts,
genetic markers, and diverse medical data. Ensemble
methods stand to augment the precision of diagnosis.
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