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ABSTRACT Radar specific emitter identification (SEI) distinguishes different radar emitters, which is the
research hotspot in the fields of electronic countermeasures and intelligence reconnaissance. To enhance
the identification accuracy of the real radar SEI system with limited training data, we propose the
multi-kernel extreme learning machine-based discriminant auto-encoder (MK-ELM-DAE) method by
combining representation learning andmulti-kernel fusion in this paper. Firstly, ELM-DAE is applied to each
primary feature of radar signals to extract the more discriminative low-dimensional feature representations.
With the features extracted by ELM-DAE, the linear discriminant ratio-based two stage multiple kernel ELM
algorithm is then employed to conduct the multi-feature fusion. The most important module of MK-ELM-
DAE is ELM-DAE, which is an effective supervised dimensionality reduction method for representation
learning. ELM-DAE incorporates the label information into ELM auto-encoder by introducing a supersized
regularization term, so it is more suitable for classification tasks. Specifically, we use the ambiguity function
(AF) to extract primary features, and subsequently design an AF-based MK-ELM-DAE method for radar
SEI. Experiments show that our method has significant advantages in accuracy and testing efficiency.

INDEX TERMS Discriminant auto-encoder, extreme learning machine, multi-kernel fusion, radar specific
emitter identification.

I. INTRODUCTION
Radar specific emitter identification (SEI) began in the
mid-1960s [1]. SEI aims at distinguishing different radar
or communication emitter individuals, which may even be
identical emitters from the same production line [1], [2].
Therefore, SEI is a more challenging task in comparison to
signal modulation recognition [3], waveform recognition [4],
and type identification [5]. As a branch of SEI, radar SEI
can uniquely identify different radar emitters, which plays
a significant role in electronic countermeasures, intelligence
reconnaissance, and some civilian applications.

A typical radar SEI system consists of two key modules
namely feature extraction and classifier design. Intrinsically,
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what makes the radar SEI task feasible is the unintentional
modulation on pulse (UMOP) caused by the manufacturing
differences of the radar transmitters [2]. Hence, to capture
the UMOP information, various UMOP features have been
extracted in the time domain or transform domains of radar
signals. It is generally believed that the UMOP features
carry all the information about the individual differences.
In the time domain, the extracted UMOP features are
instantaneous frequency curve [2], [6], [7], the instantaneous
phase curve [7], [8], [9], and the instantaneous amplitude
curve [2], [9]. In the frequency domain, the features include
the Fourier spectrum [8], the Fourier spectrum asymmetry
characteristic [9], and bispectrum [10], [11], [12]. In the joint
time-frequency domain, the commonly used features include
the features based on variational mode decomposition [2],
ambiguity function (AF) [12], [13], and other time-frequency
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transforms. With these UMOP features, hundreds of classi-
fiers [14] can be employed to accomplish the identification
task.

To further improve the accuracy of radar SEI, researchers
have employed various artificial intelligence (AI) tech-
niques [15] to enhance the discriminability of the UMOP
features and/or performmulti-feature fusion. As an important
branch of AI, deep learning (DL) methods have demon-
strated their powerful ability in extracting high-level feature
representations in recent years [16], [17]. Therefore, some
researchers have made efforts to learn more discriminative
deep features of radar signals by putting the primary UMOP
features into the DL models [9], [10], [11], [12]. In [9], a
1D convolutional neural network (1D-CNN) was designed
to extract deep features from the UMOP features, such as
the amplitude curve, phase curve, and spectrum asymmetry
feature. In [10], the bispectrum-radon transform was fol-
lowed by a hybrid deep model, which combines denoising
auto-encoders (DAE) and deep belief networks (DBN).
Chen et al. [11] proposed an adversarial shared-private CNN
(ASP-CNN) to extract the shared features and private features
from the bispectrum. In [12], the primary features are the
integral bispectrum and the slice of AF (AF slice for short),
which were input into the deep residual network (ResNet).
Moreover, multi-feature fusion offers another effective way
of improving accuracy. Liu [9] proposed a deep ensemble
learning method to fuse three kinds of UMOP features.
Based on multiple kernel learning (MKL) [18], [19], [20]
and extreme learning machine (ELM) [21], [22], an efficient
two-stage multiple kernel ELM (TSMKELM) algorithm was
developed to fuse AF slices of radar signals [13]. In the
framework of MKL-based multi-feature fusion, multiple
kernels are first constructed upon different feature represen-
tations, and then they are linearly or nonlinearly combined by
MKL.

Indeed, deep features usually can better capture individual
differences. However, most DL algorithms require heavy
computation and large training samples (e.g., [9], [10], [11],
[12]). For a real-time radar SEI system, lightweight learning
methods are preferred. Furthermore, in non-cooperative
scenarios, the number of available signals is often limited.
Thus, traditional non-deep feature learning methods are still
worth studying. The aforementioned ELM naturally draws
our attention. ELM is a fast learning mechanism for single-
hidden-layer feedforward networks (SLFNs) [21]. We can
further derive the nonlinear kernel ELM (KELM) via kernel
trick. ELM and KELM have various applications for their
good performance and simple analytical calculationway [22].
Inspired by DL, ELM has been extended to multilayer
models. Kasun et al. [23] proposed an ELM auto-encoder
(ELM-AE) with the output equal to the input, which uses
the same solving method as ELM. By stacking ELM-AE,
multilayer ELM (ML-ELM) can be easily created [23].
ML-ELM does not require fine-tuning, so it is time-efficient.
Tang et al. [24] proposed a hierarchical ELM algorithm
by stacking ELM sparse auto-encoder (ELM-SAE). The

unsupervised ELM-AE, ELM-SAE, and their multilayer
versions are not optimal for classification problems. Thus,
Du et al. [25] proposed a supervised ELM-AE (SELM-AE),
which not only minimizes the reconstruction error and the
intraclass distance but also maximizes the interclass distance
in the destination feature space. ELM-AE and its variants
mentioned above can be considered as the feature extractors
or the dimensionality reduction (DR) tools for representation
learning. Compared to DL networks, the ELM-AE-based
feature learning models have a significant advantage in terms
of faster training speed [26], so they are more suitable for the
radar SEI task.

Inspired by the work of [13] and [25], this paper proposes
a novel radar SEI approach called multi-kernel ELM-
based discriminant auto-encoder (MK-ELM-DAE), which
simultaneously considers representation learning and feature
fusion to improve the performance of radar SEI. In the rep-
resentation learning stage, different UMOP features are input
into our proposed ELM-DAE algorithm, which is an effective
and efficient supervised feature extraction algorithm. In the
feature fusion stage, an improved TSMKELM [13] algorithm
is designed to fuse the features extracted by ELM-DAE.
Therefore, the proposed MK-ELM-DAE method aims not
only to enhance the discriminability of UMOP features but
also to perform multi-feature fusion. The experiments on two
real radar datasets demonstrate that our method outperforms
the compared methods in terms of identification accuracy and
test time. In particular, our method remains effective even
when the number of training samples is extremely limited.

The novelty and contributions of this paper are:

1) We introduce a non-deep feature learning algorithm
called ELM-DAE, which is built by adding a supervised
regularizer into ELM-AE. ELM-DAE is simple but
effective. It can extract more discriminative features
than ELM-AE. Compared to the currently popular deep
representation learning methods, ELM-DAE is much
easier to solve, making it significantly more efficient.
Additionally, ELM-DAE is suitable for scenarios where
the number of training samples is limited.

2) To conduct multi-feature fusion, we propose a mod-
ified TSMKELM algorithm that calculates the kernel
combination weights using the linear discriminant ratio
(LDR) criterion instead of the kernel discriminant ratio
(KDR) criterion [13]. The computation of LDR is
faster than that of KDR. Moreover, the calculation of
kernel combination weights and the subsequent KELM
classifier are independent, leading to a fast two-stage
MKLmethod. Therefore, both the feature learning stage
and feature fusion stage of our method are highly
efficient.

3) We specifically consider the AF slices as different
UMOP features that need to be fused, similar to [13].
To select the most useful AF slices in the AF plane of
radar signals, we initially calculate the LDR for each AF
slice and subsequently discard the less valuable slices
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with low LDRs. Therefore, all useful information in the
AF plane is utilized to achieve improved accuracy.

The remainder of this paper is organized as follows.
Section II provides a brief review of related work, including
ELM, ELM-AE, and MKL. Section III describes the details
of our proposed ELM-DAE and MK-ELM-DAE algorithms.
In Section IV, we present the experimental setup, results, and
analysis. Finally, Section V concludes the paper.

II. RELATED WORK
In this section, we will provide a brief overview of ELM,
ELM-AE, and MKL as a foundation for the next section.

A. ELM AND ITS VARIANTS
Different from traditional SLFNs, the hidden-node parame-
ters of ELM are randomly generated rather than trained [21].
The following are the details of ELM. Given the N training
data {(xi ∈ Rd , yi ∈ R)}Ni=1, where d is the data dimension
and yi is the label of xi. Firstly, the labels are converted to
one-hot label vectors {ti ∈ RU

}
N
i=1, where U is the number

of classes. Assume that there are Q hidden nodes and the
activation function is g(·). Let {(aq ∈ Rd , bq ∈ R)}Qq=1 denote
the randomly generated input weights and hidden biases. The
output of the q-th hidden node is hq(xi) = g(xi, aq, bq), so the
hidden layer’s output is h(xi) = [h1(xi), . . . , hQ(xi)] ∈ R1×Q.
We use αq ∈ RU as the weight vector between the q-th hidden
node and the output layer, so the output weight matrix is
α = [α1, . . . ,αQ]T ∈ RQ×U . When xi is input into ELM, the
output is h(xi)α ∈ R1×U . From an optimization perspective,
the objective function of ELM is

min
α

1
2
∥α∥

2
F +

C
2

∑N

i=1
∥ξ i∥

2
2, (1)

where ∥·∥F denotes Frobenius norm, ∥·∥2 denotes L2 norm,
C > 0 is the user-defined trade-off parameter, and ξTi = tTi −

h(xi)α is the training error vector for the input xi. Let H =

[h(x1)T, . . . ,h(xN )T]T ∈ RN×Q and T = [t1, . . . , tN ]T ∈

RN×U be the hidden-layer output matrix and label matrix,
respectively. Equation (1) can be rewritten as

min
α

1
2
∥α∥

2
F +

C
2

∥T − Hα∥
2
F. (2)

The matrix α has a closed-form solution without iteration,
which is what makes ELM much more efficient. In theory,
ELM has universal approximation capability and can classify
any disjoint regions [21]. Therefore, ELM has been widely
adopted in various application fields due to its superior
training speed, accuracy, and generalization [22]. Based on
the theory of kernel machines [27], KELM can be derived
by setting h(xi) as an implicit mapping [21]. In comparison
to the well-known support vector machine (SVM) [27], both
ELM and KELM algorithms can achieve comparable or even
superior classification performance.

To enhance the classification accuracy, many variants of
ELM have emerged. Here, we provide a brief introduction to
some relevant variants. Peng et al. [28] proposed a discrim-
inative graph regularized ELM (GELM) algorithm for face

recognition. The objective function of GELM is

min
α

∥T − Hα∥
2
F +

∥α∥
2
F

λ1
+ λ2tr(αTHTLGELMHα), (3)

where tr(·) denotes the matrix trace, LGELM is the graph
Laplacian matrix constructed upon the labels of training
samples, λ1 and λ2 are trade-off hyperparameters. In [29],
a discriminative manifold ELM (DMELM) was proposed
for image and signal classification. The objective function
of DMELM is obtained by replacing LGELM in (3) with
LDMELM = (L−1/2

b )TLwL
−1/2
b , where Lw and Lb repre-

sent the within-class and between-class local neighborhood
graph Laplacian matrices, respectively. Iosifidis et al. [30]
proposed a graph embedded ELM (GEELM) algorithm, the
objective function of which is given by

min
α

1
2
∥α∥

2
F +

C
2

∥T − Hα∥
2
F +

γ

2
tr(αTS†pSiα), (4)

where γ is the trade-off parameter, † denotes generalized
pseudoinverse, Sp and Si refer to penalty and intrinsic
scatter matrices, respectively. Under the graph embedding
framework [31], different forms of Sp and Si can be defined
using the set {h(xi)}Ni=1. For the multi-label classification
(MLC) problem, Rezaei-Ravari et al. [32] established two
regularized MLC methods: one is the regularized MLC via
feature manifold learning (RMLFM), and the other is the
regularizedMLC via dual-manifold learning (RMLDM). The
objective function of RMLFM is

min
α

∥T − Hα∥
2
F +

δ

2
∥α∥21 +

θ

2
tr(αTLLLEα), (5)

where ∥ · ∥21 is L21 norm, LLLE ∈ RQ×Q is the graph
Laplacian matrix of locally linear embedding (LLE) [31],
δ and θ are hyperparameters. The objective function of
RMLDM is

min
α

JRMLFM +
µ

2
tr(αTXTL′

LLEXα), (6)

where X = [x1, . . . , xN ]T ∈ RN×d denotes the training data
matrix, JRMLFM is the three terms of (5), L′

LLE ∈ RN×N is
similar toLLLE, andµ is a hyperparameter.LLLE is built upon
each column (feature) of H, whereas L′

LLE is built upon each
row (sample) of X. It can be seen that (6) is valid when Q is
equal to d . This condition limits the performance of RMLDM
to some extent. The RMLFM and RMLDM algorithms are
naturally suitable for traditional (single-label) classification
problems. In summary, these variants incorporate one or two
regularization terms to ELM, taking into account the label
and/or data structural information of the training data. Similar
to ELM, all these algorithms have closed-form solutions.
More variants can be found in [22].

B. ELM-AE AND ITS VARIANTS
To perform feature extraction or representation learning,
ELM has been modified into ELM-AE by simply replacing
the target output ti with the input xi. Thus, ELM-AE aims to
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approximate the input data at the output layer [26]. In ELM-
AE, the randomly generated input weights and biases are
orthogonalized. We use β ∈ RQ×d as the weight matrix
between the hidden layer and the output layer, so the output
of ELM-AE is h(xi)β, which is the reconstruction result of
xi. The objective function of ELM-AE is

min
β

1
2
∥β∥

2
F +

C
2

∥X − Hβ∥
2
F. (7)

By solving (7), we have

β =

HT
(
IN /C + HHT

)−1
X N < Q(

IQ/C + HTH
)−1

HTX N ≥ Q
, (8)

where IN and IQ are the N -order and Q-order identity
matrices respectively. With β, the learned features are
computed as {βxi ∈ RQ

}
N
i=1. When Q < d is satisfied,

β can be seen as a low-dimensional projection matrix.
By utilizing network stacking technique initially proposed by
Hinton et al. [33], ML-ELM [23] can be easily constructed.
Wong et al. [34] introduced the KELM-AE algorithm, which
is a kernelized version of ELM-AE. However, ELM-AE is
unsupervised, so it is not optimal for classification tasks.

To make ELM-AE more adaptable to classification
tasks, several supervised variants have been developed.
In theory, regardless of effectiveness, the supervised ver-
sions of ELM-AE can be derived by directly adding
supervised regularizers to ELM-AE. Therefore, by replac-
ing the variables T and α with X and β, respectively,
in GELM [28], DMELM [29], GEELM [30], RMLFM [32],
and RMLDM [32], five new algorithms can be obtained.
In fact, RMLFM and RMLDM have been extended to their
supervised counterparts of ELM-AE in [32]. To facilitate the
discussion in the subsequent section of this paper, we will
refer to these five algorithms as GELM-AE, DMELM-AE,
GEELM-AE, RMLFM-AE, and RMLDM-AE, respectively.
However, the above strategy imposes regularization con-
straints on β orHβ (reconstructed samples) rather than on the
desired low-dimensional samples {βxi}Ni=1. As a result, the
discriminative ability of the learned features may be limited.
In [25], Du et al. introduced the SELM-AE algorithm whose
objective function is

min
β

JELM-AE +
ν

2
tr(βXTLwXβT) −

τ

2
tr(βXTLbXβT),

(9)

where JELM-AE refers to the objective function of ELM-AE,
ν and τ are hyperparameters. SELM-AE employs the trace
difference instead of the trace quotient used by DMELM.
Wang et al. [35] proposed another supervised ELM-AE
algorithm called within-class scatter information-based AE
(WSI-AE) for one-class classification. WSI-AE minimizes
the reconstruction error as well as the within-class scatter of
the encoded features. The objective function of WSI-AE is

min
β

C
2

∥X − Hβ∥
2
F +

1
2
tr(βSwβT), (10)

where Sw refers to the within-class scatter matrix.
Yang et al. [36] proposed a graph embedding-based DR
framework with ELM-AE, which reconstructs all samples
according to a supervised graph matrix. As these variants
are essentially built upon the ELM-AE algorithm, it is
straightforward to extend them into multilayer networks
using stacking techniques.

C. MKL
MKLwas originally proposed to deal with the kernel learning
or selection problem in kernel machines [18]. For instance,
Rezaei-Ravari et al. [37] proposed the composite kernel-
based KELM-AE algorithm, which linearly combines linear,
polynomial, Sigmoid, and Gaussian kernels to bypass the
process of kernel selection. If the base kernels of MKL
are constructed upon different feature representations, MKL
will be a powerful multi-feature fusion tool [13], [19],
[20]. Therefore, as a complementary approach to decision
fusion [38] and traditional feature fusion [38], [39], MKL
offers a new paradigm for information fusion. For radar SEI,
multifarious features can be extracted from radar signals.
Thus, MKL has been introduced into the field of radar SEI to
improve the identification accuracy. Tomaintain conciseness,
in this paper, we refer to the concept of MKL-based multi-
feature fusion as multi-kernel fusion. Suppose there are R
types of features, and the corresponding base kernels are
{Kr }Rr=1, which can be the same or different. The Gaussian
kernel is frequently used and will be employed in our
experiments. The combined kernel is usually computed by

Kcombine =

∑R

r=1
θrKr ; s.t.

∑R

r=1
θr = 1, (11)

where θr is the kernel combination weight for Kr . SVM
is the most commonly used base learner (kernel machine)
in MKL. Therefore, multi-kernel SVMs (MKSVMs) are
widely employed. In terms of training methodology, lots of
methods have been devised to learn the kernel weights and
the structural parameters of base learners [19]. In general,
these methods can be categorized into two groups: one-stage
methods and two-stage methods. The two-stage methods are
usually more efficient than the one-stage ones. Certainly,
besides the linear combination illustrated in (11), one can also
engage in nonlinear combinations (see [19] for details).
Due to the inherent complexity in solving SVM, the

solution methods for MKSVMs are also relatively complex.
By utilizing ELM as the base learner, Liu et al. [40] pro-
posed the multi-kernel ELM (MKELM) algorithm, which
is solved by an alternating optimization strategy. Thanks
to the closed-form analytical solution method for ELM,
each iteration of MKELM can be efficiently completed.
To further accelerate MKELM, the TSMKELM algorithm
was developed and successfully applied to radar SEI [13].
In TSMKELM, the KDR criterion is adopted to evaluate
the importance of each feature representation, which is
subsequently employed to calculate the weights for kernel
combination. Once the combined kernel is obtained, KELM is
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directly employed for classification purposes. In [41], a com-
bination method of canonical correlation analysis-based
feature fusion and multi-kernel fusion was proposed for radar
SEI. In summary, multi-kernel fusion plays a significant role
in radar SEI task.

III. PROPOSED METHOD
In this section, we first present the motivation behind our
method. Next, we propose ELM-DAE for supervised feature
learning. Finally, we introduce the MK-ELM-DAE method.

A. MOTIVATION
For a practical radar SEI system, it demands higher require-
ments for both accuracy and efficiency. As stated earlier,
to improve accuracy, two effective strategies are enhancing
the discriminability of UMOP features and conducting multi-
feature fusion. Undoubtedly, the popular DL excels at feature
representation learning, enabling the extraction of high-level
features [9], [10], [11], [12]. However, most DL models
require a substantial amount of data and training time.
Table 1 presents details of the DL models and datasets
used in [9], [10], [11], and [12]. These datasets were
collected in a collaborative setting, thereby ensuring a large
volume of data required for training DL models. In practice,
it is highly probable to encounter non-cooperative radar
emitters, resulting in a scarcity of training samples. For
the small sample size problem, DL models often suffer
from severe overfitting and fail to perform effectively.
Therefore, we continue to explore solutions within the
traditional non-deep learning paradigm to overcome the
challenge of limited training samples for radar SEI. Our
proposed framework is illustrated in Fig. 1. Firstly, primary
features are extracted from the original patterns, such as
signals or images. Next, these features are enhanced using
the non-deep feature learning module. Subsequently, the
enhanced features are fused using the multi-kernel fusion
module. Finally, the classification results are obtained. Our
framework simultaneously leverages feature learning and
feature fusion, aiming to achieve promising results. It should
be noted that this framework is applicable to general pattern
classification tasks and is not limited to radar SEI task.
In addition, we have also noticed that there have been studies
on DL models for handling data scarcity [42], [43], [44]. For
instance, data augmentation [43], [44] is a commonly used
and effective technique. We will explore in this direction in
our future work.

Looking back to Fig. 1, the most important compo-
nents of our framework are the non-deep feature learning
module and multi-kernel fusion module. With a focus
on training speed, we have designed specific algorithm
for each module based on ELM. In the feature learning
module, a supervised ELM-AE algorithm called ELM-DAE
is proposed. To reduce the number of user-defined trade-
off hyperparameters, ELM-DAE adds only one discriminant
regularization term to ELM-AE. In the feature fusion
module, an improved TSMKELM algorithm is developed.

TABLE 1. DL models and the datasets used in four related methods.

FIGURE 1. The proposed framework for general pattern classification
tasks (including radar SEI task). R refers to the number of feature sets.

The efficiency of two-stage MKL methods is relatively high
because the determination of kernel combination weights and
structural parameters of base learners are not entangled with
each other. The resultant method is named MK-ELM-DAE.

B. ELM-DAE
Similar to the aforementioned supervised variants of
ELM-AE, in order to overcome the shortcoming of ELM-AE,
we also incorporate the label information into the proposed
ELM-DAE algorithm. The network structure of ELM-DAE
is the same as that of ELM-AE. The objective function of
ELM-DAE is composed of three terms: the norm constraint
on the output weight matrix (i.e., the projection matrix),
the reconstruction error, and the neighborhood structure of
the data. The difference between ELM-DAE and ELM-AE
lies in the last term, which is constructed according to the
label information. We employ the idea of supervised locality
preserving projection (SLPP) [45], [46] to realize the last
term. Denote by zi = βxi the projected low-dimensional
representation of xi. If xi and xj are close then zi and zj are
close as well [45]. Consequently, ELM-DAE minimizes the
following objective function:

J (β) =
1
2
∥β∥

2
F +

C
2

∥X − Hβ∥
2
F +

λ

4

N∑
i,j=1

∥zi − zj∥22Wij,

(12)
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where λ > 0 is the trade-off parameter and Wij represents
the adjacent relationship between xi and xj. Note that the
coefficients 1/2 and 1/4 in (12) are included for the purpose
of subsequent simplification. There are several different
manners of defining Wij, and we will discuss them later.
By substituting zi = βxi to the last term of (12), we get

λ

4

N∑
i,j=1

∥zi − zj∥22Wij

=
λ

4

N∑
i,j=1

∥βxi − βxj∥22Wij

=
λ

4
tr

β

 N∑
i,j=1

(
xi − xj

) (
xi − xj

)TWij

 βT


=

λ

2
tr

[
βXT (D − W)XβT

]
, (13)

where W =
[
Wij

]N
i,j=1 is the adjacency matrix, and D is the

diagonal matrix whose entries are column or row sum of W
(for the symmetry of W). Let L = D − W, (12) can be
expressed as follows:

J (β) =
1
2
|β|

2
F +

C
2

|X − Hβ|
2
F +

λ

2
tr

(
βXTLXβT

)
. (14)

To find the optimal solution β, we take the derivative of
J (β) with respect to β as follows:

J ′(β) = β − CHT (X − Hβ) + λβXTLX. (15)

Let the above derivative J ′(β) be equal to zero, we can
derive the following matrix equation(

IQ + CHTH
)

β + β
(
λXTLX

)
= CHTX. (16)

Equation (16) is the Sylvester equation (SE) [25], [47].
Since the matrices IQ + CHTH ≜ A and λXTLX ≜ B
are positive semi-definite, (16) has a unique solution. The
SE can be solved by using the classical Bartels-Stewart
algorithm [47]. This algorithm utilizes a QR algorithm
to decompose matrices A and B into Schur forms, and
then solves the resultant triangular system through back-
substitution. Since A ∈ RQ×Q and B ∈ Rd×d are not
very large, the Bartels-Stewart algorithm is efficient. Similar
to [25], we use the MATLAB built-in function sylvester(·)
to solve (16). However, training DL models is often time-
consuming. It depends on various factors such as network
structure, learning rate, batch size, and hardware resources
(e.g., CPU or GPU).

Now we introduce the methods of constructingW. In [31],
various definitions of W have been summarized. Firstly,
we need to find the neighbors of each training samples from
the same class or different classes. Using graph theory, we put
edges between neighboring samples. Next, weights should be
assigned to these edges. The commonly usedmethods include
simple-minded 0-1 weighting and heat kernel weighting [45].
In our algorithm, W is constructed in a simplest manner

without any parameter. In detail, if yi = yj = u (i.e., xi
and xj belong to the u-th class) then Wij = 1/nu (nu is the
number of training samples in the u-th class), otherwise we
have Wij = 0. Thus far, the supervised label information
has been added to ELM-DAE. If we want ELM-DAE to be
suitable for data with local distribution characteristics, it is
necessary to set the number of neighboring points, which
is an additional parameter that needs to be tuned. In order
to avoid manually defining W, in future work, we will
employ the adaptive strategy to make ELM-DAE suitable for
classification problems with complex data distributions [48].
In the remaining part of this section, we will compare our

ELM-DAE with the related supervised ELM-AE algorithms
discussed in Section II-B. As the RMLDM-AE algorithm
can only perform equal-dimensional feature transformation,
we will exclude it from further discussion.

• ELM-DAE vs. GELM-AE and RMLFM-AE: They
add only one regularization term into ELM-AE.
These terms are tr(βXTLXβT), tr(βTHTLGELMHβ),
and tr(βTLLLEβ), respectively. Therefore, the number
of trade-off hyperparameters is two, which is less than
that of SELM-AE. L is computed in the same way
as LGELM without any additional parameters. However,
as mentioned earlier, ELM-DAE applies the discrimi-
nant regularizer directly to the desired low-dimensional
features, whereas GELM-AE and RMLFM-AE do not.
Therefore, from the perspective of feature learning, our
method should be more effective.

• ELM-DAE vs. DMELM-AE and GEELM-AE: Their
regularization terms are as follows: tr(βXTLXβT),
tr{βTHT(L−1/2

b )TLwL
−1/2
b Hβ}, and tr(βTS†pSiβ). It can

be seen that DMELM-AE and GEELM-AE con-
tain more discriminative information compared to
ELM-DAE. However, the four matrices Lw, Lb, Sp,
and Si are constructed using graph theory, which needs
to tune additional parameters, such as the number
of neighboring points [31]. Moreover, DMELM-AE
and GEELM-AE also do not impose the discriminant
regularization terms on the desired features.

• ELM-DAE vs. SELM-AE: Our algorithm is directly
inspired by SELM-AE. In terms of the number of
parameters to be tuned, SELM-AE has four hyperpa-
rameters (Q, C , ν, and τ ), whereas ELM-DAE has
three (Q, C , and λ). Therefore, it is easier to tune
our ELM-DAE algorithm, which is crucial for a real-
time system. However, regardless of the number of
parameters, it must be acknowledged that SELM-AE
contains more discriminant information compared to our
algorithm. Nevertheless, we have the subsequent feature
fusion module to further enhance the performance.

• ELM-DAE vs. WSI-AE: WSI-AE is initially proposed
for one-class classification, but it can be easily extended
to solve two-class or multi-class classification tasks.
WSI-AE has only one trade-off parameter. Compared
to ELM-AE and ELM-DAE, the term ∥β∥

2
F is missed.
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FIGURE 2. The proposed AF-based MK-ELM-DAE method for radar SEI.

In the context of classification problems, this term is
important as it is used to control the model complexity.

In summary, the main advantages of ELM-DAE lie
in its simple objective function, fewer parameters, and
efficient solving method. Moreover, we can also observe
its effectiveness in the experimental section. Therefore,
we believe that the ELM-DAE algorithm is well-suited for
practical systems.

C. MK-ELM-DAE
The MK-ELM-DAE algorithm is obtained by restricting the
feature learning module of Fig. 1 to be ELM-DAE and the
feature fusion module of Fig. 1 to be the two-stage MKL
algorithm. The features are first enhanced by ELM-DAE
and then fused by MKL. For the conventional methods, the
features are often from the different domains of radar signals.
In our paper, an AF-based MK-ELM-DAE fusion method is
tailored for radar SEI. The AF-based time-frequency features
are popular UMOP features [12], [13]. The performance of
each Doppler shift slice of AF has been studied in [13], which
shows that there exist lots of different informative AF slices
in the 2D AF plane. So the AF slices can be considered
as the primary multi-feature representations. Our method is
shown in Fig. 2, where R denotes the number of AF slices,
AF-r represents the r-th AF slice, andKr is the corresponding
kernel of AF-r . The main steps of MK-ELM-DAE for radar
SEI are summarized as follows:
1) For each AF slice, ELM-DAE is first applied to extract

the more discriminative feature representation.
2) With the enhanced new features, base kernels are

constructed for the subsequent multi-kernel fusion.
3) Based on these multiple kernels, the fast LDR-based

TSMKELM algorithm (see [13] for details) is used as
the classifier to finish the classification task.

For a radar signal, we can usually obtain a great many AF
slices from the 2D AF plane. To ensure the efficiency and
effectiveness of our method, it is necessary to filter out the
less useful AF slices before the first step. Here we adopt the
linear discriminant analysis-based LDR criterion [31], which
is more efficient than KDR. Assume that the AF slices are{
xu,vk | u = 1, . . . ,U; v = 1, . . . , nu

}K
k=1, where x

u,v
k denotes

the v-th sample of the u-th class for the k-th AF slice, K
is the total number of AF slices, U is the number of radar
emitters, and nu is the number of samples in the u-th class.

The definition of LDR for the k-th AF slice is

LDRAF-k =

∑U
u=1

∑nu
v=1

(
xu,vk − mu

k

)T (
xu,vk − mu

k

)∑U
u=1 nu

(
mu
k − mk

)T (
mu
k − mk

) , (17)

where mu
k and mk are the mean vector of the u-th class and

the global mean vector, respectively. LDR can measure the
class separability of each AF slice. Sorting these LDRs from
largest to smallest, we retain the top R largest LDRs and the
corresponding slices {AF-1 . . . ,AF-r, . . . ,AF-R} (R ≪ K ).
Then, the retainedAF slices are fused byMK-ELM-DAE (see
Fig. 2). In the TSMKELM algorithm, the LDRs are utilized
as the multi-kernel fusion weights. Specifically, the kernel
combination weights and the combined kernel are:

θr = LDRAF-r , Kcombine =

R∑
r=1

θrKr ; r = 1, . . . ,R. (18)

Finally, the KELM classifier is used with Kcombine.
Algorithm 1 gives the pseudo-code of the proposed
AF-basedMK-ELM-DAEmethod for radar SEI. In summary,
our method has the following advantages:

Algorithm 1MK-ELM-DAE Method for Radar SEI
Given:

The d-dimensional AF slices of radar signals, the number
of AF slices to be reserved R, the number of hidden nodes
Q, the parameters C and λ, the activation function g(·).

Steps:
(a) Compute LDR for each AF slice by (17) and then sort

these LDRs in descending order;
(b) Keep the top R largest LDRs and their corresponding

AF slices {AF-1 . . . ,AF-r, . . . ,AF-R};
(c) For each retained AF slice:

(c.1) Generate {(aq ∈ Rd , bq ∈ R)}Qq=1 randomly and
then orthogonalize them;

(c.2) Calculate the hidden-layer output matrix H, the
adjacency matrixW, and the matrix L;

(c.3) Optimize the projection matrix β ∈ RQ×d

by (12) and compute it by (16);
(c.4) Project the input data (d-dimensional AF slices)

into the Q-dimensional space (Q < d);
(d) Construct the multiple base kernels {K1, . . . ,KR} for

the new features and then compute the combined
kernel with the kernel weights defined by LDR;

(e) Use the combined kernel and KELM to finish the
classification task.

1) Compared to most DL methods, ELM-DAE is much
more efficient for feature learning. We can see from (16)
that ELM-DAE is much easier to solve. ELM-DAE is
inspired by the earliest ‘‘auto-encoder’’ [33] and has
considered the label information, so it is also effective,
which will be validated in the experiments.

2) The MK-ELM-DAE method uses the fast TSMKELM
algorithm [13] to conduct multi-kernel fusion. Hence,
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TABLE 2. Basic information about the experimental datasets.

both the feature learning stage and the classification
stage of our method are efficient.

3) The simple LDR criterion, which is designed to keep the
informative AF slices from the AF plane, not only helps
to reduce the training time but also can be regarded as
the kernel weights for the TSMKELM algorithm.

It is worth noting that our proposed method can be
applied to other classification applications as well. Fig. 1
presents a general framework for classification tasks, whereas
Fig. 2 specifically illustrates an AF-based multi-kernel fusion
framework for radar SEI. The LDR criterion can be used as a
fixed rule to calculate the kernel combination weights [19].

IV. EXPERIMENTS
In this section, we present the experimental details, including
datasets, experimental settings, and experimental results.
We use the laptop equipped with Intel Core i7 CPU,
20G memory, and MATLAB R2020b platform to do the
experiments.

A. DATASETS
Table 2 presents detailed information on the experimental
datasets, which are collected from a real scenario. By com-
paring Table 1 and Table 2, we can observe that the quantity
of our experimental data is relatively small. The typical
samples of Data-1 and Data-2 are shown in Fig. 3 and Fig. 4,
respectively. For Data-1, there are totally 550 (i.e., K = 550)
AF slices and the dimension of each AF slice is 550. For
Data-2, the number of AF slices is 256 (i.e., K = 256) and
the dimension of each AF slice is 256. Thus, it is indeed
necessary to remove the less important AF slices. Otherwise,
too many slices (i.e., too large K ) will lead to inefficiency.

B. EXPERIMENTAL SETTINGS
We use the single best AF slice feature and multiple AF slices
features to validate our method. Each slice is normalized to
have unit length. To save time, only ten AF slices (i.e., AF-1
to AF-10) are taken as the searching space to obtain the best
AF slice. For the single best AF slice, the compared methods
are ELM, KELM, and ELM-DAE. Our ELM-DAE is just
for feature learning, so it is followed by KELM to perform
classification. For multiple AF slices, KDR-TSMKELM [13]
andMK-ELM-DAE are compared. For each dataset, 6%, 8%,
10%, 20%, and 50% of the samples per class are respectively
selected for training and the rest samples are used for testing.
We generate ten different training/test set partitions to avoid
the bias caused by the random selection of training samples,

FIGURE 3. A typical sample of Data-1.

FIGURE 4. A typical sample of Data-2.

and thus the average recognition rate and standard deviation
are reported for fair comparison.

There are some hyperparameters to be specified for each
method. For KELM, the Gaussian kernel is employed and
its parameter is set as the mean of pairwise distances of
training samples. The parameter C of KELM is set as 100.
As we will see from the experimental results, KELM is
robust with the above empirical parameter settings. Thus,
KELM can be viewed as a parameter-free algorithm to
some extent. For simplicity, the best AF slice is found
according to the testing accuracy of KELM, and then ELM
and ELM-DAE are directly applied to the best AF slice
determined by KELM. For ELM, we set the activation
function as the Sigmoid function and the number of hidden
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TABLE 3. The identification results of Data-1 (Mean ± standard deviation, %). Best results are marked in bold.

TABLE 4. The identification results of Data-2 (Mean ± standard deviation, %). Best results are marked in bold.

FIGURE 5. The performance heatmaps with the variation of C and λ for Data-1.

nodes Q as 5000 from experience. The performance of ELM
with Sigmoid activation function is not sensitive toQ, so only
the trade-off parameter C needs to be tuned [21]. We choose
C from

{
10−2, . . . , 107

}
. We also use the Sigmoid activation

function for ELM-DAE. The parameters Q, C , and λ of

ELM-DAE need to be tuned. We first set Q as 200 (Q < d),
and then C and λ are selected from

{
10−2, . . . , 107

}
. The

parameter selection is conducted by the grid search strategy.
After the optimal C and λ are determined, we will alter the
value of Q in the range of {50 : 50 : 500} for Data-1 and
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FIGURE 6. The performance heatmaps with the variation of C and λ for Data-2.

{50 : 50 : 250} for Data-2. For multi-kernel fusion methods,
there are two settings: 1) the ten AF slices (AF-1 to AF-10)
are fused; 2) the AF slices corresponding to the top R largest
KDRs or LDRs are fused. Considering the training time cost,
we fix R to 40 for the two datasets. Additionally, we will
discuss the relationship between the accuracy and R.
It should be mentioned that our training samples are scarce

in the small sample size setting. For instance, in Data-1,
the number of training samples per class is 3 (6%), 4 (8%),
5 (10%), 10 (20%), and 25 (50%), respectively. In non-
cooperative scenarios, it is likely to intercept such a small
number of signals. Even with the simple 1D-CNN model
proposed in [9] (two convolutional layers, one max-pooling
layer, one dropout layer, and two fully-connected layers), it is
difficult to directly train the model with such scarce samples.
Therefore, we have not conducted experimental comparisons
between our algorithmwith DLmodels. Our code is available
at: https://github.com/yyashi/MK-ELM-DAE.

C. EXPERIMENTAL RESULTS
When Q is equal to 200 and R is fixed as 40, the average
recognition accuracies of Data-1 and Data-2 are presented
in Table 3 and Table 4, respectively. Taking 10%-train as an
example, Fig. 5 and Fig. 6 show the performance heatmaps of
ELM-DAE andMK-ELM-DAE for each dataset with varying
parameter C and parameter λ. Based on these results, we can
draw the following conclusions:

• For the single best AF slice feature, ELM-DAE has
good performance especially when the number of
training samples is small. For Data-1, the accuracy
gaps between the best ELM-DAE and the second-best
KELM are 3.02%, 3.36%, 2.97%, 1.97% and 0.04%.
For Data-2, the accuracy gaps are 2.16%, 1.76%, 1.27%,
0.30%, and 0.18%. ELM-DAE can indeed improve
the discriminability of the primary features, so the
effectiveness of ELM-DAE has been testified.

FIGURE 7. The testing rate of Data-1 with varying values of Q.

• Since the discriminability of each primary feature has
been enhanced by ELM-DAE, our proposed MK-ELM-
DAEmethod exhibits superior performance compared to
KDR-TSMKELM, particularly on Data-1. For example,
when the top R AF slices are fused, the performance
gaps between MK-ELM-DAE and KDR-TSMKELM
are 3.80%, 3.90%, 2.96%, 1.09%, and 0.34%. We can
see that both ELM-DAE andMK-ELM-DAE are helpful
for the small training set problem. Besides, using
more valuable information in the AF plane is better
than using a few slices (e.g., AF-1 to AF-10), which
will be discussed later by varying the number of
AF slices.

• Fig. 5 and Fig. 6 demonstrate that the performance of
ELM-DAE and MK-ELM-DAE is robust across a wide
range of parameter values for C and λ. Therefore, our
methods have a lighter burden of parameter selection.
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FIGURE 8. The testing rate of Data-2 with varying values of Q.

FIGURE 9. The testing rate of Data-1 with varying values of R.

Furthermore, we will discuss the impact of Q and R on the
recognition accuracy. Considering the case of 10%-train of
Data-1 and Data-2, Fig. 7 and Fig. 8 illustrate the relationship
between the testing rate and the number of hidden nodes Q.
Fig. 9 and Fig. 10 show the relationship between the testing
rate and the number of feature sets R. In our experiments,
we can see that ELM-DAE and MK-ELM-DAE consistently
perform well when Q is greater than 100. As R increases,
the performance of KDR-TSMKELM and MK-ELM-DAE
is improved and tends to be stable. However, the larger R
means the slower training speed. Consequently, it is important
to select a suitable value of R to keep the balance between
performance and training time.

Finally, we present a comparison of the training time and
test time (per testing sample) for the two multi-kernel fusion
methods in Table 5 (R = 40). The time-consuming part of
theMK-ELM-DAEmethod is the ELM-DAEmodules. Since
ELM-DAE needs to be applied to every selected AF slice, the

FIGURE 10. The testing rate of Data-2 with varying values of R.

TABLE 5. Running time comparison of KDR-TSMKELM and MK-ELM-DAE
on Data-1 and Data-2 (seconds).

training time cost of MK-ELM-DAE is heavier than that of
KDR-TSMKELM. However, the testing efficiency of MK-
ELM-DAE is greatly higher than that of KDR-TSMKELM,
which is benefited from the DR ability of ELM-DAE. It is
worth noting that the number of feature sets R are usually not
too large in general pattern classification tasks [20], so the
training time of MK-ELM-DAE is acceptable.

In summary, our proposed MK-ELM-DAE algorithm
exhibits outstanding effectiveness and efficiency. MK-ELM-
DAE combines the benefits of both feature learning and
multi-kernel fusion, so it is superior to the compared methods
when applied to the radar SEI task. As the small sample
size problem is prevalent in real-world application scenarios,
this paper emphasizes the utilization of traditional non-deep
DR methods for feature learning, rather than relying on
DL models. With the development of data-limited DL
methods [42], [43], [44], we will investigate the problem of
representation learning for radar signals under small sample
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size condition in our future work. Nevertheless, MK-ELM-
DAE still has a time advantage over the DL-based methods
(see Table 5).

V. CONCLUSION
Based on representation learning and multi-kernel fusion,
we propose the MK-ELM-DAE method for radar SEI. For
radar signals, the AF slices are used as the primary UMOP
features, and then a LDR criterion is devised to keep the more
informative slices. With the selected AF slices, our proposed
supervised DR algorithm, ELM-DAE, is first employed to
extract the more discriminative feature representations. Then,
the fast two stage multi-kernel ELM algorithm is utilized to
do classification. Experimental results show that our method
can improve the identification accuracy particularly when the
training sample size is small. Furthermore, the training speed
of our method is fast. In the future work, to further enhance
the performance of MK-ELM-DAE, we will incorporate
richer discriminant information to ELM-DAE. We can also
leverage the stacking technique to construct a multilayer
ELM-DAE network, which will explore deeper and more
discriminative representations. Moreover, a multi-kernel
multilayer ELM-DAE algorithm can be derived.
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