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ABSTRACT One of the significant post-quantum cryptographic candidates is the NTRU public key
cryptosystem. It operates on polynomial rings, where the parameter largely determines the security of the
system. Although NTRU is being studied currently, it has a long and well-established history. There are
several lattice-based attacks on NTRU-like systems that exploit the special structures of the rings used in
these systems. The aim of this paper is to analyze the original NTRU, NTRU Encrypt, and NTRU Primes
encryption schemes by structuring their common elements and showing the strongest hybrid attack using
both lattice reduction and meet-in-the-middle (MITM) search on them. Furthermore, it is noted that, ignoring
a polynomial factor of the not-well-studied cost of Block Korkin-Zolotarev (BKZ) algorithm, we estimate
the security of the construction of encryption keys and show that by balancing lattice reduction costs and a
MITM search cost, one can achieve better performance than using any of these methods on their own. Unlike
previous studies, we found the way to ignore polynomial impact 22-2* from BKZ loops with multiple shortest
vector problem (SVP) and the factor of 27 was omitted from the cost of one step in guessing the SVP.

INDEX TERMS BKZ algorithm, cryptography, ideals, lattices, LLL algorithm, NTRU, public key,

polynomial ring, security proof.

I. INTRODUCTION

The public key cryptosystem was invented by Whitefield
Diffie and Martin Hellman in their seminal paper [1] in 1976.
The public key cryptosystem works based on computational
hardness problems, such as the integer factorization problem
for the RSA cryptosystem [2], the discrete logarithmic prob-
lem for the Diffie-Hellman key exchange protocol [1], the
Elgamal encryption scheme [3], as well as the elliptic curve
discrete logarithmic problem for the elliptic Diffie-Hellman
key exchange protocol and the elliptic Elgamal encryption
scheme [4], [5]. These problems are believed to have no
polynomial-time on a classical computer. In 1994, however,
Peter Shor developed quantum algorithms that could solve
integer factorization and discrete logarithmic problems in
polynomial time [6], [7]. In 2009 [8], NIST advocated that
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the currently used public key encryption scheme, and digital
signature scheme be replaced by quantum safe algorithms.
The NTRU encryption scheme was proposed by Hoffstein,
Pipher, and Silverman in 1998 [9]. In 2005, they presented an
improvement of their scheme [23]. The security of the scheme
relies on computational hard problems such as the shortest
vector problem (SVP) and the closest vector problem (CVP).
This was the first practical post-quantum cryptography over
lattices. In 2017 [10], NTRU Prime was developed by
Bernstein, Chuengsatiansup, Lange, and van Vredendaal in
2017 [10] by slightly modifying the original NTRU [9]
encryption scheme. The NTRU Prime has been entered into
the third round of the NIST’s post-quantum cryptography
competition as one of the alternative candidates for the
key encapsulation algorithms [25]. The significant difference
between the NTRU and NTRU Prime is the ring structures
used in the systems. Other works based on the NTRU
lattices are [11], [12] and [26]. Certain tendencies among
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lattice-based schemes bring security analysis to conventional
attacks. One of the key task that NIST’s competition conducts
is that analysis of submitted candidates. It is a significantly
important to conduct an analysis for the NTRU Prime
and NTRU.

Also, some more works in the area of security analyses
of homomorphic encryption are presented in [27], [28],
[29], [30]. In the [31] can be found technical report,
containing the main aspects of Homomorphic encryption
security.

There are two significant methods for security analysis:
(1) Analysis of a key search space against a direct key brute
force; and (ii) An analysis of lattice reduction complexity
with enumeration.The most well-known direct key attack
against NTRU is meet-in-the-middle [13]. For a lattice
reduction, the Block Korkin-Zolotarev(BKZ) algorithm is
notorious. Despite the existence of other attacks, lattice
sieving algorithms we also add here to meet-in-the-middle
attack as a reference point for security estimations. In [14],
both methods were combined into the hybrid attack, which
featured a balance between lattice reduction cost and
solving SVP enumeration cost. This work designated the
relation between bit-based cost estimation and a complexity
estimation of reduction cost. Subsequently, the hybrid attack
was successfully used on several analyses for such systems
as NTRU Encrypt and NTRU Prime [15]. The two referred
systems appear as improvements of legacy NTRU. The
further development in the cryptography of NTRU-based
systems takes into consideration an error probability [16]
or builds into other SVP-solve algorithms and lattice
reduction algorithms [14] with security cost estimation in
worse-average cases [17]. The hybrid attack and all-around
interest in NTRU make the system analysis most widely
researched and historically approved between other classes
of lattice-based cryptosystems.

In this paper, we provide the results of security analysis
for NTRU Encrypt and NTRU Prime encryption systems.
The security of the NTRU-class encryption system NTRU
Primes which uses non-convolutional polynomial ring in
form R[x]/(x? —x — 1) from NTRU Prime was estimated for a
specific set of parameters. Other than general considerations
on the key generation analysis a system-specific key sampling
models were considered producing more precise security
estimations.

The paper is organized as follows: we recall the necessary
mathematical background for the NTRU and NTRU Prime
schemes in Section II. In Section III, we formalize mathe-
matical problems. In Section IV, we discuss lattice reduction
techniques such as LLL reduction, BKZ reduction, and
the Gram-Schmidt process. In Section V, we recall NTRU
and its variants. In Section VI, we provide system analysis
concerning its security properties, including the structure
of the lattice matrix. In Section VII, we discuss hybrid
attacks against the NTRU Prime, enumeration properties,
lattice reduction properties, and balancing enumeration and
reduction costs. In section VIII, we provide the estimated
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security analysis results. Finally, we discuss conclusion
remarks in section IX.

Il. ABBREVIATIONS
In this paper, the following abbreviations will be used:

MITM Meet-in-the-middle attack

BKZ Block Korkin-Zolotarev algorithm

SVP Shortest vector problem

LLL Lenstra-Lenstra-Lov sz

R[x] Polynomial ring with x variable

T(dy, dr) Ternary polynomials for positive
integers d| and d»

Flx] Polynomial field with x variable

Flx]/m Set of congruence classes for a modulus m

Dy N-th cyclotomic polynomial

L(b;...by) A lattice by basis vectors of by ... b,

L(B) A lattice by basis matrix of B

vlin £y norm of lattice vector v

[l Euclidean norm of lattice vector v

V]l oo Maximum norm of lattice vector v

(L) First Successive-Minima of lattice £

H Rotation matrix over vector h

OLL Computation complexity of LLL

Omitm Computation complexity of MITM

R Convolution polynomial ring

‘P(di, ds,d3) Ternary polynomial product

N Polynomial degree

d Number of non-zero elements in key
polynomial

w1, W2 Size of identity submatrices in isomorphic
matrix of original lattice basis

r, Column indices of identity submatrices in
isomorphic matrix of original lattice basis

i (v) Projection of vector v on the last N — k
basis vectors

B Optimal blocksize parameter

lIll. PRELIMINARIES
In this section, we recall necessary mathematical background
for the NTRU and NTRU prime.

A. VECTOR SPACE
Basic definitions in vast generality come from linear algebra,
which is essential when studying all corresponding to vector
spaces.

A vector space V is a subset of R” which is closed under

addition and under scalar multiplication by elements of R:
VWi, eV, Vaj,aseR:avi+axvneV. (1)

A linear combination of V1, V7, ..
of the form:

., Vp € V is any vector

a1V 4+ a2y + -+ oV, )
where a1, a2, ...,y € R.
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A set of vectors 51, 132, el 1;1, € V is a basis of V if they
are linearly independent:

0[1?)1+0l2?)2+"'+(¥pl;l,=0 — )

=a=-=0o=0, 3)

and each vector v € V can be written in the form:
V= a1by + by + - + apby, “)

with a unique choice of oty # ap # -+~ =ap # 0.

B. LATTICES AND POLYNOMIAL RINGS

A lattice is a discrete additive subgroup of R” which consist
of all integer linear combinations of some set of p linearly
independent vectors B = {l;l, Z)z, e, ZJ,,}.

A set of vectors B C RP? is called a basis of the lattice if
they are linearly independent and they span the lattice with
integer coefficients.

Let R? be the p-dimensional Euclidian space. A lattice in
R? is the set of all integral combinations of basis:

P
LDy, by, ....by) ={D xibi : x; € L. 5)
=1

A ring is a set R that has two operations denoted by +
and x having the following properties which are closure,
associativity, identity, inverse and commutative for addition;
and closure and associativity for multiplication, respectively.
Also, it holds distributive law between both operations.
In case of both NTRU and NTRU Prime uses commutative
rings with multiplicative identity thus we notated them as
rings.

The concept of divisibility which applied for the integers Z
can be also generalized to any ring if there exists and element
ceRsuchthata=">-c.

Let R be a ring and difference between two elements
a € R, b € Ris divisible by m € R then they are congruent
modulo m:

a = b(mod m).

From this proposition, a method for creating new rings
from old ones can be obtained just as a quotient integer ring
Z/qZ can be made from Z by looking at all congruences
modulo q.

For arbitrary ring R we can create a polynomial ring with
coefficients taken from R. This ring is denoted by:
Rixl={ap+aix+...+ax":n>0ag,ai,...,a, €R}.

Q)

An element of R, polynomial a(x) € R[x] is written in
form:

a(x) = ap + ayx + axx® + ... 4 ax". 7

The degree n of a polynomial is the highest power of x
that appears and a,, is a leading coefficient of a polynomial.
A nonzero polynomial whose leading coefficient is equal
to 1 is called a monic polynomial.
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Special case of polynomials 7(d;, dy) are called ternary
polynomials. They are analogue to binary polynomials, with
coefficients equals 0’s and 1’s. For any positive integers
dy and dy:

T (dy, d2)
a(x) has d; coefficients = 1
= talx) e R: a(x)has dy coefficients = -1 . (8)
a(x) has all other coefficients = 0
C. IDEALS

Let R be a ring. An element u € R is called unit if it has a
multiplicative inverse, that is, if there is an element v € R
such thatu - v = 1.

An element a of a ring R is said to be irreducible if it has
no non-trivial factor, i.e., if a is not itself a unit and if in every
factorization of a as a = b x c either b is a unit of ¢ is a unit.

Let F be field and let m € F[x] be a nonzero polynomial.
Then every nonzero congruence class a € F[x]/m has a
unique representative r satisfying:

degr < degm, a = r(mod m). ©)]

Let F be a field. Then every nonzero polynomials in F[x]
can be uniquely factored as a product of monic irreducible
polynomials.

Let F be a field and let a, m € F[x] be polynomials with
m # 0. Then a is a unit in quotient ring F'[x]/m if and only if
ged(a, m) =1

Let F be a field and let m € F[x] be an irreducible
polynomial. Then the quotient ring F'[x]/m is a field, that is,
every nonzero element of F'[x]/m has a multiplicative inverse.

Let F be a finite field having g elements. Then, F has a
primitive root, that is, there is an element g € F such that for
F* € F it creates an additive group:

F*={l,8.¢¢,...,8772}. (10)

Let R be a ring. Then, ideal I is a subset of elements in
the ring that forms additive group and has the property that,
whenever x € Randy € Rthenx x y e ITandy x x € [.
Given an ideal, it is possible to define a quotient ring R/I.

Every nonzero ideal is a product of prime ideals.

An ideal I of aring R is a subset I C R such that ring R is
“closed” under it product:

t

Vil iy, ..., ir €1, r,r2 ... €R: DY ijxrjel. (11)
Jj=1

in [18] was shown that the ideal V generated by rotations of

vector v corresponds to the lattice generated by the column
vectors of:

vi < vxx modf(x):iel0,n—1]. (12)

This rotation basis of the ideal lattice can be used to
construct any vector in the lattice, i. e. if w in the lattice
generated by rotation basis {v;} then there must be some a
for whichw = v x a and then w = >, a;v;.
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IV. FORMALIZATION OF MATHEMATICAL PROBLEMS
Before proceeding to security analysis, we consider security
problems that are used to build encryption systems. These
problems are approached around lattices and are specific to
lattice-based systems. Many of the encryption systems use the
same security concept, constructing a key, at least explicitly,
using vectors of short length. The main concept in lattices is
to distinguish the use of bad basis vectors in common with
good ones within probabilistic encryption.

A. RING FACTORING

Systems under consideration use convolution polynomials
where the ring is irreducible over rationals. In particular,
a common-used form of matched ring is Zq/(XZN + 1).
However, the ring used in legacy NTRU can be factored into:

N — 1= = DOy (x) = D1 (0)Dy (), (13)

where @y is the N-th cyclotomic polynomial.

The choice of the ring is determined by the performance
that an encryption system can achieve, whereas ring factoring
could reduce the security. However, it is supposed to be that
factoring is linked with decryption errors to the same extent.
It is preferable to keep the term ®y(x) as unfactorable as
possible. Most lattice-based schemes include the possibility
of having decryption errors with some small probability.

We believe that the process of minimizing description
errors makes the factoring influence on security insignificant
at high polynomial degree values.

B. DIRECT KEY ATTACK

Direct brute force is not optimal but can be used to compare
the performance of methods for which predicted output is not
known or for which it is non-linear.

Odlyzko’s meet-in-the-middle attack on NTRU works by
splitting the space of possible keys F into two parts such that
F = F1 & F>. Then, the algorithm search collisions: if f; €
JF1 is small or both f; and f> are small, then f = f; +f is also
small, and it is thus a private key.

C. THE SHORTEST VECTOR PROBLEM
The SVP is one of the most well-known lattice problems.
Here is the description of y(n)-SVP:

Given a basis for a lattice £ of dimension n output a
non-zero vector v € L of length at most y(n) - A1(L£), where:

A(L) = mi . 14
1(£) vr?:lr{lo}IIVIIN (14)

€L\

A pair of elements (u, v) € R?, which is also an additive
subgroup, is taken from the lattice to generate a public key:

u-h=vmodgq. (15)

For that pairs consider a matrix in form:
_|a O
M = [ H I} ) (16)
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where I - identity matrix, ¢ - some coefficient. H is rotation
matrix over vector 4 gathered in next way:

7 mod R[x]
h - x mod R[x]
H=| h-x*modR[x] |. (17

- xP~! mod R[x]

This matrix M can be used to obtain any pair of set (i, v)
for which:

u-h=vmodg; (18)
u-h=v+qgk; (19)
k,u)-M = (v, u). (20)

As aresults, matrix M contains a basis for a lattice of (u, v)
pairs. It follows that a pair for a secret key (u, v) is a linear
combination of vectors from matrix M. So, if the metrics for
the vector in pair (u, v) are small, or if the euclidean length
and coefficients are small, then a reduced matrix can reveal
the shortest vector, which is key pair.

V. LATTICE REDUCTION

In this section, we discuss security analsysis against the
NTRU Prime. We consider attacks on the NTRU-like
encryption system. Nowadays, the most effective attack is the
MITM attack which consists of lattice reduction methods.
Lattice reduction is a process consisting of finding a basis
that is short compared to some assumptions like estimation
predefined by lattice structure. In particular, Hermite’s
theorem or Minkowski theorem are used.

BKZ (Block-Korkine-Zolotarev) operates with the LLL
algorithm on processed blocks and uses conditional row
shifting as in Gauss method. LLL, in turn, generates
an orthogonalization mechanizm adapts the Gram-Schmidt
method in a finite field of integer space. This method is based
on vector norm representation, and the row permutation step
involves matrix properties only.

Thus, different ring structures in terms of polynominal
residue class can’t affect reducing algorithm of BKZ directly.
But there is a difference in polynominal choosing that can be
observed according to the next assumptions.

Suppose we have ciphertext that is represented by
a vector with a longer size than defined by reduced
polyniminal ring degree. It can happen in concern for
security or after, let’s assume, homomorphic operations on
ciphertext.

Therefore, ciphertext size needs to be reduced. According
to LLL, the lattice reduction theory norm for a shorter basis
can be estimated using [18] the next inequality obtained from
size and Lova’sz conditions.

To begin with MITM, consider steps that bring the
foundations of the method, such as direct attack, LLL and
BKZ analysis.
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A. LLL REDUCTION

Also, the LLL is used as a first-step function to bring the
lattice to a form suited for further analysis. In this section,
we discuss the LLL algorithm and its security level estimation
against the NTRU Prime.

Gauss’s lattice reduction gives an efficient way to find
the shortest nonzero vector in a lattice of dimension 2,
but as dimension increases, the shortest vector problem
becomes much harder. A major advance came in 1982 with
the publication of the LLL algorithm [19], which allows
prediction of reduction output.

Let {b1, ..., by} be a basis for a lattice L that is contained
in Z. The LLL algorithm terminates in a finite number of
steps and returns an LLL reduced basis for L. The algorithm
executes main loop no more than:

Or11 = O(p* logp + p* log ||bil ).

In particular, the LLL algorithm is a polynomial-time
algorithm.

The LLL-reduced basis has to satisfy next conditions:

1) Size condition H,u,',j H = ﬁ < %

v

J

2) Lovasz condition “v:‘ ”2 > (% — u%il) Hv;k_1 “2 for all
i<iZ<p.

B. BKZ REDUCTION

In this section, we discuss the BKZ algorithm and its security
level estimation against the NTRU Prime. If necessary, NTRU
too.

BKZ is a generalization of the LLL algorithm, which
has increased running time. BKZ constructs blocks with
increased dimension and produces improved output with
guaranteed metrics.

Let L be a lattice. A basis {vi,...,vp} for L is
called Korkin-Zolotarev reduced if it satisfies the following
conditions:

1) v; is a shortest non zero vector in L.

2) Fori = 2,3,...,p, the vector v; is chosen such that

7;_1(v;) is the shortest nonzero vector in 7r;_(L).

HVI<i<j<n:|m) miivp| < 5 lmimidlI* .

VI. NTRU AND ITS VARIANT
In this section, we recall the standard NTRU and NTRU
Prime schemes.

The standard the NTRU, the NTRU Encrypt, and the
NTRU Prime schemes will be reviewed in such a way that is
sufficient to ensure the possibility of the described problems.
In general, the lattice problems can be applied as part of a
key-recovery attack [24]. As a full scheme consists of not only
the generation of a key but also encryption and decryption
algorithms, key-recovery can not fulfill the security capacity
completely. The choice of encryption systems, which are
NTRU-like variants, is explained as follows. First, all three
systems have a well-established history, and their security
is widely studied. Then, it doesn’t take much insight to
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know the most advantageous and up-to-date key recovery
method, which is the hybrid attack. Second, it clearly shows
the different paths of improvement for the legacy encryption
system. The NRTU Encrypt takes advantage of the key
structure while the NTRU Prime also changes the ring
structure. Thus, it helps provide a distinguished analysis.

Relating to the work of Ring-LWE [20] the schemes must
be linked to the base key generation of public/secret keypairs
described as next:

Generate a polynomial a with uniformly chosen coeffi-
cients in Z,. Next, randomly generate two polynomials, s,
e € R with a coefficient chosen from a special distribution
X, and compute b = a - s + e € R. The public key is (a, b)
and the private key is (s, e).

With such a description, NTRU-like systems can be
translated into the short vector problem described above.

As we focus on the key-recovery attack, we can omit the
encryption and decryption phases.

A. NTRU PUBLIC KEY ENCRYPTION SCHEME
Here we recall original NTRU Scheme proposed by
Jeffery et al. in 1998 [9]. The NTRU Encrypt uses quotient
ring in form:

R()

R:xl’—l' 21

Let R, Rp, Ry be the convolution polynomial rings and
V(N is prime) : ged(p, N) = ged(p, q) = 1.

The NTRU encrypt is a encryption system of public
parameters (N, p, q, d) and secret key satisfying:

fx)eTd+1,d);g(x)eT(d,d). (22)

After compute of inverses Fy(x) = f -1y € R, and
Fpx)=f -1y e R, the public key i(x) have next form:

h(x) = Fy(x) - gx) € Ry,. (23)

The rest of the scheme does not matter for the purpose
of constructing the lattice problem regarding the concrete
instance of the NTRU-class encryption system.

B. NTRU ENCRYPT SCHEME
The same as the original NTRU, except that it employs
the technique to ensure that f is reversible in R,. For that
f sampled in form:

Same as original NTRU except it uses the technic to ensure
that f is revertible in R,. For that f is sampled in form:

f=14p-F; (24)
F =P(d1,dr,d3) =A1-Ar+A3: A; € T(d;, dp), (25)

where P(d1, d2, d3) -ternary polynomial product

C. NTRU PRIME SCHEME
Here, we recall NTRU Prime scheme proposed Daniel et.al.
in detailed in 2017 [10].
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The structure of NTRU Prime is the same except of
different choose for quotient ring:
Z(x)
= — 26
xP—x —1 (26)
For invertible property form of a public key has changed
to:

h = g/3f (mod q). 27

VII. MAIN CONSIDERATIONS

We review the main stages of system analysis concerning
its security properties. In addition to general assumptions,
consider a comparative analysis of the following systems:
NTRU Encrypt, and NTRU Prime.

We consider differences in the details of security analysis
for NTRU and its variants. It begins with the construction
of a lattice matrix for the analyzed system, following the
definition of a computation problem in vector space. Then we
choose the best known attack against NTRU lattice, a hybrid
attack with lattice basis reduction and a meet-in-the-middle
enumeration method. The lattice problem is produced by
the key generation method, which is usually the shortest
vector problem. Apart from this, we consider the enumeration
properties of a system and their application to an analysis
method. For comparative analysis, consider parameters that
are specific to each system. Firstly, each system comes with
a set of parameters for permanent use. Consider NTRU’s
parameters set is in form (N, p, g, d), where N - polynomial
degree, p, g - integer modulo for ciphertext and opentext,
respectively, and d - number of non-zero elements in the
key polynomial. Those parameters system-widely define
the structure of a key and parameters for key generation.
The system-specific parameter defining the cryptographic
primitive is not reflected in the parameters set-residue class
of the used ring. This ring is formed from an algebraic
ring of integer polynomials, modulo some cyclotomic-like
polynomial, or another ring with an ideal factoring unique
representation. Another class of parameters is the algorithmic
class, namely, the scheme definition of a system that includes
a key-generation algorithm and a secret-sampling algorithm
for seeding the key. From this point, we can summarize those
parameters from which considerations are delivered in three
different groups alone with numerical values that pass into the
system. The first group consists of all elements that define the
mathematical primitive behind the cryptographic operation.
We name these ring parameters notated by R as in previous
equations, for example (21). The second group defines the
structure of a key notated as X. It relies not only on ring
properties such as dimension and residue class but also on
the sampling algorithm. The third group links the encryption
system with the problem of SVP which is described by
construction of system lattice L. It stresses the difference with
legacy key construction as stated in LWE description.

We named system-specific parameters as core parameters
because the set of {R, X, L}, as reasonably assumpted, fully
defines a key delivery in an NTRU-like system. Another
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part is a system-independent as every NTRU-like system can
handle the same parameters tuple (N, q, p, d, c¢) represented
by direct numerical values:

TABLE 1. Description of parameters.

Core defini- | Notation Affected by

tion group of pa-
rameters

System ring R = ﬁ;([g N,q

Key structure | X N,p,d

System L.;{E:G N,c,q

lattice g/f}

The table above summarizes stated assumptions using
legacy NTRU parameters notation, where N is residue
polynomial degree, ¢ - ciphertext integer modulo, p - plain
text integer modulo, d - parameter (or parameters set) passed
into sample distribution.

The lattice £ is delivered as stated in (15). The notation
M (x) is polynomial modulo which defines the residue class
of a polynomial ring usually represented by ideal (Iv).

The special parameter ¢ doesn’t use in the NTRU tuple but
was added to define differences of key generation with the
LWE equation. Encountered c has value 1 or ether 3. The last
one was used to ensure an invertibility of 3f in Zy[x]. Paper
research influence of ¢ around the way.

Analysis in this section provides results for linking security
parameters from the system core to a system-independent
parameter set representing their influence on different parts
of the key generation routine.

A. RING STRUCTURE

Parameters of NTRU ring determine the encryption space
cost and evaluation perfomance. It affects used memory since
it sets length of both polynomials p and its coefficients gq.
Residue class for the ring R[x] must be irreducible under
ciphertext field to prevent decryption errors and provide
unique closet representatives. For the freedom of choice for
polynomial modulus M (x) = f({Iy)) it is usually a transform
of special case of monotonic polynomial ®,(x).

Polynomial degree p in “Ring-LWE-based” encryption
systems usually chosen as power of 2, where N € Z,
because X2 + 1 is irreducible over rationals. Choice of
reducible polynomials M (x) seems a bit development but can
be easily adapted. For adaptation, we refer to the original [21]
work, briefly describing factoring with appropriate equations
in the table.

B. KEY STRUCTURE

System parameters can be chosen by participants of a
conversation, affecting the security of a system and the
length of encryption keys. The keying of both systems is
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TABLE 2. Ring structure definition.

Parameter | Definition | NTRU Encrypt NTRU Prime
Ciphertext
ring Zg|x] 7
Rlz] @ —1) _ Zal]
(zP —x —1)
Polynomial
modulus
M(x) (z—1)Pp(z) =aP-1| 2P -z -1
Ciphertext
modulus
q 2:9>(6d+1)p g>48-t+1
Polynomial
size
D p > maz(2t,3)

determined by two keypairs: secret (f, g) and public 4. Public
key polynomials appear to have any coefficients within the
bounds of ciphertext modulus, while f in the secret key has
a specific shape, usually called a “small” polynomial with
specific properties, giving a different key structure, X

We recall how considered systems can be linked to a set
of elements {—1, 0, 1} from which keys are sampled. Thus,
they are described by specific classes of polynomials. For
example, they can be sampled from the ternary polynomial
T,(d, e) with d ones, e minus one, and d + e = 2t non-zeros
elements.

TABLE 3. Key structure definition.

Parameter Definition NTRU Encrypt NTRU
PRIME

Polynomial K(z) 14p-P(di,d2,d3) | T(d,e)

class

Non-zero el- | ¢t-(p—1) 4d1do + 2d3 d+e

ements

Maximized t= % 2d1ds + d3 = % d;re = %

statistical

condition

To make f inveritable, the NTRU Encrypt recommends
evaluate it from:

f=1+pF, (28)

where F is polynomial product form. However, it also can
be reduced to direct P(dq, d», d3) coefficients enumeration,
so we replace it with an appropriate form.

Generated polynomials for keys are usually stored in
monomial form. Unproperly chosen key structure parameters
can lead to decryption errors. To make a key statically indis-
tinguishable to an adversary, the main goal is to maximize
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the equiprobability of uniform key making elements. They
count approximately equally. For that purpose, we will use the
overage statistical value noted by the symbol ¢. The reason is
that literature operates with Hamming’s weight, and it needed
to preserve the way to link it to a worst-average security case.
Based on the combinatorial approach, an overage number of
one non-zero element that maximizes searching space:

N
R —. 29)
p
The NTRU Encrypt structures the key in the form of a

polynomial product with total non-zero elements equals:
4didy 4 2d3 = 2t, (30)

and the NTRU Prime operates with 27-small polynomials as
it. The difference is that the NNRU Encrypt is bounded to the
same numbers of elements in 7y (d, d) while for the NTRU
Prime this restriction is removed what is allow more choices.
We reflected with dependencies in the “counting elements”
group of the table.

NTRU literature recommends the use of small coefficients
and p-values because large coefficients badly affect the
security.

The security riles on the ¢-parameter as a first approxi-
mation, and we could bring it to the same notation. It can
be understood deeper in key structure as the total hamming
weight of the polynomial product is greater than the sum of
polynomial weights itself.

C. STRUCTURE OF LATTICE MATRIX
Previously, we explained how NTRU key-recovery can be
formulated as an SVP with a special sort of basis matrix in
which a linear combination of rows generates a lattice. Now
we explain this special sort of lattice applicable to the NTRU-
like system.

Let h be a generated public key in form:

h(x) = ¢ - f, ((x)g(x) mod ¢, (31)

mean that public key was created using two small private
polynomials.

By fixing the representatives in ciphertext space we can
write:

f(x)h(x) = ¢ - g(x) mod gq. (32)
Let u be a polynomial satisfying:
fOOh(x) = c - g(x) + ¢ - u(x). (33)
Fixing qutient polynomial ring we get the quantity:

N N
fOh()—g - u() = > O fx'ex)—q - wx®,  (34)

k=0 i=0

where:

N
Q_filx™ =g - wext = ¢ i, (35)
i=0
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which is similar to multiplication between associated vector
and matrix of dimension N x 2N:
-1
2o c'1 0 H -
u] x X =g, 36
N A M

where H - is an anti-circulant matrix constructed from cyclical
permutations of the coefficients in associated vector, I -
identity matrix.

As it stands c-coefficient are taken out into diagonal matrix
to preserve commutative property as it can apply both to i
and f. We put c-coefficient matrix into brackets with circulant
matrix:

= ¢ H S
[fu]X[ » }=g, (37)

because in order rows to span lattice it must be linked to
form [20]. For that additional column is added associate
lattice with it basis matrix M:

I ¢ 'H

[f ] % [0 ]=[f§]. (38)

According to (20) matrix M:
I ¢ 'H
M = [ 0 gl } . (39)

is the matrix associated with the lattice space of systems
mentioned above. Its submatrix H has the form:

h mod R[x]
h - x mod R[x]
H= h - x% mod R[x] . (40)

7 - xN=! mod R[x]

and depends on ring R[x].

TABLE 4. Lattice definition.

Parameter | Equation] NTRU Encrypt NTRU Prime
-1
Problem | h =c- | h(z) = f!(z)g(x) h(z) = fTEx)g(z)
-1
defini- | 9
tion
. I H I pH
Lattice M [ 0 4 } [ 0 g ]
matrix
h mod Rz 1 h mod R[z]
h -z mod R[z] h - mod R[z]
Circluant | H h - 22 mod R[z] h - 22 mod R[z]
h-zP~! mod R[z] | B - 22=1 mod R[z]
matrix

VIIl. THE ATTACK
A. HYBRID LATTICE REDUCTION METHOD

In this section, we discuss the hybrid attack against the NTRU
Prime. Suppose we have an NTRU lattice with a basis M.
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The main idea is to reduce submatrix B’ in matrix B which is
isomorphic to the original lattice M:

ql, 0 0
B=| =x B 0 |. (41)
* * I,

The rows of B’ is formed from the same-place elements
of the origin matrix M with a size of 2p. Sizes of identity
matrices labeled as w1 and w;, and used in conjunction with
column indexes r; = wy and rp = w1 +2p. The “full size” of
matrix is 2N . Places with ““stars” are filled with values such
that the result matrix is isomorphic to M and has the same
determinant, which is equal to:

Ap =¢". (42)

The reduction can be represented as a transform matrix of a
linear combination of basis vectors U x B, which is converted
again to lower triangular form using the transform matrix Y:

Ly, 0 0 Lo, 0 0

T=(0 U 0] | = B 0
0 0 Iu, * * Loy,
I, O 0 ql,, 0 0
0 Y 0 |==| = T 0
0 0 I * * Iy,

Applying lattice reduction on the sliced matrix B’ results in
a reduced basis which contains the same shortest vectors as
the original matrix, which are 4 and its rotations in the ideal
case.

It is known that lattice reduction with considered tech-
niques produces a basis where its length obeys geometric
series assumptions and can be predicted easily with known
reduction parameters.

Following the geometric series assumption, the structure of
the key vector is used to deliver the required Hermite factor
in the construction projected matrix for lattice reduction.
Its diagonal slope is decreasing and come close to a linear
dependency in the process. Entries of the diagonal will have
values {x*, x%2, x*3, ..., x%N}, where:

o] +ar+az+---+oyy =N. 43)

And rate at which «; decrease can be predicted by it edges:
1 s

o, = > + 5 + 2plog,(3). (44)
1 s

an =5+ o 2plog,(3), (45)

where r1 and r; are indexes for left and right columns of outer
2p-matrix T cutted into p-size and s is a shift of p-size matrix.
Namely ¢%* = g fori < r; and g% = 1 for i > r, with linear
descending between r; and r;.

Next, we consider the Gram-Schmidt technique of enu-
merating_some vector V. Suppose we have a basis L =

{Bl, ..., by} and we need to enumerate all possible linear
combination. If they are pairwise orthonormal:
bi - by, Vi # ], (46)
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then it can easily to calculate coefficients of a linear
combination observing that any vector in L has length which
is given by formula:

aNl;N”z =
- a% by 1% (47)

In another case, if we have to enumerate coefficients from
a “good enough” basis then we can produce an orthogonal
basis with non-integral coefficients using the Gram-Schmidt
process:

5 - -
IvlI© = llaiby + azby + - - -
20T 02 L 212

= ajllb1||” + a3 b2 ||

i—1
bi =B} + D wib}, (48)
j=1

where each vector can be represented as:

*=Z Zv, @} +ijb)—

Mz ¥

vj + Z wivi) - by, (49)

J:l —]+1

which can be applied to projections as well:

N N
W) = | D+ D wv) b | =
J=1 i=j+1
N
= Z Vi + Z Wijvi) - b (50)

i=j+1

To enumerate lattices using the Gram-Schmidt process, the
bound for multiple of it its coefficient must be set. So the
question is how to bound the norm of a vector, which implies
using predicted «,, as roughly o = 1 for columns less than
r1 and o = O for columns greater than r,, which are counted
as short vectors.

The generalization of the Gram-Schmidt process - the
Babai’s nearest plane algorithm can be used to extract a short
vector from the projection of size w;.

Using a lemma of Furst and Kannan, if we have a product
for vectors u and v in Z% in form uT + v and =T;i/2 <v;i <
T;,i/2 then reducing it against 7 with Babai’s nearest plane
algorithm will give a shortest vector v exactly.Then, taking
into account monotonically straight line decreasing:

—min(T;;) < v; < min(7; ;), nH

Ury Oy
— q2 <V < q2 , (52)
log,(2vil) < ar,, (53)
log,(2 - max(|v])) < ar,, (54)
log,2[vlleo) < ar,, (55)

ensures that v can be found enumerating 2p — r, vectors that
remained to the right.

Thus, the essence of the method is to pick up a submatrix
B’ such that ¢,» can be made reasonably large to extract
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the last w» coefficients and guess or enumerate left r, =
w1 + 2p coefficients. At the same time, the cost of the lattice
must be balanced to achieve the same complexity as lattice
enumeration.

For that, we choose parameters wi, wy, where w; is the
bigger contributor to the complexity of the method. As for the
choice of w; it must be quite large to produce smaller blocks
for the lattice reduction algorithm. At the same time, @ ether
wy must allow construction of an isomorphic lattice B with
the same determinant. Thus, the most reasonable choice of
w1 = p left only value of w, unfixed in this method.

B. ENUMERATION PROPERTIES

The next step is to consider finding a structure of key
vector coefficients left after the lattice reduction. It must
be set from a polynomial with an imposition of relations
possibility and constraints of its coefficients, whether they
can be binary or ternary polynomials. The structure of the
polynomial is involved not only in matrix construction but
also defines the search space for lattice vectors enumeration
when searching for the shortest one. Then in the second
phase, we can check the last w; + 2p coordinates of
the key. As a result, we must consider the metric of key
vector ||v|| - Variable § is determined by the lattice reduction
algorithm as a,, and is not fixed. In order to find the shortest
vector parameters, the projection matrix must be balanced
against the lattice reduction algorithm parameters and its
enumeration subroute. This subroute enumerates the search
space formed by projected vectors. Thus, the structure of a
key must be taken into account. Combing all possible-short
length vectors to make the shortest one is simple but not
optimal.

Consider the advanced method, which consists of splitting
the main search space with the cardinal number S into
different subspaces. For example, in the meet-in-the-middle
method, this results in the enumeration of two smaller spaces
with S’ @ S’ and cardinal number of approximately /[S].

Accordingly, the search space of S must be estimated
regarding of used method. We write O(SX) to label the basic
cost to enumerate all possible solutions of shortest vectors
from a given basis which is depends on |S| of key structure K.
As the enumeration method operates with search space we
omit use basic difficulty functions O() for distinguishing from
direct enumeration methods.

For example, the currently known difficulty of the meet-
in-the-middle method brings enumeration costs to O(\/S_K ).

So, we write an equivalent relation:

= V|SK]. (56)

A direct search on the generated key 4 is used to estimate
the search space. Firstly, the structure of the ring is taken
into account. As the lattice basis is formed from the rotation
matrix, it determines how many rotations can be used to
reduce search space. The polynomial modulus of a ring can
be analyzed for the statistical value of the rotation factor for
the mid-range of vectors.

K
|SMITM|
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It is equals to all combinatorial variants reduced with
rotations |S,| = D Ry in which case we write rotation factor

feS
Ry for a single element such that:

p—1 : i_ il
szz{l,lff(x)~x =f(x) -x 57)

P 0, in other case

We note rotation reduction in search cost by relation:

|SK|
1K) = =R,
1S,

where S becomes a set of vectors representatives which
are independent within all the combinatorical variants of
rotations.

In the part of hybrid attack, estimating the search space for
this set becomes a non-trivial task. Consider the remainder
wy = 2N — rp vectors as projections onto corresponding
coordinates where f component of the private key exists. That
said, the task becomes estimating search space in projected
space. If a uniform projected vector onto r,-coordinates looks
like a uniform element, then for such parameters projected
space can be enumerated for its fullpower. For example,
if number of zeros, ones, and minus ones is equal to each
other, that is, 205 = Mones = Mminusones then enumeration
costisf(S,,) = f(3"). And with MITM the enumeration goes
to +/3"2. In the case of irregular distribution, the size of the set
under the projection can be estimated using Shennon entropy
with regard to the key structure:

(58)

|SX

T

= 2P, (59)

After applying the nearest plane algorithm, we know
binary values from the projection onto w; coordinates. So we
fix known entries in the vector representative 7, ).

Thus, the Shannon entropy of search space becomes a
probability function of:

Hp)=— D, p@log,p@). (60)

Ve (SK)
We fix the projection instance |SX |:

sk
Pt () = :S—f,;: 61)

which is split into two instances - coefficients of the
projection and coefficients that left for enumeration:

ISK| =181 x5, (62)

where |SK|, |Sffr | and |S,Ifw | defined as regular combination
distribution permutations which are relative to key structure
K(x) and matrix coordinate permutation.

The full entropy equation become:

JTK . JTK JTK . JTK
ey — -3 R 10g2(| Al m2|). )

ISK| |SK|
n(fz
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The final cost must met the requirement along with rotation
factor:

log,(ISrI) = logy(IS7, 1), (64)
log,(IS* ) = log,(ISy,, 1) — logy(IS; . (65)

Writing full equation it become:

K| 17K | K| 17K |
[ > togy [ =22 ) | - loga(IS/) =
< IS ISK|
)
=log,(IS*]),  (66)
7K - 17K | K| - 17K |
-2 r2|51<|w2 logy r2|51<|w2 +log, (IS, 1)
JTK

@2

=1log,(ISX)). (67

The search space further used as parameter for enumer-
ation algorithm which reduce the complexity relatively to
security parameter O(f (SX)).

General known enumeration method is Odlyzko meet-in-

the-middle which takes square root of original
complexity O(v/ SX).
Fixing security parameter A, we write:
O SK) > A, (68)

VISK| = 1. (69)

The final complexity equation will be:

I | h | 1 | h |
1> r2|51<|w2 log, r2|51<|w2 +log, (IS, 1)

7§,
> A (70)
TABLE 5. Enumeration properties.
Parameter Definition NTRU Encrypt NTRU PRIME
Direct search | |SK| ®) (p;d) ®) (p;t)
space
Projection |S7{22 | flwa,P(d1,d2,d3)) | flw2,T(d,e))
class
Projected A f(a,b)
search space f(K)
Projection |7k, (%2) (%2,
permutations
Key search | |7, (2) (225
permutations
Rotation fac- | | S| p V2(p—t)
tor space

The main differences in construction of key vector.

To ensure that a solution is found with a high probability,
the shortest vector is the Gaussian heuristic. Next, we find
requirements for a BKZ-reduced basis. First, we select &
to find a blocksize beta for BKZ reduction. After that, the
costis calculated the next way. Dimensions in the hybryd
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method are balanced such that the cost of BKZ reduction
is nearly equal to the inner sieving/enumeration algorithm.
The sieving/enumeration const is known. It ranges from super
exponential to exponential according to the method. The cost
of BKZ is unknown. Thus, balancing is nearly a practical and
experimental approach. When the cost of enumeration equals
the upper BKZ cycle cost, the cost of BKZ can be discarded.
Thus, this final step gathers input lattice matrices as input,
so our work is finished before it.

C. LATTICE REDUCTION PROPERTIES

From the lattice reduction algorithm [20], the cost of
achieving the required Hermite factor § is taken. In the case
of BKZ-reduction, it also includes a parameter of optimal
blocksize, 8. There are many variants of the main BKZ
subroute [14] which modify the algorithm costs shown in the
image below. For general-purpose, we use the most costly
known variant given by Chen and Ngyen in [22]. However,
some terms associated with software-specific behavior can
be cut off, like the polynomial impact of the BKZ loop and
the cost of one-step guessing in SVP, resulting in a total of
2427 =211,

O8kz(B. P, Nrounds) = Onodes(B) - 20820 Nromas) .27 (71)
02[{2(,3, D> Nrounds) = 108, Opgz(B, P, Nrounds) =
= logz Ohnodes(B) + logz(P * Nrounds)
+ 7T~ O ges(B) +102,(8p)  (72)

(B) = 0.0007843148% —0.3660788 —6.125.
(73)

*
nodes

Those notations are approximate equations since the exact
cost is not known.

O%xs (B, p)=0.004058924% —0.337913 8 +log,(8p)—6.125.
(74)

Blocksize 8 and Nyounds can be produced from widely used
BKZ-simulator [22] for required hermite factor § to be set.
According to Chen’s thesis, BKZ2.0:

8~ (;)m_ (75)

Also, there is some approximation on requirements of delta
for low-security levels:

1.009, X1 <60
1.008, 60 <A <80
§*(x) = {1 1.007, 80 <A <128 (76)
1.005, 128 < A <256
1.000, 256 < A

D. BALANCING ENUMERATION AND REDUCTION COSTS

log,2lIvliec) < ar,, (77)
1 s
log,2|Ivlle0) < 3 + W p'log,(8), (78)
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Opkz(B, p) ~ Omitm (79)
Ovirm = % -(H(p) — R}) = % - (H(p) — logy(Ry)),
(30)
Owirm =f (K, p), (81)
Oz =f(B.p) =f(f(®).p) =f(f(q,5.2P). p)
=f®.q,r.)). (82)

Thus, balance against variables j and s is needed.

TABLE 6. Balancing complexity (part ).

Parameter Equation NTRU Encrypt

1 d
-3 > Hp(a) + loga(2p)
a,b=0

Hp(a) = (P) (P}, %) Plog2 (P)
oo E20) (i)

Enumeration cost Of (H}, — R})

O: = ngz(ﬁvp) =
= 0.0007843143%—

Reduction cost Oz
7 (8,p) —0.3660783+
+ log,(8 - p) — 6.125

Block size cost B B = f(9)
Fopp——
2p—(G+m)

Hermite factor cost 1) 2 ( ? IJ
C = p—r) logs(q)

— ap2—4p(i+n)+(i2+2rj+r?)

Our algorithm:

Beginning

0

(Check Gaussian heuristics tol
be sure finding exactly

Choose w,

i

Calculate required & and
then B

|

Calculate reduction cost Rc

l

Minimize enumeration
cost Ec by changing r

Return Ec

i

FIGURE 1. Block diagram of the presented algorithm.

IX. ESTIMATING SECURITY
We estimate security for the parameters set (p, g, t) equals
(739, 9829, 204).
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TABLE 7. Balancing complexity (part II).

Parameter Equation NTRU Prime

min(2t,5)
-3 > " Hp(a) + Le)
a=0

Enumeration cost | o (3 — %) Hp(a) = 2%(]) P1og2 (P)
o—a(pP—J
P = (2t—a)
2t
(%)
Lc =loga(2(p — t)
O: = ngz(ﬁsp) =
= 0.0007843148% —

Reduction cost Ox (3,
7 (8.p) ~0.3660786+
+ log,(8 - p) — 6.125
Block size cost B B = f()
7
Hermite factor cost 1) 2 ) ! . !
o= (p—r) loga (q)

— 4p?—4p(+n)+(j2F2rj+r2)

TABLE 8. Key structure definition.

Parameter Notation Greatest impact for secu-

rity analysis

Parameters of a | ¢q,p
system

Key Structure P

Search space, metrics,
gaussian heuristics

Projected search space,
variant Shannon entropy

Residue class of | M(z)
polynomial ring

Rotation factor, circulant
matrix construction

Construction of lattice
problem

Key generation

General considerations.

With general key model, we can fix key parameters
omitting sampling procedure.

The key is represented as ternary polynomial:

h="T(d,d) (83)

Parameters:

J - projected vector size

Ec - enumeration cost

Hr - hermite factor required

B - calculated minimum needed blocksize for BKZ
reduction

Rc - reduction cost

This model fits the original NTRU encryption system.

NTRU Encrypt uses a different rotation factor for
calculations.

With number of loops [ = 8:

j: 296, Ec: 223.204494, Hr: 1.004445, B: 341, Rc: 222.437845
j: 295, Ec: 222.433018, Hr: 1.004435, B: 342, Rc: 223.339609
j: 294, Ec: 221.661539, Hr: 1.004425, B: 344, Rc: 225.147844

With number of loops [ = 12:

: 303, Ec: 228.880125, Hr: 1.004516, B: 333, Re: 215.865162
302, Ec: 228.108337, Hr: 1.004506, B: 334, Re: 216.754378
301, Ec: 227.336547, Hr: 1.004496, B: 336, Rc: 218.537514
300, Ec: 226.564755, Hr: 1.004486, B: 337, Rc: 219.431436
299, Ec: 225.792961, Hr: 1.004475, B: 338, Re: 220.326926
298, Ec: 225.021166, Hr: 1.004465, B: 339, Re: 221.223984
297, Ec: 224.249368, Hr: 1.004455, B: 340, Re: 222.122611
296, Ec: 223.477569, Hr: 1.004445, B: 341, Re: 223.022807
295, Ec: 222.705768, Hr: 1.004435, B: 342, Rc: 223.924572
294, Ec: 221.933965, Hr: 1.004425, B: 344, Re: 225.732807
293, Ec: 221.162161, Hr: 1.004415, B: 345, Re: 226.639277
292, Ec: 220.390354, Hr: 1.004405, B: 346, Rc: 227.547316
291, Ec: 219.618546, Hr: 1.004395, B: 347, Rc: 228.456923

—.

s e e e e e s s e e s
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J: 290, Ec: 218.846736, Hr: 1.004385, B: 348, Rc: 229.368100
j: 289, Ec: 218.074924, Hr: 1.004376, B: 349, Rc: 230.280845
j: 288, Ec: 217.303110, Hr: 1.004366, B: 350, Rc: 231.195158

With number of loops / = 8:

j: 303, Ec: 228.880125, Hr: 1.004516, B: 333, Rc: 215.280200
j: 302, Ec: 228.108337, Hr: 1.004506, B: 334, Rc: 216.169415
j: 301, Ec: 227.336547, Hr: 1.004496, B: 336, Rc: 217.952552
j: 300, Ec: 226.564755, Hr: 1.004486, B: 337, Rc: 218.846473
j: 299, Ec: 225.792961, Hr: 1.004475, B: 338, Rc: 219.741963
j: 298, Ec: 225.021166, Hr: 1.004465, B: 339, Rc: 220.639022
J: 297, Ec: 224.249368, Hr: 1.004455, B: 340, Rc: 221.537649
J: 296, Ec: 223.477569, Hr: 1.004445, B: 341, Rc: 222.437845
j: 295, Ec: 222.705768, Hr: 1.004435, B: 342, Rc: 223.339609
j: 294, Ec: 221.933965, Hr: 1.004425, B: 344, Rc: 225.147844
j:293, Ec: 221.162161, Hr: 1.004415, B: 345, Rc: 226.054314

With number of loops I = 1:

j: 303, Ec: 228.880125, Hr: 1.004516, B: 333, Rc: 212.280200
j: 302, Ec: 228.108337, Hr: 1.004506, B: 334, Rc: 213.169415
: 301, Ec: 227.336547, Hr: 1.004496, B: 336, Rc: 214.952552
: 300, Ec: 226.564755, Hr: 1.004486, B: 337, Rc: 215.846473
1299, Ec: 225.792961, Hr: 1.004475, B: 338, Rc: 216.741963
1298, Ec: 225.021166, Hr: 1.004465, B: 339, Rc: 217.639022
1297, Ec: 224.249368, Hr: 1.004455, B: 340, Rc: 218.537649
1296, Ec: 223.477569, Hr: 1.004445, B: 341, Rc: 219.437845
: 295, Ec: 222.705768, Hr: 1.004435, B: 342, Rc: 220.339609
1294, Ec: 221.933965, Hr: 1.004425, B: 344, Rc: 222.147844
1293, Ec: 221.162161, Hr: 1.004415, B: 345, Rc: 223.054314
1292, Ec: 220.390354, Hr: 1.004405, B: 346, Rc: 223.962353
: 291, Ec: 219.618546, Hr: 1.004395, B: 347, Rc: 224.871961
: 290, Ec: 218.846736, Hr: 1.004385, B: 348, Rc: 225.783137
: 289, Ec: 218.074924, Hr: 1.004376, B: 349, Rc: 226.695882
: 288, Ec: 217.303110, Hr: 1.004366, B: 350, Rc: 227.610196
: 287, Ec: 216.531295, Hr: 1.004356, B: 352, Rc: 229.443528
: 286, Ec: 215.759477, Hr: 1.004347, B: 353, Rc: 230.362548
: 285, Ec: 214.987658, Hr: 1.004337, B: 354, Rc: 231.283136
: 284, Ec: 214.215838, Hr: 1.004327, B: 355, Rc: 232.205292
: 283, Ec: 213.444015, Hr: 1.004318, B: 356, Rc: 233.129018

L S S SO O SV S S S SV S S SO SV S U S SO

A. SYSTEM-SPECIFIC KEY GENERATION MODELS
There is a large degree of freedom in choosing the structure
of the private key. It can be varied from a discrete Gaussian
distribution to a set of polynomials with a prescribed number
of 1s and 2s. The reasons for such choices are varied: binary
polynomials are believed to allow for a small g parameter, but
on the other hand, there is a desire to increase security to the
hybrid combinatorial attack using larger sample spaces.
NTRU Encrypt.
The key is a product of ternary polynomials:

h=f"g, (84)
f=1+pF, (85)
F =Py(d,dp, d3) = Ay - Ay + A3 : A; € (T)(d;, di). (86)

Such key f = 1 + pF is always invertible in R,;. Experi-
ments show that such configuration has less security [15].

NTRU Prime.

Same as general model with ternary polynomials. The
inverse modulo ¢ for f is ensured as:

8
3’

by assumption ¢ is a prime larger than 3, so 3 is invertible
in Ry, is 3f is invertible in R;.

h= (87)

X. CONCLUSION
We have demonstrated a well-known class of attack on the
NTRU cryptosystem: one where there is an initial amount
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of lattice reduction, followed by a generalized meet-in-the-
middle procedure. One way this result can be viewed as
replacing parts of terms that are involved in final security
estimation, for example, for a quick replacement of a model
of approximation cost of BKZ reduction. Also, our analysis
is suited to tracing the influence of choosing the parameters
of a system.

We have shown that by balancing the coefficient of
projected blocks, one can equalize the cost of security in
both parts of the analysis and use the predicted result of a
studied method other than a practical approximation of the
other one. This can be done by putting in two parameters
of projected space and choosing an evaluation formula for
an approximation cost of the lattice reduction method with a
parameter of blocksize.

Revisiting the security of the NTRU and the NTRU Primes,
we have shown the same result for security estimation as in
the original papers. For a specific set of parameters, p = 739,
1 =204, g = 9829 and ring > as in the NTRU Prime,
it shows that security is equal to 2222 _ 223
direct enumeration attack method cost.

We have studied different choices of quotient polynomial
rings. Although it does not affect security analysis directly,
ithas an influence on the rotation factor in enumeration search
cost and also in rotated lattice matrix construction for further
reduction. For dimensions of approximately over 1000, this
difference appears to be insignificant, resulting in 4-5 bits of
security.

Based on security method considerations, we have
estimated security by omitting software-specific behavior
routes from lattice reduction to produce enhanced security
estimations. Apart from previous assumptions, our analysis
differs in several important ways. First, we have ignored the
polynomial impact of 2°-2* from BKZ loops with multiple
SVP solver calls. Next, we have omitted a factor of 27 from
the cost of one step in guessing the SVP. Thus, we have
expected our results to be independent of the currently
available computation resources. To produce the predicted
output, the initial lattice matrix input has to be LLL-reduced.
We believe that the sources of errors that lead to the security
overestimates can be more than compensated for by the
underestimates from both factors mentioned above.

comparing to
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