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ABSTRACT This paper proposes a novel and efficient method of impulse response modeling in presence of
input and noisy output of a linear time-invariant (LTI) system. The approach utilizes Relative Entropy (RE)
to provide the impulse response estimate of the system with an optimum length as well as an optimum time
delay. Classical methods for this systemmodeling use two separate steps for the time delay estimation and for
the impulse response length selection. Existing time delay methods focus on various proposed criteria, while
the existing order selection approaches choose the optimum impulse response length based on their own
criteria that are different from the time delay approaches. The strength of the proposed RE based method is
in using only ‘‘one’’ criterion, the RE based criterion, to estimate both the time delay and the impulse response
length simultaneously. The desired RE is the Kullback-Leilber divergence of the estimated distribution from
its unknown true distribution. A unique probabilistic validation approach estimates this unavailable desired
relative entropy andminimizes this criterion to provide the impulse response estimate. In addition, estimation
of the noise variance, when the Signal to Noise Ratio (SNR) is unknown, is concurrent and is based on
optimizing the same RE based criterion. This work elaborates the critical role of the data length and the SNR
in data based LTI system modeling. The approach is also extended for online impulse response estimation.
The proposed online method reduces computational complexity of the offline model estimation upon the
arrival of a new sample. The introduced efficient stopping criterion for the online approach is extremely
valuable in practical applications. Simulation results depict superiority of the RE based approach as a time
delay estimator or as an order selection approach compared to the conventional methods. They also illustrate
precision and efficiency of the proposed method compared to the state of the art methods in simultaneous
time delay estimation and order selection. Not only RE basedmethod outperforms the competing approaches,
but also is shown to be more robust to the variations of the SNR.

INDEX TERMS Relative entropy, impulse response estimation, LTI system, time delay estimation, order
selection, online modeling.

I. INTRODUCTION
Linear Time-Invariant (LTI) systems characterize a wide
range of dynamics around us. Modeling impulse response
of these systems using a finite length input and noisy
output is the focus of this work. In practical applications,
due to the uncertainty caused by noisy observations, issues
such as underparamatrization or overparameterization of the
impulse response estimate cause very challenging problems.
Most existing estimators use the mean square error (MSE)
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to find the parameter estimates in this setting. If the
data have a length of N , it is known that up to N
coefficients of the impulse response can be estimated from
the available data [1]. However, the main challenge in this
scenario is which subspace of these coefficients should
be chosen for the MSE estimate. In this paper we rely
on Relative Entropy (RE) to find the optimum estimate
of the impulse response. Relative Entropy (also known as
Kullback-Leibler divergence) is a statistical distance that
measures the difference between two probability distribu-
tions. Relative entropy is a divergence in terms of information
geometry [2] and has a wide range of applications from
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the theory of information theory to signal processing [3],
control systems [4], [5], sensor networks [6], cryptography
[7], machine learning [8], [9], [10] and physics [11]. If the
relative entropy between two probability distributions is
zero, then these two distributions have identical quantities of
information [12]. In this systemmodeling context, the relative
entropy can quantify the similarity between the unavailable
model and the approximated model. The proposed RE based
method provides the impulse response coefficients estimate
and includes the optimum estimate of the associated time
delay as well as the optimum estimate of the impulse response
length.

Order selection or estimation of impulse response length
is an important task for the purpose of overestimation
avoidance [1] and model selection methods are critical in
a wide range of applications and in areas such as brain
source localization [13], [14], wireless sensor networks
[15] and machine learning [16]. While the existing order
selection methods concentrate on estimating the length of
the impulse response, they do not estimate the time delay
of the system. On the other hand, time delay estimation
methods such as the Cumulative Sum (CUSUM) method
[14], [17], the frequency domain-based method [18] and
parametric methods (MATLAB®delayest) use different
criteria to estimate the time delay only [14]. Note that time
delay itself is an ubiquitous physical phenomenon that often
occurs in communication systems [19], [20], power systems
[21], biological systems [22], [23], transportation systems,
mechatronic systems [24] and industrial processes such as
chemical processing systems [25]. Inaccurate or improper
time delay estimation can cause deterioration in stability and
performance in control process. Estimating the time delay is
necessary in system modeling, identification algorithms and
control systems [26], [27].

The motivation of this work is based on the similarity of
the problem in both time delay estimation or order selection
in the presence of persistently exciting input and noisy
output. The main challenge in both scenarios is caused by
the existence of the additive noise in the output. So while
approaches in both the time delay estimation and the order
selection start with the least square estimate of the impulse
response, the main question is how to denoise this resulted
impulse response. In the absence of the additive noise, the
least square impulse response estimate can provide the exact
time delay and will have the exact desired length. Therefore,
in this work we concentrate on introducing and utilizing a
criterion that extracts the optimally denoised version of the
impulse response that can consequently provide the time
delay and order of the impulse response simultaneously. The
proposed RE based method provides the optimum impulse
response with the optimum length and delay all at once by
minimizing the desired relative entropy criterion. Through a
unique approach probabilistic bounds on the Relative Entropy
are calculatedwhich enables this optimization procedure. The
powerful relative entropy criterion even enables the method
to simultaneously estimate the variance of the output noise

when it is unknown. In this procedure, estimation of the
reconstruction error, which is the mean squared error (MSE)
between the estimated output and the unavailable noise-free
output, is required. Preliminary work for the estimation of
this error is available in [1], [28]. The probabilistic bounds
on reconstruction error have been shown to be useful and
efficient in a wide range of applications such as blind source
separation [29], brain source localization [30], compressed
sensing [31] and the number of source signal estimation [32].
These bounds are shown to be also important and relevant in
the calculation of the desired RE criterion.

In many real-world applications of impulse response
estimation such as sensor validation [33] and power systems
[34], it is desirable to estimate the impulse response of the
system, online. For example, power systems must respond
quickly to power outages to avoid generators damage, under-
frequency load-shedding, and fault cascades [34]. Therefore,
online monitoring of power systems is a crucial element
in the stability of power networks. In general, in online
applications, the dimension of the data increases rapidly
as time grows. Consequently the computational complexity,
and therefore its cost, increases accordingly [35], [36] and
re-estimating the optimal impulse response with arrival of
the new data is not efficient. To address this problem we
equip the proposed RE based method with a recursive online
estimation strategy. The method updates the time delay and
model order estimates with respect to the new received data.
As a result, the complexity order of the impulse response
estimation decreases from O(N 3) to O(N 2). Furthermore,
a novel efficient stopping criterion is introduced for this
online system modeling. The stopping criterion refers to the
condition that must be met in order to terminate the execution
of the algorithms. Therefore, it is an important factor in the
efficiency of online estimation methods [37]. It is important
to note that this online estimation, empowered with the
consistent stopping criterion, has a great potential as a reliable
method formodeling slowly varying LTI systems. In addition,
it is worth mentioning that while this work concentrates on
the case of single-input single-output system, the approach is
easily expandable and applicable for multi-input and multi-
output system.

The paper is organized as follows: Section II states
the problem and Section III introduces the mathematical
foundation and notations used in this paper. Relative Entropy
(RE)-based system modeling is presented in Section IV.
Section V introduces the online RE-based system modeling.
The simulation results are provided in Section VI and
Section VII is the conclusion.

II. PROBLEM STATEMENT
Consider a causal linear time-invariant (LTI), single-input
single-output system with the following noise-free output

ȳ(n) =

∞∑
i=0

θ̄ (n)u(n− i) (1)
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where u(n) is the input at time n, and θ̄ (n) is the unknown
impulse response of the system which can be represented in
the following column vector format

θ̄ = [θ̄ (0), · · · , θ̄ (d̄), . . . ]

= [0, . . . , 0︸ ︷︷ ︸
d̄

, θ̄ (d̄), θ̄ (d̄ + 1), . . . ] (2)

where d̄ is the true unknown delay of the system. The
observed noisy output of the system is

y(n) = ȳ(n) + ω(n) (3)

where ω(n) is the additive white Gaussian noise with zero
mean and variance of σ 2

ω. Given the following input-output
data with length N

uN = [u(0), u(1), . . . , u(N − 1)]

yN = [y(0), y(1), . . . , y(N − 1)], (4)

the goal is to estimate the impulse response and the
corresponding time delay, d̄ , in (2). In this estimation,
the optimum length of the impulse response has to be
simultaneously provided. Note that this problem setting is
different from problems such as echo cancellation inwhich no
impulse response is involved and the signal delay is estimated
based on comparing two noisy observations [38].

III. IMPULSE RESPONSE MEAN SQUARE ERROR (MSE)
ESTIMATE
Before proposing the method, the notations are established.
Here, the true unavailable time delay of the impulse response
is d̄ and if the filter is finite length, the unavailable true length
is m̄. First, the MSE estimate of the impulse response for a
range of impulse response length m where 1 ≤ m ≤ M
and for delay d , 1 ≤ d ≤ m is calculated. The following
will establish notations for the MSE estimate of the impulse
response.

A. IMPULSE RESPONSE ESTIMATE FOR TIME DELAY d
It is known that given the input-output data of length N , at
most the first N coefficients of the impulse response can be
estimated. In practical application, the length of the estimated
impulse response is set toM , which can be smaller than N to
avoid excess noise fitting or due to partial information about
the system structure. Consequently, for any chosen value of
M , such that M ≤ N , it is desired to find the estimate of the
firstM coefficients of the unknown impulse response in (2):

θ̄ = [0, . . . , 0︸ ︷︷ ︸
d̄

, θ̄ (d̄), θ̄ (d̄ + 1), . . . θ̄ (M − 1)︸ ︷︷ ︸
θ̄d̄,M

] (5)

where

θ̄d̄,M = [θ̄ (d̄), θ̄ (d̄ + 1), . . . θ̄ (M − 1)] (6)

denotes the values of d + 1st toM th elements of the impulse
response.

Lets denote impulse response coefficients (IRC) of length
M with a time delay of d (0 ≤ d ≤ M ) as follows

θ = [0, . . . , 0︸ ︷︷ ︸
d

, θ (d), θ (d + 1), . . . θ (M − 1)︸ ︷︷ ︸
θd,M

] (7)

B. IMPULSE RESPONSE ESTIMATE FOR TIME DELAY d
AND LENGTH m
In real applications the additive noisemay corrupt the impulse
response estimate of length M . This noise overfitting can
happen when the true impulse response is of finite length less
than M , or when it has infinite length but small values of
the tail coefficients are comparable with the noise standard
deviation and their estimates are very much corrupted. In this
scenario we consider class of impulse responses with the
following structure (d < m ≤ M ), by generalizing the
structure of impulse response coefficients in (7) with the new
variable m:

θ = [0, . . . , 0︸ ︷︷ ︸
d zeros

, θ(d), . . . , θ(m− 1)︸ ︷︷ ︸
θd,m

, 0, . . . , 0︸ ︷︷ ︸
M−m zeros

] (8)

This can generalize the representation of the true impulse
response parameter in (5) to the following

θ̄ = [0, . . . , 0︸ ︷︷ ︸
d̄ zeros

, θ̄ (d̄), . . . , θ(m̄− 1)︸ ︷︷ ︸
θ̄d̄,m̄

, 0, . . . , 0︸ ︷︷ ︸
M−m̄ zeros

] (9)

Note that m̄ can be finite and less than M or can be the same
as M , especially in the cases where the true length of the
system is larger thanM or even infinity.
Here, the Topelitz matrix generated by the input is:

A0,N =


u(0) 0 . . . 0
u(1) u(0) . . . 0

...
...

. . .
...

u(N − 1) u(N − 2) . . . u(0)


= [A0,d Ad,m Am,M AM ,N ] (10)

where Aa,b is a matrix with columns a+1st to the bth column
of the Toeplitz matrix. Based on (9) and (10), the noise-free
output of the system (1) is:

ȳN = [A0,d̄ Ad̄,m̄ Am̄,M ]

 0d̄×1
θ̄d̄,m̄

0(M−m̄)×1

 (11)

= A0,d̄0d̄×1 + Ad̄,m̄θ̄d̄,m̄ + Am̄,M0(M−m̄)×1

= 0 + Ad̄,m̄θ̄d̄,m̄︸ ︷︷ ︸
delay d̄ and length m̄

+ 0 (12)

while the observed noisy data (3) is:

yN = [A0,d Ad,m Am,M ]

 10,d
θd,m
1m,M

 + ωN (13)

= A0,d10,d + Ad,mθ̄d,m︸ ︷︷ ︸
delay d and length m

+Am,M1m,M + ωN

(14)
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The possible unmodeled coefficients of the true parameter are
denoted by 1 as follows

1a,b = θ̄a,b (15)

Impulse response parameters with nonzero values starting at
delay d and with the length of m can generate outputs with
the following structure

yNd,m = [A0,d Ad,m Am,M ]

 0

θd,m

0

 + ωN (16)

= A0,d × 0d×1 + Ad,mθd,m︸ ︷︷ ︸
delay d and length m

+ Am,M × 0(M−m)×1 + ωN

(17)

TheMSE estimate of θ using the available data with the above
structure is as follows

θ̂d,m = argmin
θd,m

||yN − Ad,mθ ||
2
2

= (ATd,mAd,m)−1ATd,my
N (18)

Using the structure in (8) this estimate can equivalently be
represented as

θ̂ = [0, . . . , 0︸ ︷︷ ︸
d

, θ̂d,m, 0, . . . , 0︸ ︷︷ ︸
M−m

] (19)

The estimate of the observed output, according to this
estimated IRC is:

ŷNd,m = Ad,mθ̂d,m (20)

C. SUMMARY OF NOTATIONS AND THE FOLLOWING
DESIRED QUESTION
yN , uN in (4): The input and output with a fixed length N .

θ in (8), θ̄ in (9): While θ represents the impulse response
parameters if there is a bar over the θ , θ̄ is the true unavailable
parameter.

θ̂ in (19), θ̂d,m in (18): If there is a hat over θ , θ̂ is an
estimate of the impulse response. In addition θd,m are values
of the θ from d + 1 to m itself with a length of m − d . The
MSE estimate of θ for each delay d and with total length of
m is θ̂d,m.
ŷNd,m in (20), ȳN in (12): The parameter estimate θ̂d,m

consequently produces an estimate of the output that is
denoted by ŷNd,m. While ȳN is the noise-free output of the
system, ŷNd,m is the estimate of this value using the available
noisy data.

The goal is to compare θ̂d,ms’ estimates of the system,
for a range of delay d and a range of impulse response
length m, and choose the one that optimally represents the
unknown system. In the following section the proposed
relative entropy criterion is calculated for the purpose of this
comparison.

IV. RELATIVE ENTROPY (RE)-BASED LTI MODELING
The proposed method in this section determines the optimum
impulse response estimate based on relative entropy criterion.
The true unknown impulse response has an unknown delay
of d̄ and an unknown length of m̄ (can be infinity). From (1)
and (3) the probability distribution function of the observed
output given the true parameter θ̄ and the input uN is:

fy(yN ; θ̄ , uN ) =
1

(
√
2πσ 2

ω)N
e
−

||yN−ȳN ||
2
2

2σ2ω (21)

which is a Gaussian distribution with mean ȳ in (3). On the
other hand, the probability distribution function of the output
given the estimated parameter θ̂d,m, with delay d and length
m (18), and input uN is:

gy(yN ; θ̂d,m, uN ) =
1

(
√
2πσ 2

ω)N
e
−

||yN−ŷNd,m||
2
2

2σ2ω (22)

where ŷNd,m is generated by the estimated θ̂d,m in (20). This
is a Gaussian distribution with mean ŷNd,m. It is known
that the relative entropy between two multi-variate normal
distributions f (yN ), with mean µ1 and covariance matrix
61, and g(yN ), with mean µ2 and covariance matrix 62,
is [39], [40]:

D(f ||g) =
1
2
(log

|62|

|61|
− N + tr{6−1

2 61}

+ (µ2 − µ1)T6−1
2 (µ2 − µ1)) (23)

The relative entropy between the true distribution of the out-
put in (21) and the estimated distribution in (22) (equivalently
denoted by gd,m) based on (23) is:

D(f ||gd,m) =
1
2
(N

zd,m

σ 2
ω

) (24)

where zd,m is the distance between the true unavailable noise-
free output ȳN and the estimated output ŷd,m and is denoted
as the Reconstruction Error.

zd,m =
1
N

||ȳN − ŷNd,m||
2
2 (25)

The aim is to compare the relative entropy of the impulse
response estimates of different delay and length and to choose
the optimum estimate θ̂d∗,m∗ with the optimum delay d∗ and
the optimum length m∗ that minimizes this criterion.
As (24) shows, minimizing the relative entropy is equiva-

lent to minimizing the reconstruction error zd,m. Although the
true noise-free output is not available, in the following section
probabilistic bounds on the reconstruction error are provided
by using the connection between the mean and variance of
this random variable and the available output error, denoted
as follows

xd,m =
1
N

||yN − ŷNd,m||
2
2 (26)

For each m and d a sample of this random variable is
available. This sample will help provide probabilistic bounds
on zd,m.
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A. PROBABILISTIC ESTIMATION OF RECONSTRUCTION
ERROR
Mean and variance of the output error and mean and variance
of the reconstruction error are provided in the following
Lemma.
Lemma 1: The output error, xd,m, defined in (26),

is a sample of Chi-square random variable, Xd,m, and
the reconstruction error zd,m, defined in (25), is a sample
of Chi-squared random variable Zd,m with the following
expectations and variances

E(Xd,m) = (1 −
m− d
N

)σ 2
ω + 1d,m (27)

var(Xd,m) =
2
N
(1 −

m− d
N

)(σ 2
ω)

2
+

4σ 2
ω

N
1d,m (28)

E(Zd,m) =
m− d
N

σ 2
ω + 1d,m (29)

var(Zd,m) =
2(m− d)

N 2 (σ 2
ω)

2 (30)

where σ 2
ω is the additive noise variance in (3) and 1d,m =

1
N ||Gd,mFd,m||

2
2, with Gd,m and Fd,m defined as follows.

Gd,m = I − Ad,m(ATd,mAd,m)−1ATd,m (31)

Fd,m =
[
A0,d Am,M

] [
10,d
1m,M

]
(32)

Proof: In Appendix A.
Consequently, for each m and d , calculating the expected

value and the mean of the reconstruction error requires
knowledge of the noise variance and the additional term
1d,m =

1
N ||Gd,mFd,m||

2
2. Note that 1d,m can be zero or

non-zero due to the possible unmodeled dynamics in the
subspace with delay d and length m. Using the available
sample of the output error, the following theorem provides
probabilistic worst-case bounds on the reconstruction error.
Theorem 1: Using the available calculated output error

xd,m, in (26), the upper bound and the lower bound of the
reconstruction error, in (25)), with confidence probability
Q(β) and validation probability Q(α) are:

zd,m = Ud,m +
m− d
N

σ 2
ω + β

√
2(m− d)σ 2

ω

N
(33)

zd,m = max{0,Ld,m +
m− d
N

σ 2
ω − β

√
2(m− d)σ 2

ω

N
} (34)

where

Ud,m = xd,m − cd,m +
2α2σ 2

ω

N
+ κd,m(α) (35)

Ld,m = xd,m − cd,m +
2α2σ 2

ω

N
− κd,m(α) (36)

and

κd,m(α) = 2α
σω
√
N

√
α2σ 2

ω

N
+ xd,m −

1
2
cd,m (37)

cd,m = (1 −
m− d
N

)σ 2
ω. (38)

where Q(α) =
∫ α

−α
1

√
2π
e−x

2/2dx.

Proof: In Appendix B.
The upper bound of the reconstruction error is the

worst-case probabilistic upper bound that can provide the
optimum value of the delay and length with respect to
the relative entropy criterion in (24)

(d∗,m∗) = argmin
d,m

D(f ||gd,m) = argmin
d,m

1
2
(N

zd,m

σ 2
ω

) (39)

where D(f ||gd,m) is the calculated probabilistic worst case of
the desired relative entropy. In the above calculation, the noise
variance is assumed to be known. In the following section, the
relative entropy is optimized for the case of unknown noise
variance.

B. RELATIVE ENTROPY CRITERION WITH UNKNOWN
NOISE VARIANCE
Unknown noise variance σ 2

ω in the desired RE criterion in (24)
can be estimated along with the unknown time delay d̄
and impulse response length m̄. A range of possible noise
variance values between σmin and σmax , is considered σ ∈

[σmin, · · · , σmax]. In this case, the true probability distribution
of the observed data in (21) can be one of the following
distributions

f (yN ; θ̄ , uN , σ ) =
1

(
√
2πσ 2)N

e−
||yN−ȳN ||

2
2

2σ2 (40)

while the distribution of the data based on the estimated
output is:

g(yN ; θ̂d,m, uN , σ ) =
1

(
√
2πσ 2)N

e−
||yN−ŷNd,m||

2
2

2σ2 (41)

The upperbound of the reconstruction error in (33) can be
calculated for each of these noise variances denoted by zd,m,σ .
Therefore, the relative entropy associated to these σ s can be
calculated as follows (24).

D(f (σ )||gd,m(σ )) =
1
2
(N

zd,m,σ

σ 2 ) (42)

Minimizing the relative entropy estimate between f (σ ) and
gd,m(σ ) determines the optimum values d∗, m∗ and the
optimum noise variance σ ∗

ω
2

(d∗,m∗, σ ∗
ω
2) = arg min

d,m,σ
D(f (σ )||gd,m(σ )) (43)

Algorithm 1 shows the complete pseudo code of the proposed
RE-based impulse response estimation method. Note that the
calculation of each of the IR estimates θ̂Nd,m is of order O(N 3)
due to the use of the Toeplitz matrix and the use of inverse
matrices. On the other hand, the process of RE minimization
will not add any computational complexities of the order of
the data length as the range of possible delay and possible
impulse response length are chosen as finite values.
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Algorithm 1 RE Based IR Estimation With Optimum Delay
d∗ and Length m∗ and Noise Variance σ ∗

ω
2

Input: Input and output data xN = [x1, x2, . . . , xN ]
and yN = [y1, y2, . . . , yN ], range for noise variance
σ ∈ [σ1, σ2, σ3, . . . , σK ], validation parameter α and
confidence parameter β, maximum length of the IRCs
M

Output: Estimated time delay d∗, length of the IRCsm∗ and
estimated noise variance σ ∗

ω

1: for i = 1; i ≤ K ; i++ do
2: σ = σi
3: for (m = 1;m ≤ M;m++) do
4: for (d = 1; d ≤ m;m++) do
5: Estimate the IRCs θ̂d,m based on (18)
6: Calculate the output error, xd,m from (26)
7: Calculate the upper bound of reconstruction error

zd,m,σ from (34) to (35)
8: if zd,m,σ ∈ R+ then
9: continue the algorithm

10: else
11: go to next value of σ

12: end if
13: end for
14: end for
15: end for
16: if All the calculated zd,m ∈ R+ then
17: Estimate the optimum time delay d∗ and length of

IRCs m∗ and noise variance σ ∗
ω
2 (43):

(d∗,m∗, σ ∗
ω
2) = argmind,m,σ Dd,m,σ (f (σ )||gd,m(σ ))

18: end if

V. ONLINE RE BASED IMPULSE RESPONSE (IR)
ESTIMATION WITH OPTIMUM DELAY AND OPTIMUM
LENGTH
In some practical applications, the received observations are
sequential. Each time a new data point arrives and the data
set is updated. This additional information should then be
used to recompute the parameter estimates of the system and
update the existing parameter estimates with respect to this
new received data point. Recomputing the impulse response
estimate from scratch is costly and requires exponential
computing time and memory. Therefore, for online practical
applications, it is desirable to update the existing parameter
estimate recursively. Let us denote the least square estimate
of the impulse response of the system after receiving N
observations by θ̂N . The updated impulse response estimate
after receiving the (N + 1)th observation (19) is denoted
by θ̂N+1

d,m .

θ̂Nd,m → θ̂N+1
d,m (44)

and consequently the output error (26) as a function of N is
updated to:

xN+1
d,m =

1
N + 1

||yN+1
− ŷN+1

d,m ||
2
2 (45)

which will lead to an update of the upperbound on the
reconstruction error that itself leads to updates of the
estimated delay and estimated impulse response length.

d∗
N ,m∗

N → d∗

N+1,m
∗

N+1 (46)

The following subsection provides details of the online recur-
sive procedure for the proposed RE optimization method.
In addition, note that for practical online applications, a stop-
ping criterion is essential and valuable. Next, we propose an
stopping criterion for the procedure asN grows. The stopping
criterion is beneficial and crucial in practical applications and
will also help expand the application of the RE based method
for modeling systems with coefficients that are gradually
changing with the time.

A. UPDATING PROCEDURE
The parameter estimate (18) using the data length of N+1 is:

θ̂N+1
d,m = argmin

θ∈d,m
||yN+1

− AN+1
d,m θ ||

2
2

= ((AN+1
d,m )TAN+1

d,m )−1(AN+1
d,m )

T
yN+1 (47)

where ANd,m is the columns of the Toeplitz matrix in (10) from
the index d + 1 to the index m. If the data length increases by
one, a new column and a new row are added to the matrix
in (10) and consequently with the N + 1th data we have:

AN+1
d,m =

[
ANd,m

(BNd,m)
T

]
(48)

where

(BNd,m)
T

= [u((N + 1) − (d + 1)), · · · , u((N + 1) − m)]

(49)

The following Lemma uses the available θ̂Nd,m and u(N + 1)
and y(N + 1) to provide θ̂N+1

d,m .
Lemma 3: Recursive method of updating θ̂Nd,m → θ̂N+1

d,m is
as follows.

θ̂N+1
d,m = (KN

d,m)
−1

−
1

1 + tr(γ Nd,m)
CN
d,m(C

N
d,m)

T

× ((ANd,m)
T yN + Bd,my(N + 1))

= (I −
1

1 + tr(γ Nd,m)
γ Nd,m)θ̂

N
d,m

+ (I + γ Nd,m)C
N
d,my(N + 1)

where

CN
d,m = (KN

d,m)
−1BNd,m, γ Nd,m = (KN

d,m)
−1BNd,m(B

N
d,m)

T

(50)

and tr(a) is the trace of matrix a.
As a result of this recursive calculation, the complexity

order of non recursive calculation of θ̂N+1
d,m which is of order

O(N 3) will be reduced to O(N 2).
Proof: In Appendix C.
This parameter update generates an updated data error

which can be used in calculation of the reconstruction error
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upperbound in (34) to provide the updated delay and length
of the parameter estimate based on (24)

(d∗

N+1,m
∗

N+1) = argmin
d,m

DN+1(f ||gd,m) (51)

and chooses the optimum parameter estimates.

ˆ(θ∗)
(N+1)

= θ̂N+1
d∗

N+1,m
∗

N+1
(52)

B. STOPPING CRITERION
For the stopping criterion, the following desired signal to
noise (SNR) ratio is logical:

Best Estimate of Output
Output Estimation Error

=
||ŷNd∗,m∗ ||

2
2

||ȳN − ŷNd∗,m∗ ||
2
2

=

1
N ||ŷNd,m||

2
2

zNd∗,m∗

(53)

The desired SNR in dB is in the following form, and the
stopping criterion can be defined based on a desired lower
bound on this SNR, with a chosen ϵ:

SNR = 10 log(
1
N ||ŷNd,m||

2
2

zNd∗,m∗

) , SNR > 10 log(
1
ϵ
) (54)

To utilize such stopping criterion, we can use zd∗,m∗

in (34) which is our probabilistic worst-case estimate of
the unavailable zd∗,m∗ . Consequently, the desired stopping
criterion chooses the smallest value of N such that the
following is satisfied.

zNd∗,m∗

1
N ||ŷNd,m||

2
2

< ϵ (55)

VI. SIMULATIONS
The performance of the Relative Entropy (RE)-based system
modeling is analyzed and compared with other approaches in
two scenarios for Finite Impulse Response (FIR) and Infinite
Impulse Response (IIR) modeling. Consider the following
two time-delayed systems:
System I:A lowpass FIR filter with 20 kHz pass band-edge

frequency, 96 kHz sampling frequency, 0.01 dB peak-to-peak
ripple and 80 dB stop band attenuation with time delay d̄ =

7 and length of m̄ = 69.1

System II: Non-minimum phase IIR system with the
following impulse response [26],

θ̄ (n) = 0.2545(0.9094)n − 0.3316(0.8146)n, n ≥ 0 (56)

time delayed by d̄ = 11.
Both system’s inputs are independent identically dis-

tributed (IID) Bernoulli sequences of ±1 with data length of
N = 1000.

1https://www.mathworks.com/help/dsp/ref/dsp.lowpassfilter-system-
object.html

A. TIME DELAY ESTIMATION ANALYSIS
For time delay estimation, the performance of the RE-based
method is compared with three classical methods, CUSUM
[26], Frequency-domain and MATLAB delayest. Delayest
method requires the order (number of poles) of the system,
and this number is by default set to two. In addition, most
classical time-delay estimators are based on thresholding.
CUSUM is one of the most used thresholding approaches
for time delay estimation, and its time delay estimation is
highly sensitive to the user selected parameters. For CUSUM
approach we use the threshold parameters suggested in [26].
However, this method is based on choosing a maximum value
in the frequency domain of the estimated impulse response.
This value is highly affected by the noise level even as large
as 20dB in the case of System I. It is worth mentioning that
what is shown here as the Frequency-domain method is our
improved version compared to its conventional version [26].
In the improved version, the threshold is further optimized
by trial and error. For the RE-based method, parameters
α and β in confidence and validation probabilities are set
to 4 as discussed in [1], and therefore, these probabilities
are approximately 0.999. Note that the method is robust to
changing these values within a wide sufficient and necessary
range that is a function of the data length [1].
Figure 1 shows the first 90 coefficients of the two impulse

responses in the form of θ̄ , (blue signal), as well as the results
of the RE-based approach for the SNR of 15dB. The black
signals in the figure show the first 90 coefficients of the least
squares coefficients estimates of these impulse responses
from zero to 1000, θ̂0,N , As the data length is 1000, this
estimate has 1000 coefficients, and as the figure shows, these
are noisy estimates of the impulse responses. The red signal
is θ̂d∗,m∗ , which is the RE based impulse response estimate.
As the figure shows while θ̂0,N fits the additive noise, the
optimum d∗ and m∗ for the FIR system are d∗

= 7 and
m∗

= 69 which are the same as the true delay and length
(d̄ = 7, m̄ = 69). For the IIR system, the delay is estimated
as d∗

= 11 which is the true unknown time delay. Note
that although in this case the impulse response is infinite,
(m̄ = ∞), the method recognizes that an estimate with length
78 (m∗

= 78) is the best estimate in this SNR and sets the rest
of coefficients to zero to minimize the desired least square
of RE. Figure 2 shows the average time delay estimate in
100 trials as a function of SNR in dB, where SNR is the
ratio of the power of the unavailable noiseless data ȳ and the
noise variance σ 2

ω in (3). Table 1 shows these estimated time
delay values as well as their associated standard deviation
(SD) in the same 100 trials. As Figure 2 and Table 1 show,
the RE-based algorithm outperforms the other three methods.
For the FIR case, the time delay estimate is larger than
the true time delay for low SNRs. This is expected, as the
small values of the first coefficients are comparable with
the noise SD for the low SNRs. At around SNR of 15 dB,
the first coefficient is comparable with the noise standard
deviation, and therefore, the method starts choosing the delay
as 7 which is the true delay, and the standard deviation of
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FIGURE 1. True impulse response coefficients θ̄ , Estimated minimum MSE impulse
response of length 1000, θ̂0,N , Estimated RE based impulse response θ̂d∗,m∗ .

FIGURE 2. Estimated time delay with data length of N = 1000 for 0 ≤SNR≤ 24dB (averaged over
100 trials).

error goes to zero as SNR grows. As the figure shows and
the table confirms, the RE based method is the only one that
estimates the correct time delay as the SNRs grows. For the
IIR system on the other hand, as shown in Figure 1, the first
coefficient of the impulse response has a large absolute value,
so we expect that an efficient delay estimator chooses the
correct time delay even for the low SNRs. As the table and
the figure depict, the RE-based method chooses the correct
delay and outperforms the other methods. While delayest
is the next method that converges for higher SNRs, the
Freq-based method also converges for an even higher range
of SNRs.

Figure 3 shows the Root Mean Square Error (RMSE)
in the time delay estimation for the two systems at SNR
of 10 dB and as the data length grows from 100 to 1000.
In each case, the delay is randomly generated between

1 and 20 (with a uniform distribution), and the RMSE is
averaged over 100 runs. As the figure illustrates, RE based
method outperforms the other approaches as its error goes
to zero as the data length gets around 600 for System I
and around 300 for System II. While delayest has the next
acceptable performance, for none of thesemethods the RMSE
approaches zero in this range of data length.

B. IMPULSE RESPONSE LENGTH ESTIMATION ANALYSIS
Estimated coefficients with lengthm for a range of SNRswith
the RE-based method are provided in Figure 4 for the FIR
system (m̄ = 62). The method is compared with well-known
and most used order selection methods AIC and BIC. Note
that it is shown in [1] that AIC and BIC (equivalently two
stage MDL) model order selection methods are special cases
of the reconstruction error based approach. As the existing

8 VOLUME 11, 2023



M. Shamsi, S. Beheshti: RE-Based LTI System Modeling Equipped

TABLE 1. Mean and standard deviation (SD) of the estimated time delay for 100 trials.

FIGURE 3. Delay RMSE for the FIR system and the IIR system as the data length N grows, averaged
over 100 runs, for randomly generated delays between 1 and 20, for SNR=10db.

order selectionmethods cannot estimate the time delay, we set
the time delay to zero for the purpose of comparison. Figure 4
shows the simulation results. As the figure shows, for the RE
based method, as the SNR grows from zero dB, the chosen
impulse response length is growing from 46 towards the true
length of 62 which is chosen after 15 dB. As expected, the
figure shows that the AIC method overestimates, while BIC
method under estimates the impulse response length. Figure 5
shows the RMSE of the estimated impulse response for both
FIR and IIR systems in the order selection setting and as
the SNR grows. As the figure indicates, for the FIR system,
not only the RMSE of the RE based is minimum of the
all methods, but also it approaches zero with correct order
selection for SNR > 15 dB. While the AIC error seems to be
nonzero even for SNR of 30dB, the BIC approach converges
at this SNR which is still much higher than 15dB, that is the
convergence point of the proposed RE based method. Note
that this simple example shows the important role of the SNR
in the choice of coefficient lengths and confirms that while

the true length of the FIR is 62, it is more efficient to choose
fewer coefficients for lower SNRs and not to fit the additive
noise. In other words, what is known as optimum length
estimation for the impulse response is less important than
the optimum length selection. As the figure shows, RMSE
of order selection for the IIR system is also minimum for the
RE based method.

C. SIMULTANEOUS TIME DELAY ESTIMATION AND
IMPULSE RESPONSE LENGTH ESTIMATION ANALYSIS
In previous sections we compared the RE based method
with existing well-known time delay estimators and order
selection methods. To our knowledge, the proposed RE based
method is the only approach that is capable of simultaneous
estimation of both the time delay and the impulse response
length. Table 2 shows the estimated time delay and impulse
response length, as well as the respective RMSE between the
true coefficients, θ̄ , and the estimated coefficients, θ̂d∗,m∗ ,
when the additive noise variance is unknown. The table shows
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FIGURE 4. Estimated Impulse Response length with observed data length of N = 1000 for
0 ≤ SNR ≤ 30dB (averaged over 100 trials).

FIGURE 5. RMSE of the estimated impulse response, N = 1000 for 0 ≤ SNR ≤ 30dB for FIR and IIR
systems averaged over 100 trials.

the results averaged over 100 trials for a range of SNR. As the
table indicates for the FIR system, as the SNR grows, the
estimated time delay and impulse response length converge to
the true values. For the IIR system, the optimum time delay is
estimated correctly for this range of SNR while the estimated
optimal impulse response length increases as the SNR grows.
This is a rational expectation as the higher the SNR the
more valuable are the tails of the least squares estimate of
the impulse response, and therefore the method recognizes
to choose more of these estimated coefficients. As the table
shows, the RMSE in both scenarios become smaller as the

SNR grows and is almost zero for SNRs higher than 20dB
for the FIR system.

The theory of simultaneous noise variance and system
modeling method is explained in Section IV-B. In the
following we illustrate the RE based approach with an
example and numbers from the IIR system. For simplicity
and without loss of generality for this illustration, lets assume
that the time delay is zero and therefore the optimal model
order is 48 while the unknown true SNR is 10 dB. Figure 6
shows a typical behavior of the calculated relative entropy
in (42) for a range of SNRs and a range of impulse response
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FIGURE 6. Relative entropy in (42) for a range of SNRs form 0 dB to 20 dB and for different impulse
response lengths.

FIGURE 7. Estimated online time delay and impulse response length using the online RE based
method for System I, SNR=15dB.

lengths m. The optimum SNR and the optimum m are chosen
simultaneously based on the relative entropy minimization.
As shown in the figure, the optimum SNR in this example is
10dB which is the true unknown SNR and the optimum m in
this example is 48. Note that in the presence of a time delay,
this procedure is generalized by adding a range of possible
time delays as well for a simultaneous minimization of the
calculated RE.

D. ONLINE MODELING AND EFFECTIVE ROLE OF THE
STOPPING CRITERION
Figure 7 shows the result of the online time delay and impulse
response length estimation for System I when the SNR is

15 dB, averaged over 300 trials. As the figure shows after
about 400 data samples (N = 400), the online modeling
converges to the true values of delay and impulse response
length, which are 7 and 69. It is important to mention that
in this scenario the method can be powered by the stopping
criterion in practical applications, as Figure 8 illustrates.
As indicated in the figures, tdhe stopping criterion in (55)
with value ϵ = 0.1 occurs at N = 80. This stopping criterion
is for when the SNR of the desired acceptable error is set to
10 dB in (54). On the other hand, if the desired acceptable
SNR by the user is set higher to the value of 20 dB, then the
stopping criterion ϵ is 0.01 and the algorithm automatically
halts at N = 366. In this scenario, acceptable error SNR

VOLUME 11, 2023 11



M. Shamsi, S. Beheshti: RE-Based LTI System Modeling Equipped

TABLE 2. Estimated time delay, estimated impulse response length, and
the corresponding RMSE for the FIR and IIR systems for a range of SNRs
(averaged over 100 trials).

FIGURE 8. Stopping criterion in online modeling of System I as the data
length grows.

of 20 dB waits longer and chooses the true time delay and
impulse response length shown in Figure 7.

VII. CONCLUSION
A method of impulse response estimation for LTI systems,
based on the theory of relative entropy (RE), is proposed.
In this RE based approach time delay, impulse response
length, and optimally denoised coefficients of the LTI system
are estimated simultaneously. Minimizing the estimate of the
relative entropy between the estimated models and the true
model can also provide the noise variance estimate simul-
taneously for when the noise variance is also unavailable.
Furthermore, the extension of the proposed method for online
impulse response estimations has been shown to reduce the
computational complexity of the estimation process. The
proposed practical and efficient stopping criterion for this
online LTI impulse response estimation enables the method
to be used in a wide range of applications, including slowly
varying LTI systems. Comparison of the proposed method

with the existing time delay and order selection approaches
illustrates superiority and precision of the method for a wide
range of SNRs for finite and infinite impulse responses.

APPENDIX A PROOF OF LEMMA 1
Considering (12) and (20), the reconstruction error in (25) is

zd,m =
1
N

||Gd,mFd,m + Hd,mωN
||
2
2 (57)

where wN is the additive noise vector in (3) and

Fd,m =
[
A0,d Am,M

] [
10,d
1m,M

]
(58)

where 1a,b is defined in (15) and the matrices

Gd,m = I − Ad,m(ATd,mAd,m)−1ATd,m (59)

Hd,m = Ad,m(ATd,mAd,m)−1ATd,m (60)

are both projection matrices. Since these projection matrices
are orthogonal, the inner product ofGd,mFd,m andHd,mwN is
zero, and (57) is

zd,m =
1
N

||Gd,mFd,m||
2
2︸ ︷︷ ︸

1d,m

+
1
N

||Hd,mωN
||
2
2 (61)

Therefore, while the first term in (61) is 1d,m, the second
term 1

N ||Hd,mωN
||
2
2 is the sum of m− d zero-mean Gaussian

random variables and is a non-central chi-squared random
variable. Consequently, the reconstruction error zd,m is a
sample of a chi-squared random variable Zd,m of order m−d
and the expected value and variance of Zd,m are ( [1], [32])

E(Zd,m) =
m− d
N

σ 2
ω +

1
N

||Gd,mFd,m||
2
2 (62)

var(Zd,m) =
2(m− d)

N 2 (σ 2
ω)

2 (63)

Taking into account the structure of the output error in (26),
it is also the sum of N − (m−d) squares of Gaussian random
variables and it can be shown that xd,m is also a sample of
Chi-square random variable of order N − (m − d) with the
following expectation and variance [1]:

E(Xd,m) = (1 −
m− d
N

)σ 2
ω +

1
N

||Gd,mFd,m||
2
2 (64)

var(Xd,m) =
2
N
(1 −

m− d
N

)(σ 2
ω)

2

+
4σ 2

ω

N 2 ||Gd,mFd,m||
2
2 (65)

APPENDIX B PROOF OF THEOREM 1
Considering the Chebyshev’s Inequality [41], we have

Pr
{
|Xd,m − E(Xd,m)| ≤ α

√
var(Xd,m)

}
> 1 −

1
α2

where the expectation and variance of Xd,m are in (64) and
(65) and α denotes the validation parameter. The output error
can be calculated by using the observed data, and thus one
sample of this random variable is available. Using these
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values of mean and variance, the Chebyshev’s Inequality (66)
provides probabilistic bounds on 1d,m =

1
N ||Gd,mFd,m||

2
2.

The resulting inequality to find the upper bound is

E(Xd,m) − α
√
var(Xd,m) ≤ xd,m (66)

The following variables are defined for simplicity:

cd,m = (1 −
m− d
N

)σ 2
ω (67)

υd,m = 2(1 −
m− d
N

)(
σ 4

ω

N
) (68)

where σw denotes the standard deviation of the noise. Note
that if the validation parameter α is chosen such that (xd,m −

mw) ≤ −α
√

υd,m then no 1d,m term can satisfy the
inequality in (66). Therefore, the value of α must be chosen
large enough, such that

α >
N

√
2(N − (m− d))

(
N − (m− d)

N
−
xd,m

σ 2
ω

)
(69)

When solving (xd,m −mw) > −α
√

υd,m, the upper bound of
1d,m is the largest root of the following.(

1d,m − (xd,m − cd,m)
)2

= α2
(

υd,m +
4mω1d,m

N − (m− d)

)
(70)

which is

Ud,m = xd,m − cd,m +
2α2σ 2

ω

N
+ κd,m(α) (71)

where κd,m(α) is defined as

κd,m(α) = 2α
σω
√
N

√
α2σ 2

ω

N
+ xd,m −

1
2
cd,m (72)

To calculate the lower bound for 1d,m, the following
inequality is the result of the Chebyshev inequality:

xd,m ≤ E(Xd,m) + α
√
var(Xd,m) (73)

which is

Ld,m = xd,m − cd,m +
2α2σ 2

ω

N
− κd,m(α) (74)

To find the upper and lower bounds of the reconstruction
error, the Chebyshev inequality [41] is used:

Pr
{
|Zd,m − E(Zd,m)| ≤ β

√
var(Zd,m)

}
> 1 −

1
β2

where β denotes the confidence parameter. Taking into
account the expectation and variance of the random variable
Zd,m in (62) and (63) and the lower bound and upper bound
calculated for 1d,m based on the observed output error in
(71) and (74), the upper bound and lower bound for the
reconstruction error can be calculated as

zd,m = 2
m− d
N

σ 2
ω + 1d,m + βvar(Zd,m) (75)

zd,m = max{0, 2
m− d
N

σ 2
ω + 1d,m − βvar(Zd,m)} (76)

Using the upper bound of 1d,m in (71) in the upper bound of
the reconstruction error in (75) and the lower bound in (74)
in the lower bound of the reconstruction error in (76) provides
the probabilistic worst-case bounds for the reconstruction
error.

Note that if the order of the Chi-squared random variable
is large enough (usually more than 10 is enough), it can be
estimatedwith aGaussian distribution. Therefore, whenm−d
is large enough, the Chi-square distribution of Zd,m and Xd,m
can be estimated with Gaussian distributions. As a result, the
Chebyshev inequality becomes an equality through the law
of large numbers, and considering Q(α) =

∫ α

−α
1

√
2π
e−x

2/2dx
for the Gaussian equality, we have [1], [32]

Pr{|Xd,m − E(Xd,m)| ≤ α
√
var(Xd,m)} = Q(α). (77)

Pr{|Zd,m − E(Zd,m)| ≤ β
√
var(Zd,m)} = Q(β). (78)

It is worth mentioning that the above analysis holds for even
when the additive noise has a distribution other than the
Gaussian distribution due to the Central Limit Theorem. As a
results, in this scenario both reconstruction error and output
error are estimated with the above Gaussian distributions and
the theorem results still hold.

APPENDIX C PROOF OF LEMMA 3
Matrix AN+1 in (48) has two components as follows:

AN+1
d,m =

[
ANd,m

(BNd,m)
T

]
(79)

where

(BNd,m)
T

= [u((N + 1) − (d + 1)), · · · , u((N + 1) − m)]

(80)

This will update the parameter estimate in (47) as follows:

θ̂N+1
d,m = (KN+1

d,m )−1(KN
Sd,m + Bd,mBTd,m)

T yN+1 (81)

= (KN+1
d,m )

−1
((ANd,m)

T yN + Bd,my(N + 1)) (82)

where

KN
d,m = (ANd,m)

TANd,m (83)

and

KN+1
d,m = KN

d,m + Bd,mBTd,m. (84)

On the other hand, the inverse of KN+1
d,m is [42]:

(KN+1
d,m )−1

= (KN
d,m + BNd,m(B

N
d,m)

T )−1 (85)

= (KN
d,m)

−1
−

1

1 + tr(γ Nd,m)
CN
d,m(C

N
d,m)

T ) (86)

where

CN
d,m = (KN

d,m)
−1BNd,m (87)

γ Nd,m = (KN
d,m)

−1BNd,m(B
N
d,m)

T (88)

and tr(a) is a trace of matrix a. Note that whileCN
d,m is a vector

of lengthN , γ Nd,m is aN×N matrix. In addition, it is proven in
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[42] that, in this form of inverse calculation, the denominator
1+ tr(γ Nd,m) never becomes zero, and therefore this value can
always be updated.

Using the inverse update in (86), (82) is as follows:

θ̂N+1
d,m = (KN

d,m)
−1

−
1

1 + tr(γ Nd,m)
CN
d,m(C

N
d,m)

T

× ((ANd,m)
T yN + Bd,my(N + 1))

= (I −
1

1 + tr(γ Nd,m)
γ Nd,m)θ̂

N
d,m

+ (I + γ Nd,m)C
N
d,my(N + 1) (89)

Since γ Nd,m is a N ×N matrix (calculated in (87)) and CN
d,m is

a vector of lengthN (calculated in (87)), the complexity order
of the recursive calculation of θ̂N+1

d,m with respect to (89) is of
order O(N 2).
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