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ABSTRACT In this paper, a novel multi-rotor flight configuration, namely Full Orientation Flight RObotics
(FOFRO), is developed. Different from the well-known quadrotor, the proposed multi-rotor-driven FOFRO
is able to achieve arbitrary flight pose in a six-degree-of-freedom (6-DoF) space. Therefore, the demands of
flight flexibility and maneuverability can be greatly improved. On the basis of the designed prototype, the
6-DoF governing equations based on quaternion attitude kinematics are derived. Owing to the existence
of the multi-rotor-driving redundancy, the optimal control allocation algorithm is further proposed to
address the inverse mapping problem between the control signal channels and the actuator driving force
channels. The algorithm provides a minimum-energy-consumption solution for a rotor speed to compose the
designed control force under the satisfaction of practical physical constraints. To ensure the flight robustness
in the realistic scenarios, a robust super-twisting sliding model controller is adopted to against unknown
external disturbances. A numerical simulation is performed to illustrate the flight properties of the proposed
FOFROand to validate the feasibility of the proposed optimal control allocation algorithm. Simulation results
also reveal that the proposed FOFRO can achieve arbitrary flight pose demands in the 6-DoF space, which
demonstrate the high mobility of the proposed FOFRO.

INDEX TERMS Full orientation flight robotics (FOFRO), arbitrary flight pose tracking, optimal control
allocation algorithm, robust super-twisting sliding mode controller.

I. INTRODUCTION
In recent years, flight control and the application of
UAVs, especially quadrotor helicopters, have become popular
research topics. Related studies include tutorial papers [1],
[2], [3], robust backstepping slidingmode control [4], [5], [6],
linear quadratic regulator control [7], fault-tolerance control
[8], [9], path-following control [10], and model predictive
control [11], [12]. Compared to traditional quadcopters, tilt-
rotor UAVs [13], [14], [15] feature a structure with variable
thrust directions, offering increased control versatility. How-
ever, UAVs with such variable structure actuation systems
pose relatively greater challenges in terms of maintenance.
Additionally, most of the existing UAVs rely on changes
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in orientation to achieve specific trajectory tracking. This
limitation raises an interesting question: ‘‘Is there a simple
configuration for flight robotics that can achieve arbitrary 6-
DoFmotion control?’’ As a result, this study proposes a novel
multi-rotor-driven UAV, named FOFRO. Unlike the well-
known UAVs, the proposed FOFRO can achieve arbitrary
6-DoFmotion trackingwithout relying on changes in attitude.

In regard to the flight dynamic features of a UAV,
the governing equations of rotational motion are highly
coupled and nonlinear. Moreover, in real flight environments,
there exist unavoidable external disturbances. As a result,
a robust nonlinear controller design with disturbances
rejection should be taken into consideration. Among the
several well-known robust control schemes [16], [17], [18],
[19], sliding mode control (SMC) techniques have been
recognized as an effective and outstanding control algorithm
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[20], [21], [22]. The main reasons include (i) ease of
design and implementation (ii) high robustness against model
uncertainties, as well as external disturbances, and (iii) fast
convergence within finite time. However, the conventional
SMC causes difficulty in practical implementation due to the
high-frequency chattering effect [20]. In control practices,
a trick using extended state information in the sliding surface
was presented for chattering reduction [23]. In order to avoid
control chattering, second-order sliding mode techniques are
adopted in this paper. The relevant technology was first
proposed by Levant [24], and the robust control algorithm
was later known as the super-twisting algorithm. To address
the closed-loop feature of the nonlinear control algorithm,
a novel Lyapunov function is presented [25], which provides
deep insight into the convergence and robustness properties
of the algorithm. For related papers, please refer to [26],
[27], [28], and [29]. The super-twisting algorithm has been
applied in several studies to prove its control capability,
including quadrotor [30], [31], industrial emulator [32],
mobile wheeled inverted pendulum [33], spacecraft attitude
control [34], and so on.
Control allocation, the mapping of designed control

forces to actuator channels, is crucial in various multi-rotor
UAV applications. In one study [35], a control allocation
scheme utilizing Levy flight-based metaheuristic algorithms
is presented for innovative control effector aircraft with
integer-constrained actuators. Another study [36] focuses
on coordinating thrust vectoring and mass control for
flying saucers, employing variable structure control while
considering actuator dynamics and aerodynamic coefficient
uncertainties to enhance system robustness. Additionally,
research [37] addresses control allocation challenges due
to linear descriptions and inaccurate efficiency coefficients,
introducing an iterative closed-loop configuration and a
nonlinear iterative method to reduce allocation errors. In our
novel UAV configuration, we propose an optimal control
allocation algorithm based on minimizing energy effort
while satisfying rotor physical constraints, enhancing the
suitability of the considered configuration for real-world
control applications.

In this article, a novel UAVflight configuration is proposed
so that highly flexible 6-DoF flight trajectories can be
achieved. The contributions of this paper are summarized
as follows: 1) A novel flight configuration, namely FOFRO,
is proposed that is able to track arbitrary 6-DoF motion
trajectory. 2) The 6-DoF governing equations based on
quaternion representation are derived. 3) An optimal control
allocation algorithm is proposed to address the inverse map-
ping problem from the control force channels to the actuator
driving force channels. 4) The quaternion-based feedback
control scheme combined with the robust super-twisting
sliding mode algorithm is developed. No singularity will be
induced for arbitrary flight pose. 5) A Numerical simulation
is conducted to illustrate the properties and feasibility of
the proposed FOFRO. The results reveal the effectiveness,
novelty, and potential applications of the proposed FOFRO.

FIGURE 1. The prototype of the proposed FOFRO.

The organization of this paper is described as follows.
In Section II, to pursue the feasibility of arbitrary flight
trajectories, the quaternion-based governing equations are
derived. Furthermore, from the viewpoint of practical control
realization, the physical thrust limitation caused by the
actuators is accounted for. The force distribution analysis
for guaranteeing non-negative rotor speeds was solved in
terms of a constrained optimization problem. In Section III,
the super-twisting algorithm is adopted to obtain the robust
flight controller for trajectory tracking tasks. In Section IV,
the strategy of attitude command generation based on
the well-known Euler attitude kinematics is presented.
In Section V, to avoid discontinuous flight demands, the
command prefilters for generating the smooth position,
velocity, and acceleration commands from a given position
command are applied. In Section VI, a flight numerical
simulation is carried out and the simulation results show that
the proposed FOFRO can achieve arbitrary 6-DoF motion
trajectories. Moreover, with the aid of constrained actuator
designs, reasonably generated thrusts can also be realized.
Finally, in Section VII, conclusions regarding the simulation
results are made.

II. DYNAMICS MODELING AND CONTROL ALLOCATION
In this paper, a novel flight configuration that is able to
achieve arbitrary 6-DoF motion is proposed. The prototype
can be referred to as Fig. 1. It contains twelve rotors to provide
the thrust Fi and the induced torques τi, i = 1, 2, · · · , 12,
for the trajectory tracking demands. In Fig. 1, the opposite
direction of the arrow is the direction of thrust. The green
arrow that represents the thrust direction is the same as
the rotation direction. The red arrow represents the thrust
direction opposite the rotation direction. In what follows, the
equations of motion of the proposed FOFRO and the related
control allocation analysis are discussed.

A. DYNAMICS MODELING
Based on the prototype of the FOFRO as shown in Fig. 1, the
corresponding free body diagram is depicted in Fig. 2. There
are two reference frames to be used to describe the motion of

VOLUME 11, 2023 110235



Y.-R. Li, C.-C. Peng: Development of a FOFRO: Dynamics Modeling, Analysis, and Control Design

FIGURE 2. Free body diagram of the proposed FOFRO.

the FOFRO.One is the global frame, which is used to describe
the absolute motion of the rigid body, represented by GXYZ ;
and the other is the body frame, Bxyz, which is fixed in the
FOFRO’s body to illustrate the relative rotation of the body
to the global frame.

To avoid the singularity issue for the control of the FOFRO,
the quaternion-based attitude representation is considered.
Let Q = [q0,qT ]T = [q0, q1, q2, q3]T ∈ R4 be the set of
unit quaternion which rotates a vector from the body frame to
the global frame. The corresponding direction cosine matrix
(DCM) can be constructed by [38]

GCB(q0,q) = (q20 − qTq)I3 + 2qqT + 2q0q× (1)

where I3 ∈ R3×3 is the identity matrix with, and the notation
a×

∈ R3×3 represents the cross product matrix for a vector
a = [a1, a2, a3]T ∈ R3, defined as follows:

a×
=

 0 −a3 a2
a3 0 −a1

−a2 a1 0

 (2)

Regarding Fig. 2, denote Fa = [Fx ,Fy,Fz]T ∈ R3 and
Ma = [Mx ,My,Mz]T ∈ R3 as the resultant force and torque
defined in the body frame, respectively. The force Fa and the
torqueMa are composed of Fi and τi, i.e.,

Fx = −(F1 − F3 + F5 − F7)

Fy = −(F2 − F4 + F6 − F8)

Fz = −(F9 + F10 − F11 − F12) (3)

and

Mx = τ1 − τ3 − τ5 + τ7

+ (F2 − F4)L1 − (F6 − F8)L2
My = −τ2 + τ4 + τ6 − τ8

− (F1 − F3)L1 + (F5 − F7)L2
Mz = τ9 − τ10 − τ11 + τ12 (4)

where L1 and L2 are the distances from the top and bottom
of the FOFRO to the center of mass B, respectively. Consider

the gravitational forceW ∈ R3, defined by

W = mg =
[
0 0 −mg

]T (5)

wherem is the mass. To evaluate the flight robustness, further
consider the time-varying external disturbancesDF ∈ R3 and
DM ∈ R3, respectively, denoted as

DF =
[
DFX DFY DFZ

]T (6)

DM =
[
DMx DMy DMz

]T (7)

Note that (5) and (6) are defined in the global frame, and (7)
is defined in the body frame. The governing equations can
be easily derived by introducing Newton’s second law and
Euler’s equations of motion to describe the translational and
the rotational motions, namely,

FG = mP̈ (8)

MG =
dHG

dt

)
body

+ ω×HG (9)

where FG ∈ R3 and MG ∈ R3 are the resultant force and
torque acting on the center of mass of the rigid body; P =

[X ,Y ,Z ]T ∈ R3 is the absolute position of the rigid body
and P̈ ∈ R3 is the associated absolute acceleration; HG ∈ R3

is the angular momentum; and ω = [ωx , ωy, ωz]T ∈ R3

is the angular velocity. Both HG and ω are defined in the
body frame. Suppose the blades of the rotors are massless,
therefore, the overall angular momentum can be simplified as
HG = Jω, where J ∈ R3×3 is the moment of inertia matrix
of the body. Hence, (9) becomes

Jω̇ + ω×Jω = MG (10)

According to the previous illustration, the FG andMG can be
expressed by

FG =
GCBFa + W + DF (11)

MG = Ma + DM (12)

Note that GCB is defined in (1). Refer to the quaternion-based
kinematics [39], [40], the governing equations of the
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proposed FOFRO can be summarized as follows:

mP̈ =
GCBFa + W + DF (13)

q̇0 = −
1
2
qTω (14)

q̇ =
1
2

(
q0I + q×

)
ω (15)

Jω̇ = Ma + DM − ω×Jω (16)

The control objective is to seek the robust control force
(Fa,Ma) to drive the system achieve the desired trajectory
tracking demands. The control force (Fa,Ma) are generated
by the multi-rotors configuration as illustrated in Fig. 1. The
optimal control allocation algorithm for composing (Fa,Ma)
is presented in the next section.

B. OPTIMAL CONTROL ALLOCATION ALGORITHM
To establish the mapping relation for Fa andMa with respect
to the given rotor speed�i, where i = 1, 2, · · · , 12, consider
the following rotor model [1], [41]:

Fi = CT�2
i , τi = CM�2

i , i = 1, 2, · · · , 12 (17)

Note that CT > 0 and CM > 0 are the thrust and
torque coefficients, respectively. In practical realization,
these coefficients can be identified experimentally. In this
study, the rotors can only rotate along a fixed direction,
i.e., every rotor is not able to generate negative thrust and
negative induced torque. This physical constraint will be
taken into consideration of the derivation of the optimal
control allocation algorithm.

Based on the hardware configuration of the FOFRO,
following is going to develop the optimal control allocation
algorithm to construct the mapping relation between the
control force channel [Fx ,Fy, · · · ,Mz] and the actuator
driving force channel [�2

1, �
2
2, · · · , �

2
12]. Combining (3),

(4), and (17) gives 
Fx
Fy
Fz
Mx
My
Mz

 = 00


�2

1
�2

2
...

�2
11

�2
12

 (18)

where the non-square matrix 00 ∈ R6×12 related to the CT ,
CM , L1, and L2 are

00 =



−CT 0 0 CM −CTL1 0
0 −CT 0 CTL1 −CM 0
CT 0 0 −CM CTL1 0
0 CT 0 −CTL1 CM 0

−CT 0 0 −CM CTL2 0
0 −CT 0 −CTL2 CM 0
CT 0 0 CM −CTL2 0
0 CT 0 CTL2 −CM 0
0 0 −CT 0 0 CM
0 0 −CT 0 0 −CM
0 0 CT 0 0 −CM
0 0 CT 0 0 CM



T

(19)

Given the designed Fa and Ma, the corresponding
rotor speeds are obtained by the inverse mapping

of (18): 

�2
1

�2
2
...

�2
11

�2
12


= 0

†
0


Fx
Fy
Fz
Mx
My
Mz

 (20)

where 0
†
0 =

(
0T
0 00

)−1
0T
0 denotes the pseudo-inverse

(details should be given) of the matrix 00, where 0T
0 00 is

invertible.
Although (20) provides a minimum norm solution of �2

i
for i = 1, 2, · · · , 12. The solution does not guarantee that
the non-negative rotor speeds can be obtained from (20).
To address this issue, reformulate (18) as

Fx
Fy
Fz
Mx
My
Mz

 = 0



�2
1 −�2

3

�2
5 −�2

7

�2
2 −�2

4

�2
6 −�2

8

�2
9 −�2

11

�2
10 −�2

12


(21)

where the force distribution matrix (FDM) is defined by

0 =


−CT −CT 0 0 0 0
0 0 −CT −CT 0 0
0 0 0 0 −CT −CT
CM −CM CTL1 −CTL2 0 0

−CTL1 CTL2 −CM CM 0 0
0 0 0 0 CM −CM

 (22)

It should be noticed that the FDM (22) is a non-singular
matrix. On the basis of the given control force (Fa,Ma), the
corresponding squared rotor speed difference can be acquired
by taking the inverse mapping of (21):

�2
1 −�2

3

�2
5 −�2

7

�2
2 −�2

4

�2
6 −�2

8

�2
9 −�2

11

�2
10 −�2

12


= 0−1


Fx
Fy
Fz
Mx
My
Mz

 ≜


c1
c2
c3
c4
c5
c6

 (23)

Eq. (23) gives a unique solution for �2
j − �2

j+2 = ck ,
j = 1, 5, 2, 6, 9, 10, k = 1, 2, · · · , 6. However, it is necessary
to determine �i, i = 1, 2, · · · , 12 explicitly. Meanwhile, the
physical constraint �i > 0 should be satisfied. As a reason,
the following optimization problem for determining �i is
proposed:

minimize Lj = �2
j +�2

j+2

subject to �2
j −�2

j+2 = ck , �j ≥ 0, �j+2 ≥ 0. (24)

for j = 1, 5, 2, 6, 9, 10 and k = 1, 2, · · · , 6. To facilitate
understanding, taking the first row of (23), �2

1 − �2
3 = c1,

as an example, (24) becomes

minimize L1 = �2
1 +�2

3
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subject to �2
1 −�2

3 = c1, �1 ≥ 0, �3 ≥ 0. (25)

The optimization problem aims to determine the solution of
the minimum-energy-consumption L1 subject to the control
requirement �2

1 − �2
3 = c1 together with the physical

constraints �1, �3 ≥ 0. Later, it will be proven that the
optimal solution of (25) is given by{

�∗

1 =
√
c1, �∗

3 = 0, if c1 ≥ 0
�∗

1 = 0, �∗

3 =
√

−c1, if c1 < 0
(26)

To formally address this problem, define the Hamiltonian
H coming with the Lagrange multipliers λ , µ1, and µ2 as
follows

H = �2
1 +�2

3 + λ (�2
1 −�2

3 − c1) + µ1(−�1) + µ2(−�3)

(27)

where the unknown variables are �1, �3, λ , µ1, and µ2.
Applying the first-order necessary condition, it follows that

∂H
∂�1

∣∣∣∣
∗

= 2�∗

1 + 2λ
∗�∗

1 − µ∗

1 = 0 (28)

∂H
∂�3

∣∣∣∣
∗

= 2�∗

3 − 2λ
∗�∗

3 − µ∗

2 = 0 (29)

∂H
∂λ

∣∣∣∣
∗

= �∗

1
2
−�∗

3
2
− c1 = 0 (30)

∂H
∂µ1

∣∣∣∣
∗

= −�∗

1 < 0 (31)

∂H
∂µ2

∣∣∣∣
∗

= −�∗

3 < 0 (32)

Let µ∗

1 = µ∗

2 = 0. From (28) we get λ ∗
= −1. Substituting

λ ∗
= −1 into (29) results in �∗

3 = 0. Therefore, �∗

1 =
√
c1,

for all c1 ≥ 0, which can be obtained from (30). Let µ∗

1 =

µ∗

2 = 0, from (29), it gives λ ∗
= 1 and then one can find

�∗

1 = 0 and �∗

3 =
√

−c1 for all c∗1 < 0, eventually.
Next, the optimal solution (26) of the optimization

problem (25) will be proven from a geometric perspective,
the cost function L1 = �2

1 + �2
3 represents a circle with

radius
√
L1, and the constrain �2

1 − �2
3 = c1 behaves as

a hyperbola. The solution can also be verified by nonlinear
programming. Fig. 3(a) and 3(b) are the schematic diagram.
On the one hand, when c1 > 0, �2

1 − �2
3 = c1 represents

a symmetric hyperbola with respect to the �3 axis. As seen
in Fig. 3(a), the optimal solution is the point of intersection;
that is (�∗

1, �
∗

3) = (
√
c1, 0). Note that the constraints

�1 > 0 and �3 > 0 must be satisfied. Thus, the
solution (−

√
c1, 0) is discarded. On the other hand, when

c1 < 0, �2
1 − �2

3 = −c1 the solution turns out to be
another symmetric hyperbola with respect to the �1 axis.
As seen in Fig. 3(b), the optimal solution now becomes
(�∗

1, �
∗

3) = (0,
√

−c1).
Similarly, the non-negative rotor speed of the remaining

rotors can be obtained in a similar manner. Finally, the opti-
mal control allocation algorithm based on the optimization
problem (24) is concluded as follows:{

�∗
j =

√
ck , �∗

j+2 = 0, if ck ≥ 0

�∗
j = 0, �∗

j+2 =
√

−ck , if ck < 0
(33)

FIGURE 3. Solutions of nonlinear programming.

for j = 1, 5, 2, 6, 9, 10 and k = 1, 2, · · · , 6.
So far, the governing equations of the proposed FOFRO

are derived in (13)–(16). The optimal control allocation
algorithm for generated the control force (Fa,Ma) is provided
in (23) and (33). In what follows, a robust flight controller is
designed for the 6-Dof pose tracking demands in the presence
of unknown disturbances.

III. FLIGHT CONTROLLER DESIGN
In this section, a robust control law (Fa,Ma) is designed
to achieve trajectory tracking in the presence of unknown
time-varying disturbances. The trajectory tracking problem
is first transformed into an equivalent stabilization problem
of the error system. The error system is derived from the
difference between the system dynamics and the desired
dynamics. Once the error system is obtained, a robust control
law is designed to ensure robust performance. In this study,
the super-twisting sliding mode algorithm (STSMA) [24]
is adopted to address the robust performance issue. The
successful applications of STSMA in flight control have been
reported in [30], [31], [32], [33], and [34].
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A. ATTITUDE CONTROLLER DESIGN
Let Qd = [q0d ,qTd ]

T
∈ R4 be the desired quaternion that

represents a vector rotation of the desired frame to the global
frame, and ωd = [ωxd , ωyd , ωzd ]T ∈ R3 be the desired
angular velocity defined in desired frame. On the basis of
quaternion kinematics, they can be related by

Q̇d =
1
2
Qd ⊗ ωd (34)

Let Qe = [q0e,qTe ] ∈ R4 be the quaternion error between
Q and Qd . To be more explicit, the quaternion error is a
vector rotation from the body frame to the desired frame.
By definition, one gives

Q = Qd ⊗ Qe (35)

which implies

Qe = Q−1
d ⊗ Q (36)

where the notation ⊗ represents the quaternion multipli-
cation and Q−1

d is the quaternion inverse of the desired
quaternion Qd . By taking the time derivative of (35)
gives

Q̇ = Q̇d ⊗ Qe + Qd ⊗ Q̇e (37)

It follows that

Q̇e = Q−1
d ⊗

[
Q̇ − Q̇d ⊗ Qe

]
= Q−1

d ⊗

[
1
2
Q ⊗ ω −

1
2
Qd ⊗ ωd ⊗ Qe

]
=

1
2
Q−1
d ⊗ Q ⊗ ω −

1
2
ωd ⊗ Qe

=
1
2
[Qe ⊗ ω − ωd ⊗ Qe]

=
1
2
Qe ⊗

[
ω − Q−1

e ⊗ ωd ⊗ Qe

]
(38)

By defining the angular velocity error as

ωe = ω − RT
e ωd (39)

where Re = R(q0e,qe). Eq. (38) becomes

Q̇e =
1
2
Qe ⊗ ωe (40)

Taking the time derivative about (39) gives

ω̇e = ω̇ −

(
ṘT
e ωd + RT

e ω̇d

)
= J−1 (

Ma + DM − ω×Jω
)

−

[(
Reω

×
e
)T

ωd + RT
e ω̇d

]
(41)

Therefore, based on (40) and (41), the quaternion-based
attitude error dynamics is summarized as follows:

q̇0e = −
1
2
qTe ωe (42)

q̇e =
1
2

(
q0eI3 + q×

e
)
ωe (43)

ω̇e = J−1 [
Ma + DM − ω×Jω

]
−

[(
Reω

×
e
)T

ωd + RT
e ω̇d

]
(44)

To apply the STSMA, design the sliding vector S =

[s1, s2, s3]T ∈ R3 as follows

S = ωe + cqe (45)

where the sliding gain c ∈ R1 is a positive parameter to be
designed. Taking the time derivative of (45) along the error
dynamics (43) and (44) yields

Ṡ = J−1 [
Ma + DM − ω×Jω

]
−

[(
Reω

×
e
)T

ωd + RT
e ω̇d

]
+ c ·

1
2

(
q0eI3 + q×

e
)
ωe (46)

Based on the STSMA [24], design the control law as

Ma = ω×Jω + J
[ (

Reω
×
e
)T

ωd + RT
e ω̇d

−
c
2

(
q0eI3 + q×

e
)
ωe + Ma,N

]
Ma,N = −K1

S
∥S∥1/2

− K2

∫ t

0
sgn(S) dτ (47)

where the control gain matrices are

K1 = diag
([
k11 k12 k13

])
K2 = diag

([
k21 k22 k23

])
(48)

and sgn(S) ∈ R3 is defined as

sgn(si) =

{
1 if si > 0
−1 if si < 0

sgn(si) ∈ [−1, 1] si = 0 (i = 1, 2, 3) (49)

Substituting (47) into (46) gives

Ṡ = −K1
S

∥S∥1/2
− K2

∫ t

0
sgn(S) dτ + D̄M (50)

where D̄M = J−1DM = [d1, d2, d3]T ∈ R3 is the lumped
disturbance. It has been proven that the second-order sliding
mode can be established within finite time tf if the control
gains satisfy [27], [34]

k2i > ρi, k21i > 4k2i (51)

where ρi = sup(|di|), i = 1, 2, 3.
Once the system reaches sliding mode, the system dynam-

ics is governed by the following reduced-order dynamics

q̇0e =
c
2
qTe qe (52)

q̇e = −
c
2
q0eqe (53)

for all t ≥ tf . It has been proven in [34] that the analytical
solution of q̇0e of the reduced order dynamics (52) is

q0e(t) = 1 +
2

[
q0e(tf ) − 1

]
q0e(tf )[ec(t−tf ) − 1] + 1 + ec(t−tf )

(54)

for all t ≥ tf . For a positive sliding gain c > 0, it implies
q0e → q0d and q → qd as t → ∞ [34]. The asymptotic
stability of the reduced order dynamics (52) and (53) is
guaranteed.

B. POSITION CONTROLLER DESIGN
Let Pd = [Xd ,Yd ,Zd ]T ∈ R3 and Vd = Ṗd =

[Ẋd , Ẏd , Żd ]T ∈ R3 represent desired position and velocity
commands, respectively. The corresponding position and
velocity tracking errors are Pe = P − Pd and Ve = Ṗe =

Ṗ − Ṗd . Thus the error dynamics are derived by

Ṗe = Ve
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FIGURE 4. Schematic structure of flight control algorithms.

FIGURE 5. Position and quaternion tracking errors.

V̇e =
1
m

(
GCBFa + W + DF

)
− P̈d (55)

Design the sliding vector S′
∈ R3 as

S′
= Ṗe + CPe (56)

where C = diag ([c1, c2, c3]) > 0 ∈ R3×3 is the sliding gain
matrix to be designed. Taking the time derivative about (56)
gives the sliding dynamics:

Ṡ′
=

1
m

(
GCBFa + W + DF

)
− P̈d + CṖe (57)

Based on the STSMA, the control law is designed as

Fa =
BCG [

−W + m
(
P̈d − CṖe + Fa,N

)]
Fa,N = −K′

1
S′

∥S′∥1/2
− K′

2

∫ t

0
sgn(S′) dτ (58)

where the control gain matrices are

K′

1 = diag
([
k ′

11 k
′

12 k
′

13

])
K′

2 = diag
([
k ′

21 k
′

22 k
′

23

])
(59)

Substituting (58) into (57) yields

Ṡ′
= −K′

1
S′

∥S′∥1/2
− K′

2

∫ t

0
sgn(S′) dτ + D̄F (60)

where D̄F =
1
mDF = [d ′

1, d
′

2, d
′

3]
T

∈ R3 represents the
lumped disturbance. The finite-time stability can be achieved
if the control gains satisfy

k ′

2i > ρ′
i , k ′2

1i > 4k ′

2i (61)

FIGURE 6. Evolution of control force and torque.

where ρ′
i = sup(|d ′

i |), i = 1, 2, 3.
Once the sliding motion is fulfilled after a specific time

instant t ′f , it results in the reduced order dynamics

Ṗe = −CPe ∀t ≥ t ′f (62)

It is obvious that the asymptotic stability of (62) is guaranteed
when ci > 0, i = 1, 2, 3.
Because the position dynamics are inherently coupled

with the attitude dynamics, the position control law in (58)
incorporates feedback information from the DCM. If we were
to disregard the DCM, specifically when dealing with small
orientation angle approximations, it would be impossible to
derive the closed-loop sliding dynamics as shown in (60),
alongwith the corresponding reduced-order system presented
in (62).

The position control law (58) is constructed based on a
given desired position, velocity, and acceleration commands.
The velocity and acceleration commands are obtained by
directly taking the derivative for a given position command.

110240 VOLUME 11, 2023



Y.-R. Li, C.-C. Peng: Development of a FOFRO: Dynamics Modeling, Analysis, and Control Design

As for the attitude control law (47), the desired quaternion,
angular velocity, and angular acceleration should be given.
There exist some mathematical operations for attitude
command generation. The reference command generation
and smoothing strategy are discussed in the next section.

IV. ATTITUDE COMMAND GENERATION
Let [φ, θ, ψ]T ∈ R3 be the Euler angle subject to 1 →

2 → 3 convention. Eq. (63) converts the Euler angle to the
corresponding quaternion [42]:

q0
q1
q2
q3

 =


cφ/2
0
0
sφ/2

 ⊗


cθ/2
0
sθ/2
0

 ⊗


cψ/2
sψ/2
0
0



=


cφ/2 cψ/2 cθ/2 − sφ/2 sψ/2 sθ/2
cψ/2 cθ/2 sφ/2 + cφ/2 sψ/2 sθ/2
cφ/2 cψ/2 sθ/2 − cθ/2 sφ/2 sψ/2
cφ/2 cθ/2 sψ/2 + cψ/2 sφ/2 sθ/2

 (63)

where c(·) and s(·) represent cos (·) and sin (·), respectively.
According to the Euler-based attitude kinematics, the

Euler angle rate [φ̇, θ̇ , ψ̇]T related to the angular velocity is
described as ωxωy

ωz

 = T(θ, ψ)

φ̇θ̇
ψ̇

 (64)

where

T(θ, ψ) =

 cψcθ sψ 0
−cθ sψ cψ 0
sθ 0 1

 (65)

Taking the time derivative of (64), it follows thatω̇xω̇y
ω̇z

 = Ṫ(θ, ψ, θ̇ , ψ̇)

φ̇θ̇
ψ̇

 + T(θ, ψ)

φ̈θ̈
ψ̈

 (66)

where

Ṫ(θ, ψ, θ̇ , ψ̇) =

−ψ̇cθ sψ − θ̇cψ sθ ψ̇cψ 0
θ̇sψ sθ − ψ̇cψcθ −ψ̇sψ 0

θ̇cθ 0 0

 (67)

Therefore, given desired Euler angle θd = [φd , θd , ψd ]T ∈

R3 and its successive derivatives [φ̇d , θ̇d , ψ̇d ]T ∈ R3,
[φ̈d , θ̈d , ψ̈d ]T ∈ R3, the attitude command can be generated
by introducing (63), (64), and (66):

q0d
q1d
q2d
q3d

 =


cφd/2 cψd/2 cθd/2 − sφd/2 sψd/2 sθd/2
cψd/2 cθd/2 sφd/2 + cφd/2 sψd/2 sθd/2
cφd/2 cψd/2 sθd/2 − cθd/2 sφd/2 sψd/2
cφd/2 cθd/2 sψd/2 + cψd/2 sφd/2 sθd/2

 (68)

ωxdωyd
ωzd

 = T(θd , ψd )

φ̇dθ̇d
ψ̇d

 (69)

ω̇xdω̇yd
ω̇zd

 = Ṫ(θd , ψd , θ̇d , ψ̇d )

φ̇dθ̇d
ψ̇d

 + T(φd , θd )

φ̈dθ̈d
ψ̈d


(70)

where T(θd , ψd ) and Ṫ(θd , ψd , θ̇d , ψ̇d ) are obtained from
(65) and (67) by replacing (θ, ψ, θ̇ , ψ̇) with (θd , ψd , θ̇d , ψ̇d ).

FIGURE 7. Evolution of rotor speed.

V. COMMAND SMOOTHING
For generating the smooth position, velocity, and acceleration
commands from a given position command, the following
command prefilter is presented:

G(s) =
1

(τ s+ 1)p

 1
s
s2

 (71)

where p is the order of filter; and τ = 1/(2π fc), fc is
the associated cut-off frequency (in Hertz). Let x(s) be the
original position command, the smooth position command
xf (s), velocity command vf (s), and acceleration command
af (s) can be calculated byxf (s)vf (s)

af (s)

 = G(s)x(s) (72)

In this study, the position command Pd and the Euler
angle command θd will be given first. The smooth com-
mands are generated from (72) by letting x(s) to be Xd ,
Yd , · · · , ψd , respectively. Based on (72), the smooth position
and the associated velocity, and acceleration commands
are obtained. The Euler angle velocity and acceleration
commandswill be converted to a quaternion, angular velocity,
and angular acceleration commands by using (68). As for
the design of the filter parameters, a higher filter order,
p, and a lower cut-off frequency, fc, provide more smooth
commands. However, it causes an evident phase delay on
the command profile. Notice that the filter order p should
be greater or equal to 3 for the causality of the filter (72).
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FIGURE 8. The flight pose of the proposed novel FOFRO.

These parameters are designed based on realistic flight
scenarios.

To be more comprehensive for the readers to the proposed
control algorithms, the schematic structure is depicted in
Fig. 4. Moving from left to right in the diagram: 1) The user
gives the flight command. 2) By (63)–(72), the smooth flight
command is acquired. 3) According to the state-feedback
information, realize the position and attitude control laws
shown in (58) and (47), respectively. And, 4) Utilizing
the optimal control allocation algorithm presented in (33),
determine the speed of the rotors to compose the design
control force and torque.

VI. NUMERICAL SIMULATION
In the following simulations, the fourth-order Runge-Kutta
algorithm with a sampling time of 0.001 second is used.
To demonstrate the flight novelty, the following position and
Euler angle commands are used:

Pd =


[
0 0 20

]T
0 ≤ t < 5[

5t 25 cos(t − 5) 20
]T

5 ≤ t
(73)

θd =



[
0 0 0

]T
0 ≤ t < 2.5[

0 0.5π 0
]

2.5 ≤ t < 5[
0 0.5π 0.25π (t − 5)

]
5 ≤ t

(74)

Based on the introduction in Section IV and V, the smooth
command is obtained. The cut-off frequency fc = 1 and the
order p = 3 are used. The system parameters m = 5.3,
g = 9.807, CT = 0.5, CM = 0.3, L1 = 0.35, L2 = 0.15,
and

J =

 2.5 0.50 −0.84
0.50 2.5 0.52

−0.84 0.52 1.7

 (75)

are considered. The initial condition is P(0) = [0, 0, 0]T ,
Ṗ(0) = [0, 0, 0]T , q0(0) = 1, q(0) = [0, 0, 0]T ,
ω(0) = [0, 0, 0]T . To verify the flight robustness, consider
the following disturbance model to simulate the effects of the
time-varying disturbances:

DF (t) =
[
sin(t) cos(t) − sin(t)

]T
+

[
−CDX Ẋ −CDY Ẏ −CDZ Ż

]T
DM (t) =

[
sin(t) cos(t) − sin(t)

]T (76)

where CDX , CDY , and CDZ are the drag coefficients. In this
paper, CDX = 0.25, CDY = 0.25, and CDZ = 0.75 are
considered. To fulfill the convergent criteria (51) and (61), the
control gains k21 = k22 = k ′

21 = k ′

22 = 70, k23 = k ′

23 = 150,
k11 = k12 = k ′

11 = k ′

12 = 17.73, k13 = k ′

13 = 25.49, and
c = c1 = c2 = c3 = 7 are applied.

The tracking error of position and quaternion is shown
in Fig. 5. The evolution of the control force and the rotor
speeds are illustrated in Fig. 6 and Fig. 7, respectively. The
observed peak values in Fig. 6 are attributed to discontinuities
in commands, as indicated in (73) and (74). Even though
in this study, all flight commands are smoothed through a
command prefilter, there is always a higher control effort
required at the moment of departure from the equilibrium
point. The results reveal that the system is able to track the
desired command, meanwhile, the reasonable rotors’ speed
shown in Fig. 7 can be determined to generate the desired
control force and the desired torque as shown in Fig. 6. Most
importantly, the resultant rotor speeds are realizable from the
practical point of view. The detailed flight pose information
is visualized in Fig. 8. Simulation firmly confirms the ability
of the proposed novel FOFRO for the arbitrary 6-DoF motion
tracking demands.

VII. CONCLUSION
In this paper, a novel flight configuration, FOFRO, is pro-
posed and its associated equations of motion are derived.
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Simulation results demonstrate that the proposed FOFRO
is capable of achieving arbitrary 6-DoF pose tracking tasks
without inducing singularity issues. Due to the physical
constraints in the FOFRO, it is essential to ensure that each
rotor operates at a reasonable speed. Therefore, an optimal
control allocation algorithm is proposed to address this
problem. Additionally, the STSMA is introduced to guarantee
robust performance. The full orientation and high maneuver-
ability of the proposed FOFRO make it applicable to various
aerospace engineering problems, such as exploration or
rescue missions in particular terrains, material transportation
in narrow areas, and so on.
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