
Received 17 September 2023, accepted 28 September 2023, date of publication 5 October 2023,
date of current version 18 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3322367

Developing an Algorithm for Fast Performance
Estimation of Recurrent Memory Cells
SERGIU COSMIN NISTOR1, MOHAMMAD JARADAT2, AND RĂZVAN LIVIU NISTOR 3
1Department of Computer Science, Babeş-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania
2Department of Management, Bogdan Vodă University of Cluj-Napoca, 400285 Cluj-Napoca, Romania
3Department of Management, Babeş-Bolyai University of Cluj-Napoca, 400084 Cluj-Napoca, Romania

Corresponding author: Răzvan Liviu Nistor (razvan.nistor@ubbcluj.ro)

ABSTRACT We propose a novel graph-oriented machine learning algorithmwhich we use for estimating the
performance of a recurrent memory cell on a given task. Recurrent neural networks have been successfully
used for solving numerous tasks and usually, for each new problem, generic architectures are used. Adapting
the architecture could provide superior results, but would be time-consuming if it would not be automated.
Neural architecture search algorithms aim at optimizing the architectures for each specific task, but without
a fast performance estimation strategy it is difficult to discover high-quality architectures, as evaluating each
candidate takes a long period of time. As a case study, we selected the task of sentiment analysis on tweets.
Analyzing the sentiments expressed in posts on social networks offers important insights into what are the
opinions on different topics and this has applications in numerous domains. We present the architecture of
the estimation algorithm, discussing each component. Using this algorithm, we were able to evaluate one
million recurrent memory cell architectures and we discovered novel designs that obtain good performances
on sentiment analysis.We describe the discovered design that obtains the best performances.We also describe
the methodology that we designed, such that it can be applied to other tasks.

INDEX TERMS Neural architecture search, graph neural network, performance estimation strategy,
recurrent neural network, sentiment analysis, tweet.

I. INTRODUCTION
Recently, deep learning approaches were used to obtain state-
of-the-art performance on many natural language processing
tasks [1], [2], [3]. Recurrent neural networks (RNNs) are able
to take advantage of the sequential structure of the text and
extract information from it [4], [5].

Modern recurrent neural networks use recurrent memory
cells in their architecture [5]. Even though good results were
obtained using these standard cells, there is an increasing
interest in finding new designs in an automatic manner
[6]. Algorithms for finding new architectures already found
designs that obtain high performances on a few tasks, but
these search algorithms are slow as they need to evaluate the
newly proposed architectures.

In this paper, we propose a novel algorithm for estimating
the performance of a recurrent memory cell on a given task.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Asif .

As the cells have graph structures, our algorithm is adapted to
this requirement. This novel performance estimation strategy
receives as input the description of the recurrent neural
network and predicts its performance on a given task.

To experimentally prove the efficiency of our algorithm,
we selected a task as a case study: sentiment analysis
on tweets. There is much information to be gained from
extracting sentiment from text, especially when there is a
large quantity of available data [7]. While it is interesting to
process individual sentiments, by processing large quantities
and aggregating them, one can find the general opinion
towards an idea. A challenging task is to design an algorithm
able to accurately recognize the sentiment in a piece of text.
Due to the great applicability of this problem, many solutions
were proposed [8], [9].

Besides the high applicability of sentiment analysis on
tweets, this is also an appropriate and representative task to
be solved using recurrent neural networks. This task is part
of the larger domain of natural language processing, where

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 112877

https://orcid.org/0000-0002-3897-3946
https://orcid.org/0000-0003-1839-2527


S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

recurrent networks were used with great success. Tweets,
being mainly pieces of text, can be viewed as a sequence of
characters that can be analyzed by RNNs.

We apply our performance estimation algorithm on this
task end evaluate its ability to learn the quality of each cell.
After we have trained models, we use them to discover new
cells, specifically designed for this task. We present a new
cell design that we discovered using our proposed algorithm.

As our work is at the intersection of neural architecture
search (NAS), graph-oriented machine learning algorithms
and sentiment analysis, the main contributions of this paper
are the following:

1) Propose an algorithm for processing data structured
as graphs, which we call Graph-Encoding Recurrent
Neural Network (GERNN);

2) Propose a performance estimation method for neural
architecture search algorithms used for recurrent neural
network cells;

3) Discover a novel recurrent memory cell designed for
sentiment analysis on tweets.

We present work related to ours in Section II. In Section III,
we describe our algorithm and how to apply it on the task
that we wish to solve. The experiments and the results are
presented in Section IV and our conclusions are drawn in
Section V.

II. RELATED WORK
In this section we present works from the scientific literature
that are related to ours and that influenced the development
of our proposed solution. We start by describing sentiment
analysis on tweets, as this is the task that we used as a case
study. Our new performance estimation algorithm is aimed
at improving neural architecture search algorithms, so we
present developments in this domain with a special emphasis
on the performance estimation strategies.

As many people express their opinions in posts on Twitter,
this platform has become a great source of information
and many researchers conducted studies on how this useful
information can be extracted [8], [10], [11], [12]. For rec-
ognizing the sentiment from the tweets, classical approaches
used hand-crafted features like the presence of n-grams [13],
[14], [15], the presence of Twitter-specific elements like
emoticons, hashtags or abbreviations [16], lexicons with
tagged emotional polarity [17]. These features were then
classified using Naïve Bayes classifiers [14], [15], support
vector machines [13], [14], decision trees [18].
As deep learning emerged, convolutional neural networks

(CNNs) and recurrent neural networks were used for
recognizing sentiment from tweets [19], [20], [21], [22].
As recurrent neural networks are machine learning algo-

rithms which can model sequences [4], they are a natural
choice for extracting information from text, which can be
considered a sequence of words or characters. Modern
RNNs use memory cells as their building blocks. Even
though many problems were approached using RNNs, most

of them integrate general-purpose cells such as the Long
Short-Term Memory (LSTM) cell [23] or the more recent
Gated Recurrent Unit (GRU) [24].

While these general-purpose RNN cells have obtained
good results on a variety of tasks, one can argue that adapting
the architecture to the problem should produce superior
results, and there is great interest in proposing new designs
[6], [25], [26]. As manually finding the optimal architecture
for a given problem can prove challenging and a small
variety of architectures are explored, NAS appeared from
the necessity of automatically finding new designs [27].
Such algorithms were designed for finding new feed-forward
neural network (FFNN) architectures [28], [29], [30], [31],
CNN architectures [32], [33], [34], [35], [36] and RNN cells
[37], [38], [39], [40], [41].

There is an increasing interest in NAS. Zoph and Le [37]
used reinforcement learning for searching for new CNN and
RNN architectures. For the RNNs, they searched for new cells
which were represented as binary trees with a fixed number
of nodes. Each node took input from two other nodes, applied
operations on them and combined them. The operations
were decided by an RNN which described these new cells.
Additionally, the RNN also decided which node produces
the internal state and where is the internal state used in the
cell. This generator RNN was trained using reinforcement
learning, encouraging the generator to propose cells that have
increasing quality. For performance estimation, the cells are
included in a complete RNN which is trained on a language
modelling task for a fixed number of 35 epochs, which,
of course, is time consuming.

Bayer et al. [38] proposed an evolutionary algorithm for
creating new RNN cells. Cells were represented as directed
graphs in which the nodes represented computations and
the edges represented the data flow. Each individual of the
population used by the evolutionary algorithm represented
a candidate cell and consisted of a description of such a
cell. At each generation, the individuals were mutated by
changing the characteristics of the nodes and edges, adding
or removing nodes and edges. No crossover operator was
used. For performance estimation, full RNNs were built
and trained to learn simple context-free or context-sensitive
languages.

As the computational resources necessary for evaluating a
large number of architectures is demanding, fast performance
estimation becomes an active research topic. Kyriakides
and Margaritis [42] also observed that the time required
to evaluate an architecture is important in the design of a
NAS algorithm. They evaluated the usage of early stopping,
which is one of the most popular performance estimation
strategies, where the number of training epochs is fixed to
a small number, which usually does not allow convergence,
but obtains the estimation faster than full training. Kyriakides
and Margaritis [42] observed that for CNNs there is a strong
correlation between the rankings of CNN architectures after
a small number of epochs and the rankings obtained after a
large number of epochs, showing that the information loss is

112878 VOLUME 11, 2023



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

small. Even so, training takes a considerable time, even for a
small number of epochs.

In [43], a performance estimation algorithm for CNNs
is proposed. The input features are characteristics of the
network, like the number of layers, or hyperparameters, like
the learning rate. The features are processed by random
forests or support vector machine regressions.

A genetic programming algorithm is used by Rawal and
Miikkulainen [40] to propose new RNN cells. These cells are
represented as trees. Themutation operator changes the nodes
and adds or removes branches, while the crossover operator
combines subsections of these trees. The individuals are also
grouped using a distance metric such that when selecting the
parents of a new individual, the crossover would be more
efficient. The problem that is studied is language modelling.
As training RNNs on this task takes time, the authors decided
to use machine learning to predict the performance of the
cells. After training the candidate RNN for 10 epochs, the
obtained metrics are used as input to an algorithm that
predicts the metrics after the 40th epoch of training. This
algorithm is an RNN which uses LSTMs as hidden units.
Even though this approach obtained good results, it only takes
into account the behaviour of the RNN when making the
prediction. We consider that taking into account the structure
of the RNN would provide superior results.

The NAS algorithm proposed in [36] integrates a ‘‘sur-
rogate model’’ which is an algorithm that estimates the
performance of a CNN. The evaluated architectures are based
on building blocks called cells, and each cell is a sequence
of nodes. An RNN predicts the performance of the cell
by processing the nodes in the fixed order in which they
describe the cell. This approach obtained good results, but it
is insufficient for our task. As we evaluate recurrent memory
cells, they are not simply sequences of nodes, but graphs with
edges and the nodes do not have a fixed order. An algorithm
which takes into consideration the graph structure and the
various properties of the nodes and edges is necessary.

Our novel algorithm incorporates multiple RNNs and
attention mechanisms. The utility of attention mechanisms
attached to RNNs was previously proven [44]. Zheng et al.
[44] presented a theoretical analysis of LSTM with attention
mechanism and experimentally proved that the mechanism
helps the LSTM have longer-term memory by having a
slower memory decay.

Our proposed algorithm for performance estimation is
designed for processing graphs. As many problems can be
modeled as graphs [45], [46], machine learning algorithms
designed for processing them started to emerge. While
classical convolutional and recurrent neural networks process
data structured as matrices and sequences, respectively, the
need for processing data structured as graphs led to the
proposal of new algorithms [46], [47], [48].

III. PROPOSED SOLUTION
In this section we present our proposed solution for
fast evaluation of the quality of recurrent memory cells.

We describe how our performance estimation algorithm
can be applied to RNNs used for the task of sentiment
analysis on tweets. While our solution was applied on this
task, our algorithm is designed to process graphs, with
very few specific consideration for the particularities of the
information represented by the graph. Due to this reason,
our algorithm can process generic graphs, as long as the
graph preprocessing is appropriate and the hyperparameteres
are tuned. In the following, we describe the mechanism
of our algorithm on generic graphs and then the particular
preprocessing that we used for our task.

A. GRAPH-ENCODING RECURRENT NEURAL NETWORK
Our Graph-Encoding Recurrent Neural Network takes as
input graphs, which are composed of a set of nodes and a
set of edges between the nodes. Each node may have any
number of properties, but all nodes must have the same set
of properties. Similarly, edges may have their own set of
properties. Graphs may be directed or undirected. The output
of our GERNN depends on the problem to be solved, as our
algorithm can be used for both classification and regression
problems. We present in Fig. 1 the graphical representation
of our algorithm and we detail each component in this
subsection. The arrows in this figure represent the flow of
data. N1,N2, . . . ,Nn are the n nodes of the input graph and
E1,E2, . . . ,Em are the m edges.

Our GERNN is an algorithm composed of RNNs and
attention mechanisms and due to this, the inputs must have
numerical representations. The Node Preprocessor and Edge
Preprocessor have the role of converting the graph into
the numerical representation. Each node and each edge is
converted into a feature vector which describes the properties
associated to the node / edge. The numerical representation
of the graph is a list of node-vectors and edge-vectors.
This sequential representation is also imposed by the RNNs
composing the algorithm, as RNNs are designed for sequence
processing [4].

After the preprocessing, the nodes are the first to be
processed by a recurrent neural network, the Node RNN.
In Fig. 1, the green arrows represent the passing of the state
of an RNN. The computation done for each node is described
in (1), where NROi is the output of the Node RNN for node
i, NVi is the representation of this node (which was obtained
using the Node Preprocessor), NRSi−1 is the state of the Node
RNN after processing the previous node and NodeRNN is the
function modeled by the RNN dedicated to processing nodes.
In the equations presented in this section, we assume to have
a graph with n nodes and m edges.

NROi = NodeRNN(NVi,NRSi−1) (1)

The edge processing follows, using the Edge RNN. This is
done after the node processing, as the Node RNN outputs are
taken into consideration. The edge-vectors are taken as input
one-by-one, but an attention mechanism helps the Edge RNN
take into consideration not only the edges, but also the nodes.
TheNode-Edge Attentionmodule takes as input for each edge

VOLUME 11, 2023 112879



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

FIGURE 1. Graphical representation of the GERNN.

the edge-vector, the state of the EdgeRNNand theNodeRNN
outputs for all nodes. This attention module produces scores
for each node and aggregates the outputs into context vectors
according to these scores. The aggregated node-output is
given as input to the Edge RNN. This mechanism helps the
GERNN focus for each edge on the most relevant nodes,
as different nodes have different relevance with respect to
a given edge. The edge-vector is useful for describing the
processed edge to the attention mechanism, the node-outputs
describe the already processed nodes and the state of the Edge
RNN helps the mechanism have a global understanding of the
edges that were already processed.

We present in (2) - (4) the computation of the Edge RNN
outputs for each edge. NEAttj,i is the score that is associated
to each node i for the processing of edge j. This score is based
on the state of the Edge RNN after processing the previous
edge (ERSj−1), the edge representation obtained using the
Edge Preprocessor (EVj) and the output of the Node RNN for
node i (NROi). NodeEdgeAttention is the function modeled

by the Node-Edge attention component of the GERNN. After
this, an aggregated representation of all nodes (AggNEj) is
computed based on the attention scores, as described in (3).
This aggregate node representation together with the edge
representation (EVj) and the Edge RNN state after processing
the previous edge (ERSj−1) are used to produce the Edge
RNN output for the current edge (EROj). EdgeRNN denotes
the functionmodeled by the RNN component of GERNN that
is dedicated to processing the edges of the graph.

NEAttj,i = NodeEdgeAttention(EVj,ERSj−1,NROi) (2)

AggNEj =

n∑
i=1

(NEAttj,i · NROi) (3)

EROj = EdgeRNN(EVj,ERSj−1,AggNEj) (4)

Before making the final prediction, the Node Attention
(denoted by NodeAttention in the equations) and Edge
Attention (denoted by EdgeAttention) modules will aggregate
the node-outputs and edge-outputs into context vectors

112880 VOLUME 11, 2023



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

(AggNG and AggEG respectively) by associating scores to
each node (NAtti) and edge (EAttj). Using these context
vectors, the Final Predictor (denoted by FinalPredictor) has
a global view of the graph, as described in (5) - (8). This
aggregation also assures that the Final Predictor receives a
fixed-size input. The two attention modules take as input,
besides the outputs of their corresponding RNNs (NROi
and EROj), the final states of the Node RNN (NROn) and
Edge RNN (ERSm). These states are helpful in obtaining a
global view of the processed graph, as they are obtained after
processing each node and each edge using the RNNmodules.
Attention scores are produced for each node-output and edge-
output and these scores are used to compute one final feature
vector. The final decision of the GERNN (denoted by P) is
made by the Final Predictor, as seen in (9).

NAtti = NodeAttention(NROi,NRSn,ERSm) (5)

AggNG =

n∑
i=1

(NAtti · NROi) (6)

EAttj = EdgeAttention(EROj,NRSn,ERSm) (7)

AggEG =

m∑
j=1

(EAttj · EROj) (8)

P = FinalPredictor(AggNG,AggEG) (9)

As our GERNN can be used to solve various problems,
the significance of the final decision, or the output, depends
on the problem to be solved. We use GERNN to search for
recurrent memory cells which are efficient for a given task,
more exactly sentiment analysis on tweets in our case study.
When deciding if such a cell is efficient or not, GERNN
outputs two scores, one for each option. When estimating
the performance of the cell, GERNN outputs a single value,
representing the predicted performance. We provide detailed
explanations in subsection IV-B in regards to the tasks to be
solved and the specific outputs.

In our implementation, all attention modules and the final
predictor are FFNNs. For the RNNs we used GRUs [24] as
hidden units.

B. PREPROCESSING FOR RECURRENT MEMORY CELLS
In this subsection we discuss the representation of the
recurrent memory cells and the preprocessing that must be
done in order to be able to process these cells using the
GERNN algorithm.

We represent memory cells as directed graphs, each node
and edge having different properties, representation that we
adopt from [41]. The edges represent the flow of data,
while the nodes represent computations. Each node has
an activation function. The activations that we consider
are: rectified linear unit (ReLU), linear (lin), sigmoid (σ ),
hyperbolic tangent (tanh) and gate. The gate activation takes
two values as input, passes the first one through a sigmoid
activation, the second one through a linear activation and
multiplies the two obtained values. For a node, the associated

computation is the activation function applied on the sum
over the values brought by the edges. Of course, in the case
of the ‘‘gate’’ activation, the edges are split in two groups
(branches). Each node has an identifier associated to it. The
cell has an input node, fromwhich the input of the cell is taken
and an output node which describes the output of the cell.

The properties of an edge include the weight type,
which may be ‘‘identity’’, meaning that the weight is one,
or ‘‘linear’’, meaning that the weight is a learnable parameter.
An edge may be ‘‘recurrent’’, when the connection is done to
the previous time step, or ‘‘regular’’ when the connection is
done to the same time step. If we ignore the recurrent edges,
our cell representations become directed acyclic graphs.
An incoming edge of a node A may connect it to only a node
B in the same cell, in which case the edge is ‘‘single’’, or it
may connect to the B nodes from all the cells in the layer,
in which case the edge is called a ‘‘depth’’ connection.

We must preproces the graphs representing the cells into
a feature-vector representation, so that our algorithm may be
applied on them. Each node and edge are converted into a
numerical feature vector. Each node has a unique numerical
identifier which is included as it is in the vector. For the rest of
the properties, corresponding one-hot vector representations
are included in the feature vector. The activation is converted
into a one-hot vector with 5 positions, one for each possible
function. We mark if a node is the input node or not and
we mark if a node is the output node or not. Each of these
two properties is represented as a one-hot vector with two
positions (true / false).

The edge-vector contains the identifiers of the source node
and target node. The rest of the properties are represented
as one-hot vectors. Two values represent the time delay
(recurrent / regular), two values represent the weight type
(identity / linear), two values represent whether the edge is a
depth connection and two values represent the branch number
on which the edge is placed. For the nodes with activations
other than ‘‘gate’’, all edges are considered to be on the first
(and only) branch.

All node vectors are placed in a list and all edge-vectors are
placed in another list, and these sequences are given as input
to the GERNN.

IV. EXPERIMENTS AND RESULTS
In this section we present the experiments that we conducted
for validating our GERNN as a performance estimation
algorithm. We provide descriptions of the tasks that we
considered, the datasets that we used, the experiments that
we made and the results that we obtained.

In Fig. 2 we present the overview of our experimental
methodology, which we explain in detail in the following
subsections. To be able to evaluate the capacity of our
GERNN to estimate the performance of RNN cells on
sentiment analysis on tweets, we need RNN cells with the
corresponding qualities for training and testing. In order to
obtain the corresponding qualities, we use datasets of tweets
with annotated sentiments or emotions. We build our datasets

VOLUME 11, 2023 112881



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

of RNN cells using the tweets datasets and an evolutionary
algorithm which was previously proposed [41]. We train
GERNNs on these datasets of cells. As we have both tasks for
sentiment analysis and for RNN cell performance estimation,
we use the terms ‘‘tweet-tasks’’ and ‘‘cell-tasks’’ for the two
categories respectively. We do this to avoid confusion. After
training the GERNNs, we compare them and select the most
promising options based on the results. GERNN experiments
are presented in detail and the best-performing architectures
are reported. We generate one million new RNN cells and we
use our GERNNs to filter these cells based on their estimated
quality. A small subset of the cells are trained on tweet-tasks
to establish the overall best cells.

Training and evaluation of the models was done on an
Nvidia Tesla K40 GPU. All implementation was done in
the Python programming language, using the TensorFlow
framework [49].

A. TWEETS DATASETS
We use three sentiment analysis on tweets tasks (tweet-tasks),
which we denote by TSAD, EI-2 and EI-4, tasks that were
also considered in [41]. These tweet-tasks are based on two
publicly available datasets of tweets annotated with sentiment
[13], [50].

TSAD is a binary classification task, in which we used a
corpus of 1578627 tweets [50]. This dataset has annotations
for the sentiment expressed in each tweet: positive or
negative. We used 80% of the samples for the training set and
the rest for the testing set. We selected this dataset as it is,
by far, the largest dataset of tweets annotated with sentiment
that we found.

EI-4 and EI-2 are based on a corpus of 7102 tweets
[13] with annotations for four emotion classes: ‘‘anger’’,
‘‘fear’’, ‘‘joy’’, ‘‘sadness’’. For both of these tweet-tasks,
the training set consists of the samples marked by ‘‘train’’
and ‘‘dev’’ by the corpus authors [13] and the testing set
consists of the samplesmarked as ‘‘test’’. For the EI-4 task, all
samples are considered. For the EI-2 task, only two emotions
are considered, ‘‘joy’’ and ‘‘anger’’, this being a binary
classification tweet-task. This tweet-task was considered for
creating a binary classification task with a smaller number
of samples. The emotion classes were selected such that the
emotions correspond to positive or negative sentiment. The
smaller number of samples leads to faster trainings which
are useful in creating the datasets of RNN cells. This dataset
was selected due to having multiple emotions annotated,
providing a more granular task on which to evaluate our
RNNs.

B. RNN CELLS DATASETS
Our algorithm must be able to help discover new recurrent
memory cells that can accurately extract the sentiment from
tweets. For this purpose, GERNN must be able to make fast
and accurate predictions of the performance of a given cell
design.We define two cell-tasks that need solving: (1) finding

which cell designs are appropriate for sentiment analysis on
tweets and (2) what is their accuracy. The first cell-task can be
modeled as a binary classification problem which we denote
by EABC (empathic / apathetic binary classification), while
the second can be modeled as a regression problem which we
denote by ERAP (emotion recognition accuracy prediction).
For creating datasets of recurrent memory cells for each

cell-task, we need to be able to evaluate their capacity of
sentiment analysis on tweets.

We created and evaluated various cells on the three consid-
ered tweet-tasks (separately) by employing the evolutionary
algorithm described in [41]. This algorithm searches for new
recurrent memory cells that are efficient in solving a given
task. The main limitation of this algorithm is the time taken
to evaluate the cells. We use our GERNN to overcome this
limitation, but first we need samples to train our performance
estimator. We create our training and testing datasets for
the two mentioned cell-tasks: binary classification datasets
for finding which cell designs are appropriate for sentiment
analysis on tweets and regression datasets for predicting the
accuracy of the cells on sentiment analysis on tweets.

We briefly describe the procedure that we adopted from
[41] to generate new RNN cells. The evolutionary algorithm
contains a population of individuals that represent RNN
memory cells. The representation of individuals is the one
that we described in subsection III-B. In the beginning, the
population is created using themutation operator. The starting
point of the mutation can be either a basic RNN cell or a
LSTM, the first option being useful for creating new designs
that are not constrained by other designs, while the second is
useful for finding improvements to LSTM, which is one of
the most widely used RNN cells.

The mutation operator consist of multiple mutations
rounds in which various mutation operations are applied with
a preset probability. These operations can add new nodes, add
new edges or change the characteristics of the nodes or edges.

At each new generation of the evolutionary algorithm,
pairs of parents are selected to form new individuals using
the crossover operator. The crossover operator will randomly
select nodes from each parent and only keep these nodes and
the associated edges. The two subsets of nodes and edges
are combined into a single individual by adding new edges.
The individual is then mutated. After the new individuals
are generated, a selection operator decides which individuals
(new and old) are kept in the new generation based on the
quality of these individuals.

The quality of an individual is measured in [41] by creating
a full RNN consisting of multiple instances of the cell that
the individual represents and training and testing this RNN
on a task. As no machine learning algorithm was used in
[41] for performance estimation, other (less sophisticated)
strategies were used. Examples would be early stopping or
approximating when an RNN stopped learning based on the
improvement in the most recent training steps.

We used the algorithm proposed in [41] to generate new
RNN cells and associate to each the accuracy obtained on the

112882 VOLUME 11, 2023



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

FIGURE 2. Overview of the experimental methodology.

TABLE 1. Binary task dataset.

testing sets of the corresponding tweet-tasks (TSAD, EI-2,
EI-4) as the quality. In this way, we created a dataset of pairs
of RNN cells and the corresponding quality on a given tweet-
task. For building a full RNN based on a given RNN cell,
we use the same templates as in [41]: one layer of 64 units
for TSAD and one layer of 32 units for EI-2 and EI-4.

Using this dataset, we built the two datasets for the
cell-tasks that we mentioned at the beginning of this
section. For the binary classification cell-task, EABC,
we selected recurrent memory cell designs from each tweet-
task. We applied a threshold on the accuracies obtained
by the cells and the cells that passed the threshold were
included in the ‘‘empathic’’ class, as these cells are capable
of sentiment / emotion recognition. Cells which did not pass
a second threshold, lower than the first, were included in the
‘‘apathetic’’ class. We decided to have two thresholds such
that the dataset will more accurately express the difference
between the two classes. Having a single threshold would
mean that a difference of less than 1% may separate two
similar cells into different classes, which may confuse the
model more than it would help it. The thresholds applied for
each tweet-task and the number of cells included can be seen
in Table 1.

EABC requires the model to decide if a given cell is
capable of sentiment analysis on tweets. This implies that

each cell is part of either the ‘‘empathic’’ class or the
‘‘apathetic’’ class. For the GERNN to be able to make this
classification, the final decision is represented by two scores
- one for each possible class. The greater score decides the
class of the cell.

For the regression cell-task, ERAP, we selected as the
performance metric the accuracy of the network based on
the cell design. In this case, the scores for each cell must
represent a value on the same scale, so we could not include
cells obtained from all tweet-tasks. We decided to use the
cells from the EI-2 task, as they were the most numerous.
We placed all the cells in buckets based on their scores. Each
bucket represented an interval of size 0.001, where 1 is the
accuracy of a perfect result. From each bucket we randomly
sampled 10 cells for diversity of quality. For the buckets with
less than 10 samples, we included the contents of the entire
bucket. Our regression dataset contains 1349 cell designs and
the distribution of their scores can be seen in Fig. 3, where the
values for the scores were represented as percentages. The x-
axis of the figure represents the score of the beginning of the
interval included in the bucket and the y-axis represents the
number of cells included from the bucket.

ERAP requires predicting the accuracy, on a given dataset,
of an RNN based on the cell. To this purpose, the output of
the GERNN that handles this task must be a single numeric
value in the interval [0, 1].

C. EXPERIMENTAL SETUP
In this subsection we describe the experiments that we
conducted using the model described in Section III applied
on the datasets presented in subsection IV-B.

VOLUME 11, 2023 112883



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

FIGURE 3. Distribution of scores in the regression dataset.

We searched for the best architecture for our GERNN,
such that the metrics would be maximized. For the RNNs
used within GERNN, we adjusted the number of layers and
the number of units in each hidden layer. For the attention
mechanisms, which are implemented as FFNNs, we adjusted
the number of layers, the number of units in each layer and
the activations of the artificial neurons. As possible activation
functions, we considered rectified linear unit, sigmoid, linear
and hyperbolic tangent.

For each cell-task (EABC / ERAP) we trained the various
GERNN architectures for 50 epochs. Batches of 4 samples
were given to the models. After each completed epoch,
we evaluated the model to be able to monitor its progress.

Asmetrics for the binary cell-task, we considered accuracy,
precision, recall and F-measure. The accuracy shows the
percentage of samples that were correctly classified out of
all the performed classifications, measuring how often the
model is correct in its decision. Precision is the percentage of
samples that are correctly classified as positive (in our case,
empathic) out of all samples classified as positive, measuring
how likely a sample considered positive by the model is
truly positive. Recall is the percentage of samples correctly
classified as positive (again, in our case, empathic cells) out of
all the positive samples in the dataset, measuring how likely
is the model to find all the positive samples. F-measure is a
single metric that combines both precision and recall.

The metrics that we considered for the regression cell-task
are mean squared error (MSE), mean absolute error (MAE),
root mean square error (RMSE) and mean absolute percent-
age error (MAPE). These metrics measure the difference
between the model output and the ground truth value, given
that these values come from a continuous interval. All metrics

compute the mean over a distance between a ground truth
sample and the corresponding value predicted by the model.
MSE uses as distance the squared difference of the two
values. RMSE is the square root of MSE. In the case of MAE,
the distance is the absolute value of the difference. MAPE
also uses the absolute value of the difference, but it also
divides it by the ground truth value, making the difference
relative to the true value.

As loss functions, we used crossentropy for EABC and we
experimented with both MSE and MAE for ERAP.

It is useful for a graph-processing algorithm to be invariant
to the order in which the nodes and edges are processed
[46]. The sequential nature of the RNNs that compose
our algorithm assume from the beginning a given order.
We experimented with establishing a fixed order in which the
nodes and edges are processed, but for helping our GERNN
obtain order invariance, we also experimented with randomly
shuffling the sequences and feeding the same graphs to the
algorithm, but with different orderings.

For each cell-task, we used 80% of the samples for training
the model and 20% for testing. The metrics that we report in
this paper are computed with respect to the test set.

D. RESULTS
In this subsection we present the results of the experiments
that we made using the algorithm described in Section III and
the methodology described in subsection IV-C.
For the EABC cell-task described in subsection IV-B,

we searched for the GERNN architectures which obtains the
best results. We altered the architectures of the RNNs by
changing the number of layers and the number of units in each
layer. For the attention mechanism, we changed the number

112884 VOLUME 11, 2023



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

TABLE 2. Metrics of models on EABC (classification).

of layers, the number of units in the layer and the activation
functions used by the neurons.

The final architecture that we found to obtain the best
performances for EABC has the same architecture for both
RNN modules: 2 layers of 64 GRUs. All attention modules
also have the same architecture: 3 layers of units with ReLU
activation, of size 128, 64 and 32. The final predictor has the
same architecture as the attention modules, with an additional
layer of 2 units with ReLU activation.

After finding the best-performing architecture, we con-
ducted ablation experiments to confirm that each architecture
decision is the best one. The performances of our best
GERNN model, marked by C1, and the comparison models
can be seen in Table 2. In this table, we have the descriptions
for each architecture and the results with respect to the
four metrics we considered. For the network descriptions,
we present the number of layers (NL) and the number of
units per layer (NU) of the RNN modules, the activation
function (AA) and the size (AS) of the attention modules and
the type of input order (IO) that is used. The attention size
of the base model is marked by B, while S marks smaller
attention modules. The random input order is marked by R,
while the fixed order is marked by F. Because the best results
for the regression cell-task are obtained using a GERNN
architecture similar to architecture C2, we also mirror the
ablation experiments for this model.

As it can be seen, our base model has the overall best
performance, having the highest accuracy, precision, recall
and F-measure scores. The base model uses a random order
of processing the preprocessed nodes and edges, so we first
compared it with an identical model that is given the inputs
in a fixed order, C3. It can be seen that the classification is
improved by the random input order.

Next, we increased and decreased the number of units
of the RNN modules and compared our base model with
models that have 32 units (C4) or 128 units (C5) of GRUs.
We did this to show that the size of our RNNs is the best
one, as increasing or decreasing the number of units only
decreases the performance. This shows that the number of
units of our base model is high enough to be able to capture a

diversity of features. Lowering the size will make the model
unable to learn all the features it needs, while increasing the
size only introduces new unnecessary learnable parameters.

Decreasing (C6) or increasing (C7) the number of layers
produced lower performances. This proves that two layers
are enough to learn the most complex concepts necessary for
the classification cell-task, while less layers are not able to
capture these complexities. We also distributed the units of
the RNN modules in a single layer (C2), and found inferior
results, to prove that the organization of units in layers is also
important.

Other ablation experiments that we did involved changing
the activation functions of the FFNNs. Using tanh (C8) or
sigmoid (C9) produced GERNNs with performances inferior
to our base model. We also modified the size of the attention
modules. Architecture C10 has smaller attention modules (S)
consisting of three layers of 64, 32 and 16 units. These smaller
versions of the attention modules produced inferior results.

We mirrored most of the ablation experiments for the C2
architecture. We used a fixed order for the inputs (C11),
a lower (C6) or higher (C12) number of units per layer.
The number of layers was increased (C5). We changed the
activation functions of the attention modules (C13 and C14).
None of these alterations improved the performance of the
model.

For the ERAP cell-task, we started from the GERNN archi-
tectures that we found to obtain the highest performances
for the EABC cell-task. As the output of this model is a
single rational number, we changed the last layer of the final
predictor to a single unit with linear activation.

We conducted ablation experiments similar to the ones
we conducted for the classification cell-task. Additionally,
we experimented with two loss functions: MSE and MAE.
The results of some of our ablation experiments can be seen
in Table 3. The parameters of the model descriptions are
the same as in Table 2. All models use the base size of the
attention modules (B).

Most of the ablation experiments for the regression
cell-task gave us the same insights as the experiments for
EABC, so we present in Table 3 only the ones that we
consider to provide additional information. What we found
interesting is that having a fixed order of inputs produces
superior performances on ERAP, as opposed to EABC.
We also observed that considering MAE as the loss function
helps the model obtain better performances with respect to all
metrics, including MSE. As it can be seen, on the regression
cell-task, the GERNN that uses as RNN modules networks
with 1 layer consisting of 128 GRUs (R5) clearly outperforms
the 2-layered version with 64 GRUs approach (R1). This
distribution of the same number of units on a single layer
is better able to solve ERAP, with respect to the considered
metrics.

For visualizing what the GERNN considers important
when making a prediction, we created heatmaps for the
considered characteristics. A mean node vector and a mean
edge vector were created. For each graph, we considered the

VOLUME 11, 2023 112885



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

TABLE 3. Metrics of models on ERAP (regression).

FIGURE 4. Mean node vector heatmap.

weights computed by the Node Attention and computed the
mean node vector of the graph as the sum of the vectorial
representations (obtained using the Node Preprocessor) of
each node, weighted by the attention scores. We computed
the mean node vector of the dataset as the average of all
graph mean node vectors. The resulting heatmap can be seen
in Fig. 4. Color close to white represents low weights, while
intense blue represents high weights.

As it can be observed in the figure, the activation functions
are approximately equally important, the linear activation
being the only one that stands out. This shows us that
linear-nodes are important for combining the results of
multiple nodes and creating more complex equations before
applying a function over the output. Output nodes have a
relatively small weight in the mean node vector. As there are
considerably more internal nodes than output nodes, this is an
expected result. Also, it shows that our model considers all
nodes when making the prediction, not only the final nodes
that are close to the output of the cell.

Similarly, we computed the mean edge vector by con-
sidering the scores produced by the Edge Attention as the
weights. Fig. 5 is the visual representation of the mean edge
vector. This representation shows us that linear-edges are
more important in the final decision than identity edges. This
is understandable, as learnable weights are essential for a
deep learning model. Of course, there are cases when weights
with fixed values are needed in the recurrent cell, and that is
why the identity-edges also have a fair weight in the mean
edge vector. The very low score of the second branch can be
explained by the fact that the gate activation is the only one
that contains a second branch and, as seen in Fig. 4, it has an
average weight among the node activations. The sum of the
nodes with other activations is great enough to produce this
low second-branch score.

Depth connections have a very low score compared to
regular ones, showing that this should be a relatively rare

FIGURE 5. Mean edge vector heatmap.

encounter in the cell design. This insight shows us that
each cell should generally have its own responsibility of
identifying certain features. The depth connections are not
completely ignored, as it is still important for the cells to
exchange information among them in some cases. The simple
edges have a greater weight in the mean edge vector than
the recurrent ones. This shows us that while connections to
previous time steps are important, quite essential, for RNNs,
most computations of the cell are still done at the current time
step.

E. FINDING NEW RECURRENT MEMORY CELLS
We applied our GERNNs to find RNN cells that obtain good
performances on sentiment analysis on tweets. To this end,
we used the following methodology:

1) Randomly generate one million recurrent memory
cells, using the initialization and mutation operator
described in [41] with various numbers of mutation
rounds;

2) Apply a classification GERNN to decide which are the
cells with high expected performances and keep only
these cells;

3) Apply a regression GERNN on the cells, order them by
the expected accuracy for EI-2 tweet-task, keep only
the first 100;

4) Train full RNN architectures based on each cell on EI-2
and EI-4 and keep only the cells that obtain the highest
accuracy on at least one of the tweet-tasks;

5) Train full RNN architectures based on each cell on
TSAD.

The main focus of our work is performance estimation.
Therefore, we paired our estimator with random search,
as this is the simplest search strategy. In this way, the quality
of the results that we obtain is given mostly by the estimator
and other components have a lesser merit in the results.

The full RNN architectures that we used consist of a single
layer of multiple instances of the same cell. For the EI-2
and EI-4 tasks, the layers contained 32 instances of the cells,
while for TSAD, 64 instances were used.

We repeated this methodology with three different
configurations. The configurations used different pairs of
classification and regression GERNN architectures: C1 and
R1, C2 and R5, C1 and R5. The first two pairs were selected
due to them employing the architectures which obtained the
best performances on the classification and regression tasks,
respectively. The third pair employs the architecture that
obtained the best performance on the classification task and

112886 VOLUME 11, 2023



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

TABLE 4. Metrics of newly discovered cells.

the architecture that obtained the best performance on the
regression task.

In Table 4 we present the results of the best-performing
recurrent memory cells that we discovered.

Out of the newly discovered cells, we consider cell
3 the best design, as it obtains the highest accuracy on
the TSAD task and also the best average accuracy on all
three tasks. As TSAD contains the most training samples,
and so provides the most variation in the data, we consider
good performance on this task as an indicative of a high
ability to recognize sentiment in tweets. We name this new
architecture Empathic Recurrent Memory Cell (ERMC),
as it is specifically designed to recognize sentiment. The
computations done by ERMC are described in (10) - (17).
In these equations we denote by vti the output of the node
i of a cell instance, by V t

i the vector containing the outputs
of the nodes i of all the cell instances in the layer and by
W j
i the weight used by node i for the output of node j.

By the superscript t we denote the current time step, while
t − 1 denotes the previous time step. X t denotes the input of
the cell, while

∑
represents summation over all the elements.

vt2 = relu(
∑

W 0
2 V

t−1
0 +

∑
W I

2X
t ) (10)

vt3 = tanh(vt2) (11)

vt5 = σ (
∑

X t +

∑
V t−1
4 ) · (W 3

5 v
t
3 +

∑
X t ) (12)

vt0 = σ (W 0
0 v

t−1
0 +

∑
W I

0X
t ) · (W 5

0 v
t
5) (13)

vt1 = σ (
∑

W 0
1 V

t−1
0 ) (14)

vt6 = σ (W 1
6 v

t
1) · (W 0

6 v
t
0) (15)

vt4 = σ (W 6
4 v

t
6) · (

∑
W I

4X
t ) (16)

vout = vt0 + vt2 + vt4 + vt5 + vt6 (17)

A graphical representation of ERMC can be seen in Fig. 6.
In this representation, each node has an associated numerical
identifier written on it, which corresponds to the subscript
identifier used in the equations. The color of the node
denotes its corresponding activation function. For the gate
activation, if the incoming arrows are connected to the
yellow half, they are passed through the sigmoid part of the
activation, otherwise they are passed through the linear part.
Solid lines represent connections from the current time step,
while dashed lines represent connections from the previous
time step. Blue arrows represent connections with learnable

TABLE 5. Comparison of ERMC with other cells on the TSAD task.

TABLE 6. Performance estimation strategies comparison.

weights, while black arrows represent identity connections.
Depth connections are represented with thicker arrows.

This cell is slightly more complex than the general-purpose
LSTM and GRU in terms of computations. The difference in
complexity is small, so the particular abilities of this design
are given by the structure that it has. It employs 3 gates
for the control of the flow of data. Additionally, one of the
gate-nodes, the one denoted by 0, is connected to most of
the nodes of this cell. This node seems to act as a central
computation node, receiving information from many nodes
and distributing its outputs to many others. It additionally
contains a recurrent connection to itself, leading us to believe
that its role is also important for the internal state of the cell.
ERMC also contains various types of connections, proving
that the properties that we considered are useful for proposing
new RNN cells.

We present in Table 5 a comparison between the metrics
obtained by ERMC on TSAD and the metrics obtained by
other cells. The metrics for RMC-3, LSTM and GRU are as
reported in [41]. As it can be seen, ERMC obtains results
competitive with both the general-purpose cells, LSTM and
GRU, and the cell designed for sentiment analysis on tweets,
RMC-3. ERMC has better precision and true negative rate
(TNR) than RMC-3 and better TNR than GRU.

We present in Table 6 a comparison of the running times
and the number of cells that we evaluated in different settings.
Here, EABC refers to predicting using a GERNN if a cell is
capable of sentiment analysis on tweets, while ERAP (EI-2)
refers to using a GERNN for predicting the accuracy of an
RNN based on a cell on the EI-2 tweet-task. The other three,
EI-2, EI-4 and TSAD, refer to training an RNNbased on a cell
until convergence and then testing it on the respective tweet-
tasks. As an observation, for EABC we have evaluated two
million cells as each of the onemillion cells that we generated
were evaluated twice (using two GERNN architectures).

As observed in Table 6, using GERNN is considerably
faster than actually training on either of the tasks. The
comparison between ERAP and EI-2 is the most obvious
example of improvement, as they handle the same tweet-
task, but in substantially different amounts of time. The
most dramatic difference is between the GERNN estimations
and TSAD, as this tweet-task consists of a large amount of

VOLUME 11, 2023 112887



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

FIGURE 6. Graphical representation of the new ERMC architecture.

samples and requires many training steps until convergence.
Even though the number of architectures trained on TSAD is
not large enough to be statistically relevant, it still gives us
an idea of the order of magnitude of the required time. As an
observation, the mean number of minutes needed for TSAD
translates to more than 3 days. From the results presented in
Table 6 we conclude that the performance estimation strategy
based on GERNN provides a significant improvement in the
required time.

Even though ERMCdid not clearly surpass its competition,
its results are very similar to them, proving that our
methodology can indeed lead to new high-performance RNN
cells. We were able to evaluate one million RNN cells
using GERNN, while only about 17000 were evaluated in
[41], this being due to the great speed provided by the
GERNN algorithm. For our current solution, GERNN was
paired with random search and obtained these good results,
while an evolutionary algorithm was used in [41]. Integrating
GERNN with a search algorithm which better guides what
architectures to evaluate would provide even better results.

V. CONCLUSION
The method of neural architecture search is useful in
proposing new neural network architectures specifically
designed for the task of interest. This method can be applied
for finding new recurrent memory cells for a given task, but a
performance estimation algorithm is necessary for being able
to evaluate many designs and find the ones which obtain the
best performances.

In this paper, we proposed GERNN, a novel algorithm
for processing data structured as graphs. We described this
algorithm and how it can be applied on estimating the

performance of a recurrent neural network that is based
on a certain cell. For a concrete task on which to use our
algorithm, we selected sentiment analysis on tweets. The task
of sentiment analysis on tweets, though challenging, has high
applicability and so it is very useful to study. We applied our
algorithm on this task and we presented the architectures that
obtained the best results.

Based on the dataset of pairs of RNN cells and correspond-
ing accuracies that we built, we trained multiple GERNN
architectures. The GERNNs were compared based on the
results and the various design decisions were discussed.
We used the best-performing ones to search for new RNN
cells.

Using GERNN, we evaluated one million new archi-
tectures that we generated, we discovered novel recurrent
memory cells and we described and presented the one that
obtains the best performances.

Even though the newly discovered cell did not clearly sur-
pass the existing alternatives that we considered, it obtained
similar results, proving that our methodology can lead to
successful new RNN cell designs. Our algorithm proved to
help in quickly finding new designs, but at this point we only
paired it with random search. Combining our performance
estimation algorithm with a more complex search strategy
should produce even better results. As future work, we plan
on integrating our algorithm into a more complex neural
architecture search algorithm.

Using our experiments, we demonstrated that GERNN
is able to accurately estimate the quality of an RNN on a
given task based on the structure of the cell that is used.
Moreover, GERNN is able to make this estimation much
faster that other performance estimation strategies helping

112888 VOLUME 11, 2023



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

to improve the running times of neural architecture search
algorithms.

The algorithm is able to generalize from the datasets that
we used to the wider context of the task of sentiment analysis
on tweets. Firstly, we used multiple smaller tasks based
on different datasets to assure the capability of the method
to generalize. Secondly, if limitations are found on certain
sentiment analysis datasets, new data can be added to the
training sets that we used in order to increase the variation
in the data and further improve the generalization ability of
the method.

GERNN is generic enough to make predictions for RNNs
on any task and generic enough to be included in other NAS
algorithms. This is due to the algorithm being tailored for
RNNs, but not necessarily for sentiment analysis on tweets.
To adapt our method to another task, the only modification
that is needed is in the datasets that are used for the
architecture search.

As practical applications of our paper, the cell that we
discovered can be used to solve the problem of sentiment
analysis on tweets. We demonstrated the speed with which
our algorithm can discover new high-quality recurrent
memory cells. Ourmethodology can be used to discover other
architectures specific to tasks that can be modeled by RNNs:
sequence processing tasks, natural language tasks etc.

Our algorithm, even though successful, has certain limi-
tations. Firstly, it is highly dependent on the datasets that
are used for the search. These datasets must be carefully
selected to assure a good representation of the task that
needs to be solved. Even though the GERNN will greatly
reduce the search time, it still needs to first be trained. For
this, it requires training data which consists of RNN cells
and their corresponding performance. To obtain this, it is
required to train such RNN cells to know their performance,
so the datasets need to be of an appropriate size such that the
trainings take a reasonable amount of time.

Another limitation is given by the random search, as pre-
viously mentioned. This is the simplest search strategy that
is available. We focused our work on the performance
estimation, but using a more sophisticated search strategy
would provide superior solutions. We plan to overcome this
limitation in our future work.

Our algorithm is also limited by certain constrains that we
impose on it, but these constraints could be removed in future
work. One constraint is that the number of cell instances in an
RNN is fixed in the templates that we used. We could extend
our work by making the templates adaptable, for example by
keeping the number of learnable parameters constant, not the
number of cell instances. Another constraint is that the full
architectures that we build have instances of a single cell,
but another option would be to build heterogeneous networks,
having instances of different cells in the full architecture.

REFERENCES
[1] H. Li, ‘‘Deep learning for natural language processing: Advantages and

challenges,’’ Nat. Sci. Rev., vol. 5, no. 1, pp. 24–26, 2017.

[2] L. Deng and Y. Liu, Deep Learning in Natural Language Processing.
Springer, 2018.

[3] P. Goyal, S. Pandey, and K. Jain, Deep Learning in Natural Language
Processing. New York, NY, USA: Apress, 2018.

[4] Z. C. Lipton, J. Berkowitz, and C. Elkan, ‘‘A critical review of recurrent
neural networks for sequence learning,’’ 2015, arXiv:1506.00019.

[5] Y. Yu, X. Si, C. Hu, and J. Zhang, ‘‘A review of recurrent neural networks:
LSTM cells and network architectures,’’ Neural Comput., vol. 31, no. 7,
pp. 1235–1270, Jul. 2019.

[6] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and
J. Schmidhuber, ‘‘LSTM: A search space Odyssey,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[7] M. Rambocas and B. G. Pacheco, ‘‘Online sentiment analysis in
marketing research: A review,’’ J. Res. Interact. Marketing, vol. 12, no. 2,
pp. 146–163, May 2018.

[8] Z. Drus and H. Khalid, ‘‘Sentiment analysis in social media and its
application: Systematic literature review,’’ Proc. Comput. Sci., vol. 161,
pp. 707–714, Jan. 2019.

[9] K. Chakraborty, S. Bhattacharyya, and R. Bag, ‘‘A survey of sentiment
analysis from social media data,’’ IEEE Trans. Computat. Social Syst.,
vol. 7, no. 2, pp. 450–464, Apr. 2020.

[10] C. I. Muntean, G. A. Morar, and D. Moldovan, ‘‘Exploring the meaning
behind Twitter hashtags through clustering,’’ in Proc. Int. Conf. Bus. Inf.
Syst. , Vilnius, Lithuania. Berlin, Germany: Springer, 2012.

[11] S. M. J. Zafra, M. T. M. Valdivia, E. M. Camara, and L. A. U.
Lopez, ‘‘Studying the scope of negation for Spanish sentiment analysis
on Twitter,’’ IEEE Trans. Affect. Comput., vol. 10, no. 1, pp. 129–141,
Jan. 2019.

[12] Y. Zhang, M. Shirakawa, Y. Wang, Z. Li, and T. Hara, ‘‘Twitter-aided
decision making: A review of recent developments,’’ Appl. Intell., vol. 52,
pp. 13839–13854, Feb. 2022.

[13] S. Mohammad and F. Bravo-Marquez, ‘‘Emotion intensities in tweets,’’
in Proc. 6th Joint Conf. Lexical Comput. Semantics (SEM), N. Ide,
A. Herbelot, and L. Màrquez, Eds. Vancouver, BC, Canada: Association
for Computational Linguistics, Aug. 2017, pp. 65–77.

[14] A. Pak and P. Paroubek, ‘‘Twitter as a corpus for sentiment analysis and
opinion mining,’’ in LREc, vol. 10, 2010, pp. 1320–1326.

[15] J. Awwalu, A. A. Bakar, and M. R. Yaakub, ‘‘Hybrid N -gram model using
Naive Bayes for classification of political sentiments on Twitter,’’ Neural
Comput. Appl., vol. 31, no. 12, pp. 9207–9220, 2019.

[16] E. Kouloumpis, T. Wilson, and J. Moore, ‘‘Twitter sentiment analysis: The
good the bad and the OMG!’’ in Proc. 5th Int. AAAI Conf. Weblogs Social
Media, 2011, pp. 538–541.

[17] L. Barbosa and J. Feng, ‘‘Robust sentiment detection on Twitter from
biased and noisy data,’’ in Proc. 23rd Int. Conf. Comput. Linguistics.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2010,
pp. 36–44.

[18] S. M. Nagarajan and U. D. Gandhi, ‘‘Classifying streaming of Twitter data
based on sentiment analysis using hybridization,’’ Neural Comput. Appl.,
vol. 31, no. 5, pp. 1425–1433, May 2019.

[19] J. Wehrmann, W. Becker, H. E. L. Cagnini, and R. C. Barros, ‘‘A
character-based convolutional neural network for language-agnostic Twit-
ter sentiment analysis,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
May 2017, pp. 2384–2391.

[20] M. S. Akhtar, D. Ghosal, A. Ekbal, P. Bhattacharyya, and S. Kurohashi,
‘‘All-in-one: Emotion, sentiment and intensity prediction using a multi-
task ensemble framework,’’ IEEE Trans. Affect. Comput., vol. 13, no. 1,
pp. 285–297, Jan. 2022.

[21] A.Yadav andD.K.Vishwakarma, ‘‘Sentiment analysis using deep learning
architectures: A review,’’ Artif. Intell. Rev., vol. 53, no. 6, pp. 4335–4385,
Aug. 2020.

[22] T. Swathi, N. Kasiviswanath, and A. A. Rao, ‘‘An optimal deep learning-
based LSTM for stock price prediction using Twitter sentiment analysis,’’
Appl. Intell., vol. 52, pp. 13675–13688, Mar. 2022.

[23] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[24] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process. (EMNLP), A. Moschitti, B.
Pang, and W. Daelemans, Eds., Doha, Qatar, 2014, pp. 1724–1734.

VOLUME 11, 2023 112889



S. C. Nistor et al.: Developing an Algorithm for Fast Performance Estimation of Recurrent Memory Cells

[25] H. Sak, A. Senior, and F. Beaufays, ‘‘Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,’’ in Proc.
15th Annu. Conf. Int. Speech Commun. Assoc., Sep. 2014, pp. 338–342.

[26] T. Lei, Y. Zhang, S. I. Wang, H. Dai, and Y. Artzi, ‘‘Simple recurrent
units for highly parallelizable recurrence,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process., E. Riloff, D. Chiang, J. Hockenmaier,
and J. Tsujii, Eds. Brussels, Belgium: Association for Computational
Linguistics, Oct. 2018, pp. 4470–4481.

[27] T. Elsken, J. H. Metzen, and F. Hutter, ‘‘Neural architecture search: A
survey,’’ J. Mach. Learn. Res., vol. 20, no. 1, pp. 1997–2017, 2019.

[28] X. Yao, ‘‘Evolving artificial neural networks,’’ Proc. IEEE, vol. 87, no. 9,
pp. 1423–1447, Sep. 1999.

[29] D. Barrios, A. Carrascal, D. Manrique, and J. Rios, ‘‘Cooperative binary-
real coded genetic algorithms for generating and adapting artificial neural
networks,’’ Neural Comput. Appl., vol. 12, no. 2, pp. 49–60, Nov. 2003.

[30] S. Ding, H. Li, C. Su, J. Yu, and F. Jin, ‘‘Evolutionary artificial neural
networks: A review,’’ Artif. Intell. Rev., vol. 39, no. 3, pp. 251–260,
Mar. 2013.

[31] K. G. Kapanova, I. Dimov, and J. M. Sellier, ‘‘A genetic approach to
automatic neural network architecture optimization,’’ Neural Comput.
Appl., vol. 29, no. 5, pp. 1481–1492, Mar. 2018.

[32] B. Baker, O. Gupta, N. Naik, and R. Raskar, ‘‘Designing neural network
architectures using reinforcement learning,’’ in Proc. 5th Int. Conf. Learn.
Represent. (ICLR), Toulon, France, Apr. 2017, pp. 1–18.

[33] M. Suganuma, S. Shirakawa, and T. Nagao, ‘‘A genetic programming
approach to designing convolutional neural network architectures,’’ in
Proc. Genet. Evol. Comput. Conf., Jul. 2017, pp. 497–504.

[34] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[35] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, ‘‘Efficient architecture
search by network transformation,’’ in Proc. 32nd AAAI Conf. Artif. Intell.,
2018, pp. 1–8.

[36] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, ‘‘Progressive neural architecture
search,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 19–34.

[37] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforcement
learning,’’ inProc. 5th Int. Conf. Learn. Represent. (ICLR), Toulon, France,
Apr. 2017, pp. 1–16.

[38] J. Bayer, D. Wierstra, J. Togelius, and J. Schmidhuber, ‘‘Evolving memory
cell structures for sequence learning,’’ in Proc. 19th Int. Conf. Artif. Neural
Netw. (ICANN), Limassol, Cyprus, Sep. 2009.

[39] H. Liu, K. Simonyan, and Y. Yang, ‘‘DARTS: Differentiable architecture
search,’’ 2018, arXiv:1806.09055.

[40] A. Rawal and R. Miikkulainen, ‘‘From nodes to networks: Evolving
recurrent neural networks,’’ 2018, arXiv:1803.04439.

[41] S. C. Nistor, M. Moca, and R. L. Nistor, ‘‘Discovering novel memory
cell designs for sentiment analysis on tweets,’’ Genet. Program. Evolvable
Mach., vol. 22, no. 2, pp. 147–187, Nov. 2020.

[42] G. Kyriakides and K. Margaritis, ‘‘The effect of reduced training in
neural architecture search,’’ Neural Comput. Appl., vol. 32, no. 23,
pp. 17321–17332, 2020.

[43] B. Baker, O. Gupta, R. Raskar, and N. Naik, ‘‘Accelerating neural
architecture search using performance prediction,’’ in Proc. 6th Int.
Conf. Learn. Represent. (ICLR), Vancouver, BC, Canada, Apr./May 2018,
pp. 1–14.

[44] W. Zheng, P. Zhao, K. Huang, and G. Chen, ‘‘Understanding the property
of long term memory for the LSTM with attention mechanism,’’ in Proc.
30th ACM Int. Conf. Inf. Knowl. Manage., Oct. 2021, pp. 2708–2717.

[45] G. Serban and G. S. Moldovan, ‘‘A graph algorithm for identifica-
tion of crosscutting concerns,’’ Studia Universitatis Babes-Bolyai, Inf.,
Cluj-Napoca, Romania, Tech. Rep., 2006, pp. 53–60, vol. LI, no. 2.

[46] P.W. Battaglia et al., ‘‘Relational inductive biases, deep learning, and graph
networks,’’ 2018, arXiv:1806.01261.

[47] P. Goyal and E. Ferrara, ‘‘Graph embedding techniques, applications,
and performance: A survey,’’ Knowl.-Based Syst., vol. 151, pp. 78–94,
Jul. 2018.

[48] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, ‘‘Graph neural networks: A review of methods and applications,’’
AI Open, vol. 1, pp. 57–81, Apr. 2021.

[49] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: http://tensorflow.org

[50] I. Naji. (2012). Twitter Sentiment Analysis Training Corpus (Dataset).
Accessed: May 27, 2023. [Online]. Available: http://thinknook.com/
twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/

SERGIU COSMIN NISTOR received the Ph.D.
degree in deep learning from the Faculty of Math-
ematics and Computer Science, Babeş-Bolyai
University of Cluj-Napoca, Romania. He has
published nine papers in conference proceedings
and journals. His main research interests include
machine learning, neural architecture search, and
affective computing.

MOHAMMAD JARADAT received the Ph.D.
degree in cybernetics and economical statistics
from the Babeş-Bolyai University of Cluj-Napoca,
in 2001. He is currently the Rector of the
Bogdan Vodă University of Cluj-Napoca. He is
the coauthor of more than 90 full papers in
international journals and conference proceedings.
His main research interest includes management,
domain in which he is a scientific supervisor for
Ph.D. candidates. He received the Doctor Honoris

Causa awards from University of Pecs, Hungary and Medical University of
Taipei, Taiwan.

RĂZVAN LIVIU NISTOR received the Gradu-
ate degree in manufacturing engineering and in
business information systems, in 1992 and 1997,
respectively, and the Ph.D. degree in reliability
from the Technical University of Cluj-Napoca,
in 1999. He is currently the Head of the Depart-
ment of Management and a Professor in project
management with the Babeş-Bolyai University
of Cluj-Napoca. He is the coauthor of more
than 60 full papers in international journals and

conference proceedings. His research interests include project management,
knowledge management, business analysis, and analytics.

112890 VOLUME 11, 2023


