
Received 18 September 2023, accepted 27 September 2023, date of publication 5 October 2023,
date of current version 11 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3322230

Optimized Offline-Coverage Path Planning
Algorithm for Multi-Robot for Weeding
in Paddy Fields
MURUGARAJ GOVINDARAJU 1, (Member, IEEE),
DANIELE FONTANELLI 2, (Senior Member, IEEE),
S. SELVA KUMAR 1, (Member, IEEE),
AND ANJU S. PILLAI 1
1Department of Electrical and Electronics Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
2Department of Industrial Engineering, University of Trento, 38122 Trento, Italy

Corresponding author: S. Selva Kumar (s_selvakumar@cb.amrita.edu)

This work was supported in part by Erasmus +ICM between the University of Trento, Italy, and the Amrita Center for International
Programs, Amrita Vishwa Vidyapeetham, India.

ABSTRACT The coverage path planning (CPP) algorithms play a key role in autonomous robot applications,
making area coverage operations efficient and cost-effective. The extension of coverage path planning
algorithms to multi-robot operation is still widely unveiled despite the cyclical nature of agricultural oper-
ations, i.e., comprising repeated actions. The problem of coverage path planning for multi-robot operations
is addressed in this paper. The three possible forms of multi-robot coverage algorithms evolved from the
basic single-robot coverage algorithm based on the elementary trapezoidal method or zig-zag movements.
Furthermore, an optimized coverage path planning algorithm for multiple in-row robots meant to control the
weeding in an agricultural field is proposed. The parameters of the agricultural field are supposed to be known
upfront, opening the application of an offline planning algorithm. The proposed algorithm stands tall in terms
of distance covered with no repeated coverage compared with other possible solutions, nearing the results
of single robot coverage (for which the planning is trivially simpler and there is no coverage repetition).
Online adjustments in the multi-robot area coverage are also considered, and the proposed algorithm proves
to be effective in simulation in this respect as well. The quantitative evaluation proves that, in the proposed
algorithm with a team size of 15(n = 15), the average distance consumed by each robot to cover the field
taken for the study is only 65% of that of the other two algorithms. Also shows increase in the team size
(n) leads to a decrease in consumption. This algorithm provides a solution for the autonomous operation of
multi-robots to cover the fields with static obstacles at a regular pattern which is a common demand of many
agricultural processes.

INDEX TERMS Coverage path planning, multi-robot path planning, agricultural robots, weeding robots,
autonomous robots.

I. INTRODUCTION
Paddy cultivation under the system of rice intensifica-
tion(SRI) methods, compared to traditional methods of
cultivation, improves yields if correct weed control methods

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Liu .

are followed [1]. For an SRI method, the weed growth is
maximized when the field is maximally exposed to sunlight,
thus inducing regular gaps between plants and, hence, the
plants are regularly deployed in rows and columns. Conven-
tional methods of weed control, or even specific methods
for SRI paddy fields, are either expensive or heavily reliant
on chemicals or solutions that are not easily available, thus
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leading the farmers to avoid this favorable type of cultivation.
Even though Mulching methods [1] can be applied in these
cases despite their practical difficulties, autonomous robots
[2]operating with a coverage algorithm are considered the
future of farming. In the literature, single robot applications
are usually considered for the automation of the weed control
process, while the extension to multiple robots operating as a
team and covering the field of interest is still an open issue.
Indeed, the coverage of fields with obstacles in a pattern
is a general problem in slurry fields for the cultivation of
millets and grains, but also in oil palm, dates, and coconut
farming [3], [4], [5], [6]. As such, it is still performed with
single-robot approaches leaving few, while a multi-robot
approach for weed clearance will be beneficial for evident
reasons (e.g., reduction of coverage time due to workload
division, consistency in the coverage process, and tangible
increase in robustness even in the presence of few robot fail-
ures). SRI methods of paddy cultivation change according to
the specificity of the area, which bears remarkable differences
around the globe. For example, the solution developed in [7]
builds around a specialized weeding robot for paddy fields
using the Korean fields peculiarities, which has plants in
rows and columns with a distance of 30cm between rows and
15cm between plants in the rows. When considering plants
as static obstacles, the fields become the areas with static
obstacles in a regular pattern. For instance, the papers [8],
[9], [10], [11] deal with weeding in paddy fields inspired
by integrated farming with natural ducks and paddy. These
solutions cover the feasibility study of their weeding robots,
considering their developments and capabilities, the possi-
ble damage to the plants, and, more importantly, the path
planning for the robots. What is of major interest to this
paper is that the mentioned publications show the demand
for multi-robot coordination and path-planning algorithms,
which are not covered. Based on our previous work [2],
where the design of a weeding in-row robot for the paddy
field under the SRI method of cultivation has been presented
(i.e., coverage of a field with static obstacles at a regular
pattern), The authors present here our proposal for offline
coverage path planning for a team of weeding robots, a still
open problem of interest to many research groups around the
world as testified by the mentioned literature.On the other
hand, the main issue that still hinders the wide application
of multi-agent systems for this application scenario is the
needfor an efficient and lightweight optimal path planning
algorithm for the team of multiple in-row mini robotsthat
have to cover the paddy field under the SRI method of
cultivation, and search for it becomes our objective of the
study.

The rest of the paper is organized as follows. Section II
describes the literature work. The detailed description and
analysis of the algorithm are discussed in Section III, while
its performances are assessed in Section IV. We conclude the
discussion in Section V, together with an outlook of future
improvements

II. LITERATURE WORK
For a single autonomous vehicle, the coverage path planning
(CPP) algorithm aims to find a suitable path that entirely
covers the field or the region of interest (ROI)while avoiding
all the obstacles in the field. Notable solutions have been
conceived for automated harvesters [12], [13], lawnmowers
[14], [15], window cleaning [16], or vacuum cleaning [17]
robots, all dealing with a bi-dimensional (2D) ROI with an
even and plain motion surface. Extensions to the 3D ROI of
such solutions, e.g., for painting [18] or underwater structure
inspection [19], have been already provided. Of course, the
3D ROI problems are more challenging than 2D, albeit the
former can be decomposed into a sequence of 2D problems
[20]. Efficient CPP solutions work either online [21], [22],
[23], [24] or offline [25] depending on the availability or
absence of a sufficient level of information about the field
to be covered. In particular, offline algorithms work on the
assumption that all the ROI information is available, albeit
occasionally this may not be true. On the other hand, online
algorithms can collect information from the field using the
available sensors [12], [13]. When obstacles come into play,
it is possible to subdivide the ROI using different decompo-
sition techniques to be applied online [26], [27], [28].

The known work on the CPP algorithm has the following
basic 3-stages: road map generation, path planning, and con-
tinuous refinement. For an offline algorithm, the road map
generation and the path planning will produce a complete
solution. In general, an online solution is considered when
there is uncertainty in the knowledge of the environment, i.e.,
the road map creation and the path planning will be uncertain
and will ask for updates in due course. Therefore, the vali-
dation and the optimization of the parameters will radically
differ. Indeed, the parameters of the offline CPP algorithm are
basically the total travel distance, the total number of turns,
the percentage of coverage, and the percentage of the repeated
coverage area (i.e., non-backtracking). In the case of an online
solution, these parameters are enlarged to include, e.g., the
accuracy of the map creation and/or the road map generation,
thus being closer to unknown areas exploration and/or update
of a known dynamic map. In such a case, exploration time
and computation time reduction as well as the collabora-
tive exploration strategies are the main issues to cope with.
Thus, a sensor-based (or learning-based) approach with an
on-purpose cost function definition for coverage (or explo-
ration)is usually considered [29]. Due to such limitations and
complexity increase, online multi-robot CPP algorithms are
usually not the choice for a static environment like the typical
agricultural practical solutions, thus the offline approaches
are the preferred choices.

Besides the mentioned different approaches, single robot
path planning methods have differences also in the envi-
ronment representation details, e.g., map and/or graph-based
approaches to pre-estimate the costs between any two points
in the environment [30], [31] or to detect coverage points
pattern [32], [33], and on the adopted path planning solver,
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e.g., game theory-based approaches to avoid an obstacle or
AI-based approaches for learning [34], [35]and grid-based
approaches for a pattern of coverage points [32], [33]. Some
bio-inspired approaches are also available [36], which how-
ever do not fall in the path planning problem as tackled in
this paper. In the field of agriculture, the most popular and
effective solutions rely on basic coverage planning methods
[37], [38], [39], like zig-zag or trapezoidal patterns [25],
[26], [40], inward, outward, or shift spirals [41], [42], [43],
random walk [43], [44] or wall following [43]. The path syn-
thesis in this context is obtained with classical path synthesis
methods [37], [38], [39], albeit multi-objective optimization
techniques are also applied [45], [46]. However, these solu-
tions are based on the basic trapezoidal [47] or a combination
of the previously discussed basic methods [48]. Despite the
remarkable differences between the mentioned approaches,
i.e., online vs. offline, the different decomposition techniques
adopted, i.e., map, graph, grid, or occupancy cells, and the
optimal solver considered, e.g., AI-based or game theoretic,
all the reported literature solutions for single autonomous
agents rely on a combination of the aforementioned basic
methods, i.e., trapezoidal, zig-zag or similar patterns. Even
though the problem has been investigated frommany perspec-
tives and different types of solutions are readily available, the
multi-robot dimension for offline CPP algorithm is still not
well investigated. In such a case, the problem turns out to be
highly constrained and with stringent requirements ensuing
from the nature of the cultivation. As can be expected, many
multi-robot coverage algorithms come from the evolution of
single-robot approaches [41], [42], [49], with the adoption of
additional techniques to deal with the increased complexity,
such as the boustrophedon decomposition [26] or spanning
trees [31], [39]. Trivially, the CPP complexity increases for
multi-robots since the presence of moving robots is per-
ceived as obstacles, deadlock configurations among robots
are always an issue, and task scheduling to orchestrate each
robot in the team is needed [28]. Nonetheless, there is an
obvious reduction of coverage time due to workload division,
while consistency in the coverage process is increased as well
as a tangible improvement in robustness even in the presence
of few robot failures [27]. This paper is mainly inspired by
the work of [42] to design the proposed multi-robot coverage
path planning algorithm.In that work, the authors reduce the
number of turns while covering the ROI by solving the single
robot CPP with spanning tree coverage, which is based on the
improved ant colony optimization algorithm and depth-first
search algorithm. The ensuing improved ant colony-based
spanning tree covers the ROI with minimum turns. The exten-
sion to the multi-robot CPP is carried out by dividing the
area using the DARP (Divide Areas based on Robots’ Initial
Positions) algorithm and considering each non-overlapping
sub-area to be covered by the single robot. To further reduce
the number of turns, the end nodes are exchanged between
the sub-areas. Besides the evident limits in approaching the
problems with sub-areas (which surely won’t lead to optimal

planning), robustness against robot failures cannot be guar-
anteed. Also, the DARP-based division of areas relies on
the availability of a robot for each sub-area, which is hardly
satisfied in practical applications. The proposed multi-robot
CPP algorithm addresses and solves these issues, still retain-
ing the properties of the CPP algorithm, i.e., the minimum
coverage length and aminimumnumber of turns, thusmaking
it a perfect benchmark to validate our solution. The other
related work in [50], discusses the multi-robot CPP algorithm
with heterogeneous properties of the robots, like different
turning radii, different coverage sizes, etc., when handling
different coverage sizes of robots, then largest of all is the
extra space required to make the turn operation for shifting
row, which may not be available in reality for the agriculture
fields. Here the multi-robot CPP algorithm has evolved from
basic trapezoidal which is better in terms of the number of
turn operations taken when compared to the spanning tree as
earlier. It also loses the property of consistency in coverage
similar to an another work in [51]. In [51], discussed the CPP
algorithm for multi-robot based on spanning tree handle the
task of coverage in the way of single-robot and losses the
consistency in coverage as mentioned earlier.There is a differ-
ent approach in farmland coverage in using the non-interest
part of field for taking turn by an Ariel robots [52] and
similarly another Ariel solution [53] for optimization of agri-
culture management tasks with a cost function by reducing
the number of turns taken. Another similar approach to the
agriculture task management is discussed in [54], whereas-
ingle robot online path planning based on the boustrophedon
coverage path (BCP) planning algorithm for an autonomous
weedmowing robot namedCowbot is presented.This solution
reduces the length coverage by effectively visiting only the
sub-regions in need of mowing. The way the robot departs
from the base path to the sub-region, and then joins back,
is based on two variants of the algorithm, named JUMPand
SNAKE, respectively. Moreover, even thoughmany solutions
are available today, there is a substantial lack of analysis
and proposals for offline coverage with static obstacles at
a regular pattern, which is, instead, the case for the large
majority of agricultural fields, and the focus of this paper.
Therefore, the authors present here a solution for the chal-
lenging problem of offline coverage path planning synthesis
considering multiple robots operating together as a team.
In the algorithm synthesis, we will make explicit use of the
fact that paddy fields are structured without uneven surfaces
and, hence, can be considered 2D fields. In particular, using
an offline CPP algorithm for multi-robot, this paper pro-
poses a 3-stage process dubbed offline road map generation,
discrete planning, and continuous refinement, respectively,
which defines the decentralized path planning solution with
very minimal data transfer between robots. The discrete plan-
ning allows the online adjustment of the size of the team of
robots, whose continuous refinement at the synchronous field
locations is an essential component.The energy utilized by the
team of robots for the coverage task is a further factor that is
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optimized in the offline CPP algorithm. The energy consump-
tion is mainly due to the robot’s motions, hence including
the total distance traveled and the total turns taken during the
coverage task. Without loss of descriptive potentialities, the
least turn-taking method is selected, with simple motion as a
base method to develop the multi-robot algorithm, therefore
optimizing the total distance, which is, in turn, a function of
the energy utilized for the task of coverage. By remapping the
energy consumption onto the total traveled distance and the
total number of turns, the comparisons with existing methods
are readily available.

The proposed solution for coverage path planning can be
applied to any size of the field, any shape, and any number of
fields satisfying the assumptions. When this is not possible,
the extension to arbitrary field shape is developed using
decompositions in sub-areas, which in turn has to satisfy
the assumptions, as will be explained later in the paper.
It has to be noted that the main distinctive features of the
proposed distributed solution with respect to the state of
the art are a) the simplicity of the path synthesis derived
from the trapezoidal approach, b) the possibility to change
dynamically and in a smooth way the number of agents
in the team, c) the generation of paths that are equivalent
for all the agents in the team with respect to the power
consumption.

Finally, the authors would like to point out that the applica-
tion of the proposed solution in actual agricultural scenarios
is immediate, mainly due to the abstraction proposed in the
paper. Actual experimental results will be mainly affected by
the need for accurate and robust localization, mainly fusing
data from different sources, e.g., odometer and GPS, to esti-
mate the positions of the robots in the team as well as by
the effectiveness of the motion controller applied. However,
numerous research works for the localization of a single
robot and its extension to multi-robots have been provided in
recent years [55], using centralized or distributed approaches
[56], as well as decentralized approaches [57], [58], [59].
For multi-robot localization, landmarks attached to mobile
platforms are usually adopted for performance improvement
and robustness. In [60], a data fusion algorithm based on
received signal strength (RSS) and two-way time-of-flight
(ToF) measurements are used to increase the range-based
localization in an indoor environment. In [61], localization
and tracking of moving targets based on the fusion of vari-
ous sensor data is also considered. In [62], approaches with
quick response (QR) code landmark recognition have been
proposed. Since this paper does not deal with the estimation
problem neither of the robot locations nor with the defini-
tion of a novel motion controller but, rather, with the path
planning, the authors do believe that experimental evidence
is not strictly needed, being outside of the scope of this
paper.

III. MATERIALS AND METHODS
Considering the weed growth explicitly, the SRI field has the
following requirements:

1. Requirement 1: Weed control has to be performed
every 20 days, ideally three times for one cultivation;

2. Requirement 2: Each weeding has to be performed on
all four sides of the plants.

When autonomous robots are considered, the second
requirement imposes two laps of weeding, where each lap
covers two sides of the plant and has to start at two per-
pendicular sides of the field, hence combining all four sides.
Moreover, the robot should avoid damaging paddy plants,
so treat them as static obstacles; instead, all the other robots
in the team are treated as dynamic obstacles.

To tackle this challenging problem and to derive the cov-
erage algorithm, these assumptions should be made explicit:

1. Assumption 1: The field is well structured, without
unknown static or dynamic obstacles (apart from the
mentioned plants and for the other vehicles);

2. Assumption 2: Plants are rooted in columns and rows
with fixed distance (typically, the distance between the
plants and/or rows for weed fields is df = 30 cm);

3. Assumption 3: The performer of the weeding robot
will do weeding for the coverage length;

4. Assumption 4: Robot coverage size is less than the
spacing between rows.

Notice that Assumption 3 states that the main focus is robot
path planning and navigation, while the weeding process per
se is assumed to be implemented automatically by the robot
along the trajectory. Finally, noticed that the width of the
coverage for each robot is adjusted to compensate for plant
growth.

To introduce the proposed algorithm, the authors adopt a
constructive approach, proposing in detail the pros and cons
of the existing solutions and their extension to the multi-robot
CPP algorithm. In the proposed analysis, the authors will
consider the SRI paddy field as the ROI. The four key basic
algorithms used for single robot approaches, which will be
described in detail in what follows, are reported in Fig. 1. The
single robot coverage using the basic trapezoidal method is
reported in Fig. 1(a): this simple method covers the region
using back and forth motions. It can be applied to any
even-sided or rectangular field with or without field decom-
position [25], [26], [40]. Fig. 1(b) shows the inward-spiral
method that covers the field using spiral paths: the robot
starts close to the outer boundary and moves towards the
inner part of the fields [43], [63], [64]. Similarly, Fig. 1(c)
shows the outward spiral, which is the same as the previous,
one but with an opposite motion direction [63], [64], [65].
Probably, the most desirable feature of the spiral approach
is that it can be used with simple wall-following like robot
motion controllers. Instead, the main drawback is that the
robot obviously needs extra motion to reach or to leave the
inner part of the ROI, which leads to extra costs and, thus,
should be avoided [66]. The direction of rotation is main-
tained as either clock-wise or counter clock-wise as shown
in Fig. 1(b) and Fig. 1(c): combining both directions and
switching the direction at the boundaries from one another,
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FIGURE 1. Basic methods used for single robot CPP (a) using single robot trapezoidal coverage, (b) using inward-spiral coverage, (c) using
outward-spiral coverage, and (d) using switched-spiral coverage.

yields another variant, dubbed switched spiral [41], [42] and
depicted in Fig. 1(d).In this case, the CPP algorithm starts
and ends at a point near to boundaries of the ROI, similar
to the trapezoidal method. This feature makes the switched
spiral be considered along with the trapezoidal method as an
option for developing a multi-robot CPP algorithm since it
avoids the extra robot motion to or from the center of the
spiral.

To compare the trapezoidal and the switched-spiral meth-
ods, the authors use an example field of 6 rows and six
columns (Fig 2). To satisfy Requirement 2, the authors
split the coverage into two laps: each lap takes, for the
switched-spiral of Fig. 2(b) an overall traveling distance of
48df (See the definition of df from Assumption 2) with
17 turns, instead of 48df with 12 turns for the trapezoidal
method of Fig. 2(a). Overall, the number of turns is 34 for the
switched-spiral and 24 for the trapezoidal. This is extremely
relevant since an increased number of turns has a major
impact on the cost of the coverage [27], especially in the
slurry paddy field. Another advantage of the trapezoidal
method is that it is suitable for rectangular or even-sided

fields, while the switched spiral, in its classic application,
is just suitable for square fields unless the total ROI is
split into squared sub-areas.In such a case higher complexity
and computation costs are obtained as well as an efficiency
decrease induced by the extra maneuvers used for the robot
motion between the subareas [42].
From the previous discussion, the trapezoidal method

proves simpler and cheaper compared to the switched spiral,
and hence, it is a good starting point for an extension to multi-
robot operations. To satisfy Requirement 2, the coverage
should be executed in two laps with the same CPP algorithm,
notice that the two laps are consecutive and independent of
each other, as aforementioned. Therefore, the effective exten-
sion to themulti-robot case can be carried out just considering
a single lap, being the second straightforward and identical
(as reported in Fig. 2).
The first issue to be tackled when a multi-robot extension

is considered is related to the position of the robots in the
team during the execution of the operation. Considering the
selected trapezoidal approach, maintaining the position of
the robot in the team for both the forward path and return
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FIGURE 2. CPP for two laps with (a) trapezoidal coverage and (b) switched-spiral coverage.

path from the starting side gives one variant of the algorithm,
which is shown in Fig. 3(a) and dubbed multi-robot trape-
zoidal (MRT) method. Instead, if the robots are allowed
to change their positions(i.e., the first robot becomes the
last if the order is set from left to right, as depicted
in Fig. 3(b)), this gives another variant of the algorithm
named position changing multi-robot trapezoidal (PCMRT)
method.

Both the presented variants have a common disadvantage:
the outer upper and lower rows are uselessly covered multiple
times by multiple (possibly all) robots. Moreover, the path
is not robust against slight variations in the desired velocity
of any vehicle, i.e., the robots should be synchronized in
the execution of the paths to avoid collisions by design.
To account for these issues, we propose non-overlapping path
planning for multi-robots based on trapezoidal(NOMRT).
The proposed algorithm covers two sides of each plant for
each lap, as shown in Fig. 4(a), and avoids possible collisions
among the robots along all the paths, thus ensuring robustness
by design (i.e., the paths do not overlap nor intersect).In
this respect, NOMRT can be seen as an improved version of
the PCMRT since the common distance covered by multiple
robots to shift their positions among the different columns
is removed. Another quite interesting property is that the
distance traveled by each robot in the team is the same among
any two (yellow lines) consecutive synchronization points
of Fig. 4(a), thus enforcing a nominal equal depletion of
the battery power for each robot. It has to be noted that
the NOMRT has a periodic execution; that is, the portions
of the overall path repeat with equal shapes, thus simplifying
the coding and the execution of the path and enforcing its
online execution.

Another important feature that makes the NOMRTalgo-
rithm effective in the multi-robot scenario is that the number
of robots in the team can be adjusted online as well as the
team configuration along with the execution of the coverage
by allowing the dynamic addition and deletion of units from
the team, as shown in Fig. 4(b).

Indeed, the assumption that all the robots are available
during the coverage process (hypothesized in Fig. 4(a)) is
unrealistic due to maintenance operations, battery depletion,
possible robot failures, or dynamic allocation of new robots.
Also, when the field coverage is near completion, the number
of robots required to complete the remaining work may be
reduced to improve efficiency (more on this in Section IV).

Even though the NOMRT algorithm plans an optimized
path, there is a need to limit the amount of off-task move-
ments of the robots(i.e., movements that are not part of the
coverage work, such as the field entry and exit operations,
which may be more efficient given the location of the next
field to cover).In general, all these cases influence the optimal
team size in all possible directions during the executions
of the algorithm. Therefore, the management of the team
composition is enforced at every key point (i.e., the syn-
chronization points of all robots, which are the end of each
column in Fig. 4(a) and denoted with diagonal yellow lines)
in the periodic structure of the algorithm. In such locations,
the team may arbitrarily change size and configuration, still,
the NOMRTmaintains a periodic path structure. To show this
fact, the authors use an example: consider the exemplifying
scenario of Fig. 4(b): three robots (R1, R2, and R3) start
from the lower left corner of the field. After a while, robot
R2 leaves the field due to battery shortage; hence robot R3
switches to R2. Now, if no other robot is available, R1 and
the new R2 may carry out the coverage; otherwise, if a new
robot R3 is available, it may join the team, thus reforming
a three-robot team to complete the field coverage. Notice
that, in this way, the coverage is always guaranteed, while
the number of robots in the team influences the time to
accomplish the mission: as described next, the more robots,
the less coverage time.

A. ALGORITHM DESCRIPTION
The proposed NOMRT algorithm can be divided into a
sequence of different parts, namely ‘‘Start’’, ‘‘Direction-
1’’, ‘‘Direction-2’’, ‘‘Direction-3’’, . . . ., ‘‘Direction-m’’
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FIGURE 3. Two variants of multi-robot based on trapezoidal:(a) multi-robot trapezoidal (MRT) and (b) position changing multi-robot trapezoidal
(PCMRT).

FIGURE 4. Non-Overlapping-multi-robot-trapezoidal (NOMRT) in (a) a basic scenario and (b) during a team reshaping.

FIGURE 5. Different parts of the NOMRT algorithm.
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and ‘‘End’’. In the example of Fig. 4, the four parts
from ‘‘Direction-1’’ to ‘‘Direction-4’’ are repeated cycli-
cally, while the remaining two, ‘‘Start’’ and ‘‘End’’, are
non-repeating and manage the beginning and ending phases
of the coverage path. Notice that in Fig. 5thepath is repre-
sentedwith a graph, whose locations are numbered for clarity:
the edges between nodes represent the path the robots will
cover between the node locations. Therefore, the plant can
be considered to be placed in the center of the square, whose
vertices are four neighboring nodes. As a consequence, each
edge in the graph equals the distance between two plants in
a column or between columns (i.e., the d f Distance defined
in Assumption 2). The traveled distance is hence measured in
terms of an integer multiple of d f , which differs for each rice
variety considered.

Let the number of the field rows be r, the number of
the field columns be c, the number of available robots in
the team be n, and the position of the robot in the team
as p ∈ {1, . . . , n}. Fig. 5 reports a case with r = 5, c = 12,
and n = 3, and it will be considered as the reference for the
following description. In the ‘‘Start’’ part of the algorithm,
each robot reaches the first synchronization section (bottom
leftmost diagonal line in Fig. 5), where the cycle part begins
and the ‘‘Start’’ phase terminates consequently. Similarly, the
‘‘End’’ part of the algorithm is required for any leaving robot
to complete its current column from the last synchronization
section (bottom rightmost diagonal line in Fig. 5).
The overall distance for the p-th robot of the team for the

‘‘Start’’ ds,p and ‘‘End’’ de,p parts, respectively, is given by

ds,p = de,p = df (n− p) . (1)

As a consequence, the first robot (R1 in Fig. 5), which has
p = 1, travels the longest path, while the last robot (Rn =R3
in Fig. 5) travels the shortest. After the ‘‘Start’’ part, the robots
enter the cycle path, comprising ‘‘Direction-m’’, with m odd,
which is the same for each robot in the team and equal to

dm,p = dm = df (r − n) , (2)

and ‘‘Direction-l’’, with l even, which is different for each
robot and split into two contributions: l = 4k−2 and l = 4k ,
with k = 1, 2, . . . an integer number, i.e.

d4k−2,p = df [2 (n− p) + 1] and (3a)

d4k,p = df [2 (p− 1) + 1] . (3b)

It has to be noted that, using Eq.(3a & 3b), for any given
k, d4k−2,p + d4k,p= 2ndf, hence the length of the path given
by ‘‘Direction-l’’ and ‘‘Direction-l + 2’’, for any given even l,
is the same for any given robot. Therefore, using Eq.(1, 2, &
3), for a field as depicted in Fig. 5, the difference in the path
length among the robots is only given by the ‘‘Start’’ ds,p and
‘‘End’’ de,p parts.
It is worthwhile to note that, if the robots are allowed to

exit from another side of the path (the right side of Fig. 5),
all the robots would travel the same distance. For example,
in Fig. 5, if R1 exits in position 58 instead of56, R2 in position

57 instead of 51, and R3 in position 56 instead of 46 (i.e.,
moving through different columns in the ‘‘End’’ part of the
algorithm), the path lengths for all the robots are the same.
Of course, this design choice is left to the field manager, and
in the following, we will refer to Eq. (1) only.

Another major difference happens when c is not an integer
multiple of the number of robots n: in such a case, some
robots exit the field from the right or the top. For example,
by removing the last column in Fig. 5, robot R1 would leave
the field from position 55. It is also noticed that necessarily
n ≤ c to apply the described algorithm since a larger number
of robots would not be useful. Instead, if n > r , the depicted
algorithm is applied only to r − 1 robots in the team, while
n− r + 1 will cover one column. Moreover, when n = r , the
robots execute the ‘‘Start’’ and ‘‘End’’ maneuvers, while the
other parts boil down to straight paths along the field rows.

Furthermore, given a certain number n of robots, the num-
ber of columns that can be covered from ‘‘Direction-1’’ to
‘‘Direction-3’’ is 2n. Therefore, after the cycle ‘‘Direction-
1’’ to ‘‘Direction-3’’, if c − 2n ≥ 2n, the same group of n
robots continues, otherwise, a number of n′ robots such that
c − 2n ≥ 2n′ continues in the coverage, while n − n′ robots
leave the team. Considering the rows, as previously stated,
it is necessary that n ≤ r − 1 for maximum efficiency of
the algorithm since the algorithm performs better when the
number of agents increases (as will be clear in Section IV).
Following this simple evidence involving c, r , and n, the team
can adjust its dimension offline or online in a distributed way.
Moreover, notice that any robot in the team may leave the
group, thus enforcing the maximum flexibility and, hence,
opening to battery power savings and/or maintenance opera-
tion optimization approaches. Finally, this algorithm can also
be applied to the non-rectangular field by dividing the field
into possible rectangular smaller fields using decomposition
techniques [26].

B. PSEUDO-CODE OF PRIMARY STEPS
Fig.6 shows the pseudo-code describing the complete flow
of the algorithm, which is divided into modules executed
in sequence. The main feature of the algorithm is probably
the fact that each robot broadcasts its status to all the team
members throughmessage exchange to provide decentralized
knowledge and enable flexibility and scalability [67], [68].
The message broadcast contains the position of the robot,
its battery status, and the current synchronization point the
robot has reached. With this simple message exchange, each
robot has a complete picture of the recent execution of the
algorithm. Notice that the information exchange is extremely
simple since the NOMRT is intrinsically safe, which in turn
makes the algorithm extremely robust to communication
failures. We left to future investigations the possibility of
applying more sophisticated approaches based, e.g., on con-
sensus or distributed control.

The three presented extensions to multi-robot systems, i.e.,
the MRT, the PCMRT, and the proposed NOMRT, stemming
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FIGURE 6. Pseudo-code of the NOMRT algorithm.

from the trapezoidal method, are here tested. Since the num-
ber of turns taken by all three mentioned variants is the same,
the overall distance can be used as the figure of merit for
comparison. All three multi-robot variants, along with the
basic trapezoidal algorithm for a single robot adopted as a
baseline, are simulated using the graph support of MATLAB
depicted in Fig. 7, describing a field size of r = 8 rows and
c = 12 columns.

Start by analyzing in Fig. 7(a) the CPP for a single robot
using the simple trapezoidal approach, starting its path at
node 1, moving to node 8, then 16 and so hence and so forth.

Fig. 7(b) shows the CPP instead using three robots with the
MRT algorithm, considering that robots R1, R2, and R3 are
starting their path at node 1, node 9, and node 17, respectively:
all three robot paths are shown in different colors and different
line-styles. Robot R1 starts at node 1, moves to node 8, then
shifts the column from node 8 to 32 through nodes 16 and 24,
then moves towards node 25 to cover that column, shifts the
column again, and repeats the same pattern.

Robots R2 and R3 follow a similar column-based pattern,
maintaining the same formation. It has to be noted that the
end of each column corresponds to the synchronization lines
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TABLE 1. Comparison of the distance taken by three variants of multi-robot trapezoidal.

FIGURE 7. Simulation results of the CPP using (a) single robot-trapezoidal, (b) MRT, (c) PCMRT and (d) NOMRT.

for the team and that some portions of the paths, i.e., when
the robots switch the columns, are uselessly in common,
as mentioned. Fig. 7(c) depicts the CPP using the PCMRT
algorithm for the same team of three robots, considering
that the robots R1, R2, and R3 are starting their path at
node 1, node 9, and node 17 and all the robots cover their
respective columns, as in theMRT case. However, the column
shifts happen differently: the innermost robot R3 (near the
uncovered area) at node 24moves just to the very next column
available, which is node 32. Similarly, robot R2 moves from
node 16 to node 40, which is next to the R3 position (at
32), while R1 moves from node 8 to the furthest uncovered

column at node 48. Notice that some portions of the path are
uselessly in common and that after two shifts, the distance
covered by all the robots is the same, thusmaking the PCMRT
very much like the MRT in terms of turns and distance
traveled.

Finally, Fig. 7(d) shows the CPP using the NOMRT
algorithm. The starting locations for the three robots are the
same as the previous two cases, i.e., node 1, node 9, and node
17, respectively. However, in this case, only robot R1 covers
the entire available column, while the other adapts the column
cover based on their position in the team, as described in the
previous section. The column shift happens as in the PCMRT;
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FIGURE 8. Comparison of three variants of the trapezoidal method, with different team sizes.

nonetheless, these maneuvers take place at different rows,
thus removing the portions of the path in common.

IV. RESULT AND DISCUSSION
For a quantitative evaluation, reported in Table 1, the overall
traveled distance as a multiple of df by a team of robots with
n ∈ {1, 2, 3, 4, 5, 6, 10, 15} acting in a field with r = 20 rows
and c = 60 columns and using the MRT, the PCMRT, and
NOMRT as planning algorithms.

It is evident how the NOMRT algorithm outperforms the
other two solutions when the number of robots in the team
increases. Moreover, it may be noticed that a steady improve-
ment of the performance as a function of n, which is exactly
the opposite of the other two algorithms, which perform
the same in the selected example. This detrimental effect is
mainly due to the presence of the uselessly covered paths
for column switching. It is also noticed that from the study
(ref Table 1.) when n = 15, MRT and PCMRT have an
average traveled distance for each robot that is 121df , while
the NOMRT has 79df path length per robot, which means,
consumes only (Also, in terms of battery power) 65% dis-
tance per robot that of the other two algorithms. In synthesis,
the NOMRT is the only solution that can fully exploit an
increasing number of robots in the team.

To further substantiate the comparison, the dashed red line
in Fig. 8 reports the distance taken by a single robot with the
baseline trapezoidal method. The NOMRT graph line is very
near to the benchmark line and does not reduce efficiency
in terms of distance in dividing the task by using multiple
robots. The percentage of profit calculated on the entire team
of robots is instead reported in the right-hand scale for the
NOMRT compared to the other two solutions as a function

of the number n of the robots in the team. It is worthwhile to
note that the optimality of the NOMRT algorithm is ensured
by the trapezoidal path, on which it is built upon. Indeed,
assuming that the trapezoidal path for a single robot covers
all the plant sides without path overlaps and that each path
segment is always on the side of at least one plant, it reaches
the minimum length, thus it is optimal. Since the NOMRT
inherits the same properties, it is optimal in the same sense.

To further analyze the NOMRT proposed solution, con-
sider different scenarios. In particular, the objective of this
additional analysis is to show the capability of NOMRT to
change online, its team robot numbers while covering the
field. As in the previous example, the locations the robots will
move through are depicted with nodes, while each robot has
a different color and a different line type for the path taken.
Case I. (Team Size Reduction): In the example of Fig. 9(a),

we consider a field with r = 8, c = 10, and n = 3 with the
constraints that the robot must enter and exit the field from
the same field side. Hence, after the robots have completed
the sequence of ‘‘Start’’, ‘‘Direction-1’’, ‘‘Direction-2’’ and
‘‘Direction-3’’, the remaining columns in the field are just 4,
so this would imply that at least two robots would exit to
a different field side. If that is not allowed, as in the case
here considered, the robots adapt the team size to allow all
of them the exit from the field top part. As such, robots R2
and R3 just leave the field, while R1 continues the cover, thus
verifying the constraint (Fig. 9(a)). It is also worthwhile to
note that an alternative solution would have been just to drop
R3 and let R1 and R2 complete the coverage, still verifying
the constraint.
Case II (Maximum and Minimum Size of the Team): In the

example of Fig. 9(b), we consider a field with r = 6 and
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FIGURE 9. Simulation results of different scenarios, with a variable number of robots joining and leaving the team on the fly.

c = 10, and discuss the maximum and the minimum number
of robots to maintain the team on the field from the beginning
to the end of the coverage. As discussed previously, the
number of columns covered by a teamwith n robots in a single
NOMRT cycle is 2n. As stated previously, n < r to have
robots working efficiently in the field. Hence, to preserve the
properties of the NOMRT, the maximum number of robots in
the team should be

n = min
( c
2
, r − 1

)
(4)

Hence, for the case considered, using Eq.(4), the maximum
number of agents is n = 5, as depicted in Fig. 9(b).
Case III (Joining and Leaving the Group): In the example

of Fig. 9(c) and Fig. 9(d), we consider a field with r = 8,
c = 10, and a variable number n of robots. In particular, in the
example of Fig. 9(c), the coverage starts with n = 2 robots,
while a third robot joint at node 49. Instead, in the example
of Fig. 9(d), the coverage starts with n = 3 robots and then
shrinks to n = 2 when robot R2 leaves at node 33. Notice
that in both cases, all the robots respect the side constraint,
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FIGURE 10. Decomposition of the complex field to simple sub-region.

i.e., they enter and exit the field from the same field
side.

The examples of Fig. 9(e) and Fig. 9(f) consider the adap-
tation of the number of robots dictated by the number of rows
and columns of the field, minimizing the overall robot paths.
Such adaptation to the number of robots can be executed
online or instantiated at the beginning of the planning phase.

When the real field does not satisfy the assumptions
reported in Section III, it can still be subdivided into sub-
regions. For instance, in Fig.10, both diagrams (a) and (b)
are representations of a sample of a complex map/field, with
plants represented in green dots under the SRI method. The
division of the field is to insert the larger sub-regions that
satisfy the rectangular assumption and remove the odd part of
the field not satisfying it: This is an idea that has been applied
several times in the literature, e.g., quad-tree decomposition
to map a generic region in space [69], [70]. With reference
to Fig. 10(a), Region-A follows the assumption and can be
covered using a multi-robot approach following the proposed
CPP algorithm. The odd regions are Region B and Region C.

Single-robot approaches can be used to cover Region B,
with the robot entering, e.g., through Point B and exiting
through Point BB after covering it. The team of robots cov-
ering Region A with the proposed CPP, may start covering
Region A from Point A and, due to its capability of changing
the team on the fly, can share one robot at Point B to cover
Region B from its current team size. Similarly, the robot
can join back to the team covering Region A at Point BB
after the coverage of Region B. The Region C of Fig. 10(a),
since it satisfies the assumptions, can be covered using the
proposed CPP, with its entry and exit points as Point C and
Point CC, respectively. The feature of entering into or exiting
from the team at all possible sides of the field aids in the

reduction of off-task movements of the robot, which is one
remarkable feature to be noted in the proposed CPP algorithm
that concurs with the optimality for the path as defined in this
paper. In the case of Fig. 10(b), all the 3 created sub-regions,
are following the assumptions and can be approached using
the proposed CPP algorithm. The covering order of all the
sub-regions is Region A, then B, and finally C. Notice that the
spare plants out of all the regions, can be covered by single
robots using straightforward existing solutions. The authors
would like to point out that, again, this is possible in all cases
using part of the robots of the team at any time, which is a
remarkable feature of the proposed multi-robot CPP solution.

As a consequence of the previous discussion, the men-
tioned decomposition method is used to create the ROI as
per the assumptions, even when complex shape fields like
the ones inFig.10 are considered. The authors would like to
point out that the odd regions of Fig. 10(a) can be in principle
further decomposed into rectangular areas: in the limit, there
can exist a rectangular area covering just a single plant.

However, since the rectangular shape is a prerequisite of
the multi-robot proposed CPP, which enables the dynamic
features of the algorithm, it is actually pointless to verify
such conditions for fields with a very reduced number of
rows and columns, since a multi-robot approach would be an
overkill.

Hence, as for the cases of Fig.10, a desired minimum
number of plants in the field can be set as desired and it’s
a design parameter for the CPP algorithm

It is worth mentioning the work in [71] on task plan-
ning framework which can effectively coordinate multiple
robots. It is handled in a few layers, starting with extracting
a task sequence satisfying the collaborative task specifica-
tion, decomposing it, and allocating it to robots. Each robot
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FIGURE 11. The NOMRT algorithm on the field with 8 rows and 15 columns.

synthesizes its execution strategies to minimize the wait time
for collaboration.

It is worth proving the equal depletion of batteries for all
the robots. Considering Fig.5, the end of the ‘‘Start’’ part and
the start of the cycle part is denoted by a line connecting
nodes 3, 7, and 11. This synchronization line and the next
are denoted by diagonal lines, the second connecting the
nodes 33, 37, and 41. Between these two synchronous points,
the robots R1, R2, and R3 cover the distances of 10 edges
(equivalent to 10 df ). The same can be proved using the
simulation output Fig.7d, where the distance between the two
synchronization lines is 16 df . To understand the time taken
to complete the coverage of a field, we have considered a
field of 8 rows and 15 columns, reported in Fig. 11. The
distance traveled by all the robots between the two denoted
synchronization lines (blue segments in Fig. 11) is 37 df .
Including the ‘‘Start’’ and the ‘‘End’’ parts, all robots take
an overall of 39 df . The ‘‘Start’’ process takes time equal to 2
df , which is equal to the ‘‘End’’ part, and both represent just
a small fraction of the entire covered path.

V. CONCLUSION
An optimized coverage path planning algorithm to cover a
field using a multi-robot team is proposed. The multi-robot
coverage algorithm proposed is a natural evolution of the
basic single-robot coverage algorithm based on the trape-
zoidal method or zig-zag movements. Three possible exten-
sions to multi-robot are proposed, i.e., MRT, PCMRT, and
NOMRT, which are all based on themost efficient trapezoidal
approach. The cost of the coverage is compared using the total
distance taken by the robots for all three solutions. In this
manuscript, the authors disclosed how the trapezoidal method

can be extended to CPP for multi-robot, still preserving its
simplicity and effectiveness, and leading to the NOMRT
solution.

In addition to being the most effective among the investi-
gated solutions,

◦ The NOMRT provided consistent coverage of ROI
despite the difference in robot team size, a distinctive
feature stemming from its capability of online adjust-
ment to changing operational scenarios.

◦ The change in team size can happen on any side of the
field, thus reducing the amount of off-task movements
of the robots.

◦ Another relevant feature of NOMRT is the generation
of equal-length path sections, which ensures an even
depletion of robot batteries.

The authors analyzed different operating and time-varying
scenarios, which are typical for agricultural applications, and
showed that the simplicity of the path design is yet effective
and robust against robot failures or robot team size changes:
The authors do believe that this is a clear advancement with
respect to the state of the art.

◦ Furthermore, due to the limited amount of information
to be exchanged among the robots in the team, the
algorithm can be easily extended to a distributed solu-
tion, which will be part of future implementation.

At the moment of the paper writing, the algorithm has
not yet been implemented on an actual platform, therefore
future developments will focus on the implementation of
the algorithm on actual hardware in an actual field. Another
drawback is imposed by the requirement and the assump-
tions reported in Section III. Indeed, different requirements
may impose constraints limiting the exposed performance.
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Moreover, the assumptions on the regularity of the field, the
necessity to execute the weeding along the path, and the
constraints on the robot dimensions may not be satisfied,
thus imposing additional research to adapt the algorithm to
different fields and robots (with possibly different dynamics)
as well as to deal with adaptive solutions when the field
characteristics change online due to unforeseen conditions
(e.g., some of the routes are temporarily blocked by some of
the robots or natural obstructions).
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