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ABSTRACT Correlation power analysis (CPA) is a classical method in side-channel attacks. Based on the
power consumption model, the correlation between the power consumption of cryptographic devices and the
assumed intermediate value is analyzed to recover the key. Theoretically, only a few power traces are required
to recover the key when the noise hypothesis is known. However, in the high-frequency and high-noise
environment, the completion of CPA requires more power traces, and the computational complexity also
increases. Therefore, this paper proposes a fault probability correlation analysis method based on secondary
filtering (2F-FPCA), which selects the fault probability traces according to the Hamming Weight of the
intermediate value and reduces the number of sampling points by selecting points of interest. This method
does not need to access ciphertext and is little affected by noise. Moreover, it can recover the key with fewer
fault probability traces and lower computational complexity, improving the attack efficiency of CPA. In this
paper, 2F-FPCAs are carried out based on the AES-128 algorithm of the Micro Controller Unit (MCU). The
key can be recovered successfully using 10 fault probability traces, and the computational complexity is
reduced by 104 times.

INDEX TERMS Correlation power analysis, side-channel attacks, fault injection attacks, AES.

I. INTRODUCTION
Side-channel attacks play an essential role in evaluating
the performance of cryptographic devices. There are many
classic side-channel methods, such as attacking power con-
sumption [1], running time [2], and electromagnetic leakage
[3]. Power analysis is a representative type of side-channel
attack, including Simple Power Analysis (SPA) [4], Corre-
lation Power Analysis [5], and Differential Power Analysis
(DPA) [6]. Brier et al. [7] first proposed CPA, which uses the
power model to calculate the correlation coefficient between
the power sample and the hypothetical intermediate value to
identify the correct key. Heuser et al. [8] show that CPA is
almost optimal when the leakage model is known under the
assumption of affine transformation and Gaussian noise.

In practical applications, in high-frequency and high-noise
environments, CPA often needs more power traces to recover
the key, which means more computing time and computa-
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tion. In addition, when the candidate key space is too large
to traverse the search, CPA is often used to recover some
bytes of the key. However, under the local leakage model,
the correlation coefficient of CPA is significantly reduced,
and the demand for the number of power traces is greater.
In order to reduce the number of power traces required for
attacks, key exhaustion [9], [10] and ranking evaluation [11]
algorithms are proposed to estimate the ranking of correct
keys. However, the problems of computational complexity
and excessive memory requirements still need to be solved.

Recently, research on the computational efficiency of CPA
has received widespread attention. An enhancement tech-
nique of CPA is proposed in [12], which classifies traces by
Hamming distance and combines DPA, multi-bit DPA, and
CPA. Kim et al. [13] proposed a preprocessing technique
to select a subset with higher correlation factors from the
power trace set and then conduct CPA. In [14], the plaintext is
selected in both non-adaptive and adaptive ways, and the orig-
inal optimization of the standard CPA is carried out, which
reduces the number of power traces needed to recover the key.
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All the above methods improve the computational efficiency
of CPA, but these papers do not analyze the computational
complexity.

A method is proposed in [15] to index the vector template
with plaintext values and then associate it with the power
vector model. Compared with the original CPA calculation,
the calculation speed of this method is 200 times faster, and it
is especially effective when there are many traces. Reference
[16] proposed to find points of interest (POI) to reduce the
computing time of CPA. The above methods improve the
computing speed of CPA and time but need many power
traces as data support.

In order to solve the problems that CPA is greatly affected
by noise, significant data demand, and high computational
complexity, this paper applies CPA to fault attacks and pro-
poses a fault probability correlation analysis attack method
based on secondary filtering (2F-FPCA). This method uses
the data dependence of the fault probability of cryptographic
equipment under the fault injection attack and establishes the
fault probability trace in the operation process. The traces are
classified and filtered according to the Hamming Weight of
the intermediate value, which reduces the number of fault
probability traces needed to calculate the assumed inter-
mediate value. At the same time, the number of samples
and iterations are significantly reduced by finding POIs on
the fault probability trace. 2F-FPCA does not need to access
ciphertext and is little affected by noise. It can recover the
key with less fault probability trace and lower computational
complexity, improving the efficiency of CPA.

The paper is organized as follows. Section II starts
with an overview of CPA and the experimental platform.
In Section III, we propose a fault correlation analysis
attack method based on fault probability (FPFCA), carry out
experiments, and analyze the attack results. In Section IV,
we improve the FPFCA to 2F-FPCA and evaluate the attack
results. Finally, Section V concludes this paper.

II. PRELIMINARIES AND PRACTICAL IMPLEMENTATION
A. CORRELATION POWER ANALYSIS
CPA mainly uses the correlation between the actual power
consumption and the power consumption model. CPA has a
general attack strategy, which is divided into 5 steps [17]:

• Step 1: Select an intermediate value of the executed
algorithm. First, select the power consump-
tion model and establish the leakage function.
The intermediate value must be a function that
depends on the small part of the key and known
non-constant data value, which is usually the
plaintext or the ciphertext. The most widely used
power consumption model is the Hamming Dis-
tance (HD) between two corresponding values in
the same register or Hamming Weight (HW) of a
specific value.

• Step 2: Measure the power consumption. Measure the
power consumption of cryptographic devices

FIGURE 1. Voltage glitch injection experiment layout.

when encrypting or decrypting different data
blocks.

• Step 3: Calculate hypothetical intermediate values. For
each key hypothetical, the corresponding hypo-
thetical intermediate value is calculated.

• Step 4: Map the intermediate values to the power con-
sumption value.

• Step 5: Compare the hypothetical power consumption
values with the power traces. The index corre-
sponding to the maximum correlation coefficient
reveals the correct key index and time. The corre-
lation is calculated as follows.

Pearson correlation coefficient is denoted as c. Suppose
the attacker gets M power traces, each with N sampling
points. The power consumption value corresponding to the ith

sampling point on themth trace is denoted as tm,i (1≤ m ≤ M ,
1≤ i ≤ N ). Based on the power consumption model, the
power consumption hypothesis value corresponds to the mth

trace under the key assumption k is denoted as hm,k (1≤ m ≤

M , 1≤ k ≤ K ). Under the key assumption k , the correlation
coefficient of the ith sampling point is calculated as follows:

ck,i =

M∑
m=1

(
hm,k − h̄k

) (
tm,i − t̄i

)
√

M∑
m=1

(
hm,k − h̄k

)2√ M∑
m=1

(
tm,i − t̄i

)2
where hk and t i are the average of the power consumption
model and the actual power consumption at the ith sampling
point respectively.

B. EXPERIMENT LAYOUT
The experimental platform mainly includes an attack target,
fault injection controller, oscilloscope monitoring module,
and data acquisition and processing module [18], as shown
in Fig. 1.

We conduct a large number of fault injection attacks and
establish fault probability traces [18] which are used in sub-
sequent analyses.
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III. FAULT CORRELATION ANALYSIS BASED ON FAULT
PROBABILITY
A. SCHEME DESIGN
For the Advanced Encryption Standard algorithm (AES),
attackers usually choose the sampling points near the S-box
transformation operation as attack points, showing strong
correlations between the actual power consumption and the
power consumption model.

Taking the AES-128 algorithm as an example to implement
FPFCA, as shown in Fig. 2. We conduct mass fault injection
attacks on the output of the first S-box in the first round of
encryption and establish the fault probability traces. If the
first byte of the key is recovered, the attack is successful. The
recovery of other bytes of the key is similar; attack the output
of other S-boxes in the first round of encryption.

FPFCA attacks take advantage of the data dependency of
cryptographic device faults. Many fault probability traces are
used to analyze the fault probability at specific points, which
is regarded as a function of the data being processed.

In all subsequent discussions, it is assumed that the pro-
cessed data are subject to a uniform distribution.

The steps of FPFCA are as follows:

• Step 1: Select an intermediate value of the executed
algorithm. The intermediate value must be a func-
tion f(d, k), where d represents non-constant data,
and k represents a small part of the key.We choose
the plaintext as d and the first byte of the key as k .

• Step 2: Establish the fault probability traces. We calcu-
late the fault probability of cryptographic devices
when encrypting or decrypting M different data
blocks. These plaintexts are recorded as vectors
m = (m1,m2, · · · ,mM )′, where mi represents
a value corresponding to the ith encryption or
decryption operation. Many fault injection attacks
are carried out on each mi, and the corre-
sponding fault probability trace is established as
p′
i = (pi,1, pi,2, · · · , pi,N ), where N represents the

length of the fault probability trace. The attacker
establishes a fault probability trace for each of the
M data. These fault probability traces are denoted
as a matrix PM×N .

• Step 3: Calculate the hypothetical intermediate value. For
each possible key k , the corresponding hypothet-
ical intermediate value is calculated, denoted as
k = (k1, k2, · · · , kK ), where K represents the
number of all possible values of k . Given the
data m and the key hypothesis k, the hypothetical
intermediate value can be calculated for all M
encryptions and all K key assumptions: vi,j =

f
(
mi, kj

)
(1≤ i ≤ M , 1≤ j ≤ K ).

It is obtained that the matrix VM×K . The jth

column of Vcontains all the intermediate values
calculated by the key hypothesis kj. In fact, the
cryptographic device uses only one element in k,
which is denoted as kc. Our target is to find the

kc, that is, to determine which column of V the
device is dealing with during the M encryption or
decryption.

• Step 4: Map the intermediate value to the fault probability.
The hypothetical intermediate value V is mapped
to the hypothetical fault probability matrix H by
the HW model.

• Step 5: Compare the hypothetical fault probability value
and the fault probability trace. Each column hi
of matrix H and each column pj of matrix P are
compared. The attacker compares the hypotheti-
cal fault probability value corresponding to each
key hypothesis with the fault probability trace
recorded at each location. The result of the com-
parison is a matrix CK×P, where each element ci,j
contains the comparison of the columns hi and
pj. The higher the value of ci,j, the higher the
matching degree of the columns hi and pj.

The jth sampling point on the mth fault probability trace
is denoted as pm,j (1≤ m ≤ M , 1≤ j ≤ N ). Based on the
FPHWmodel [18], the hypothetical value of fault probability
corresponding to the mth trace under the key assumption i is
denoted as hm,i:

hm,i = HW (Sbox(plaintextm ⊕ i)) (1)

where HW represents the HW of the S-box output.
Under the key assumption i, the correlation coefficient of

the jth sampling point is denoted as ci,j:

ci,j =

M∑
m=1

(
hm,i − h̄i

) (
pm,j − pj

)
√

M∑
m=1

(
hm,i − h̄i

)2√ M∑
m=1

(
pm,j − pj

)2 (2)

where hi and pj represents the average values of the FPHW
model and the actual fault probability at the ith sampling
point, respectively.

By finding the maximum value of matrix C, the attacker
can determine the correct key index kc and time index tc. The
index of the maximum value is the result of the CPA attack.

B. ATTACK RESULT
We set the initial key to 0x04, conduct many fault injection
attacks on 1000 random plaintexts, and establish fault prob-
ability traces. In the FPHW model [18], there is a negative
correlation between the fault probability and HW, so the
closer the correlation coefficient in the attack result is to -1,
the stronger the correlation is.

We randomly select 6 plaintexts to attack and get 6 fault
probability traces. The correlation coefficient results of sam-
pling points on the traces calculated by Eq.(1) are shown in
Fig. 3. When the candidate keys are 4,67,127, the correlation
coefficient is the minimum value of -0.98. For that the candi-
date key is not unique, the key fails to recover.

Next, we randomly select 8 plaintexts to attack, and get
8 fault probability traces. The correlation coefficient results
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FIGURE 2. Attack flow of FPFCA.

FIGURE 3. Attack under 6 random plaintexts.

of sampling points on the traces and the correlation coeffi-
cient results calculated by Eq.(1) are shown in Fig. 4. When
the candidate key is 0x04, the correlation coefficient is the
minimum value of -1, and the key is recovered successfully.

Under this method, the relationship between the success
rate of key recovery and the number of fault probability traces
is shown in Fig. 5. It can be seen that when the number of
fault probability traces is 13 or more, the attacker has a 100%
chance of recovering the key.

C. ANALYSIS
In the attack process, we establish the fault probability trace
based on the FPHW model and align multiple data groups
by introducing trigger signals. Therefore, there is no need for
re-alignment and noise reduction, significantly reducing the
difficulty of data processing.

The computational complexity of the FPFCA algorithm is
denoted as λ:

λ = 16 × 256 ×M × N (3)

FIGURE 4. Attack under 8 random plaintexts.

According to the results of attack experiments, the compu-
tational complexity of the FPFCA algorithm is 1.06 × 107 by
substitutingM= 200 and N=13.

Compared with the existing CPA methods, the computa-
tional complexity of FPFCA has been significantly reduced,
but the number of iterations is still significant. Therefore,
we consider improving the calculation efficiency by lowering
the values ofM and N .

The calculation complexity is too high, which is mainly
caused by a large amount of data redundancy in the selection
of sampling points (M ) and random plaintext (N ) on the fault
probability trace:

First, there are too many sampling points in the fault prob-
ability trace. The subkey only affects the fault probability in
a few moments, so not all sampling points are essential in
calculating correlation. Combined with the data dependence
of fault probability, we need to locate the output of the S-box
more accurately and reduce the search range of sampling
points by selecting the sampling points with the prominent
peak of fault probability trace as POIs.
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FIGURE 5. The relationship between the success rate and the number of
fault probability traces.

TABLE 1. Hw distribution of single btye data.

Second, there is much redundancy in selecting random
plaintexts. All the sampling points in the fault probability
traces are required to calculate the hypothetical intermediate
value. Hence, the number of iterations in the calculation is
enormous.

The HW of single-byte data obeys the binomial distribu-
tion. Tab. 1 shows the probability distribution of HW for
uniformly distributed 8-bit data. The data with HW of 0 and
8 have the slightest probability of occurrence, and those
with HW of 4 have the highest probability of occurrence.
Therefore, there must be much repetition in the randomly
selected plaintexts.

The experiments show that the difference in fault probabil-
ity corresponding to the S-box output with the same HW is
almost the same, as shown in Tab. 2.
If we select the plaintexts whose S-box outputs are of

the same HW, column vectors of the hypothetical interme-
diate value mapped by the HW model are the same, and the
corresponding fault probability traces are almost the same.
In this case, it is impossible to recover the key. Therefore,
we consider selecting plaintexts whose S-box outputs are of

TABLE 2. Fault probability of the same Hw data.

different HW, which can reduce the computational redun-
dancy significantly.

IV. FAULT CORRELATION ANALYSIS BASED ON
SECONDARY FILTERING
A. SCHEME DESIGN
Based on the above considerations, we use fewer fault prob-
ability traces and more accurate POIs to reduce the number
of iterations. We improve the FPFCA scheme and propose
a fault correlation analysis attack based on secondary filter-
ing (2F-FPCA). This method classifies and selects plaintexts
based on HW and selects POIs more accurately, which dra-
matically reduces the calculation amount. The specific steps
are shown in Fig. 6.
The steps of 2F-FPCA are as follows:

• Step 1: Select the output value of the first S-box in the first
round of encryption in the AES-128 algorithm as
the intermediate value.

• Step 2: Select plaintexts randomly and inject many volt-
age glitches in the encryption process to establish
the fault probability traces.
For each possible key ki (1≤ i ≤ K ), perform
steps 3-5:.

• Step 3: Calculate the hypothetical intermediate value.
Given m = (m1,m2, · · · ,mM )′, calculate the cor-
responding hypothetical intermediate value vi,j =

f
(
mi, kj

)
(1≤ i ≤M, 1≤ j ≤ K ).

• Step 4: Map the intermediate value to the fault proba-
bility. The hypothetical intermediate value vi =

(v1,i, v2,i,. . . ,vM ,i) is mapped to the hypothetical
fault probability hi = (h1,i, h2,i,. . . ,hM ,i) by the
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FIGURE 6. Attack flow of 2F-FPCA.

FPHW model. Remove the same value in hi and
get h′

i = (h′

1,i,h
′

2,i,. . . ,h
′
T ,i).

• Step 5: Compare the hypothetical fault probability value
and the fault probability trace. Select the set of
fault probability traces P′

i = (p′

1, p
′

2,. . . , p
′
T ) cor-

responding to h′
i, where p

′
i = (p′

i,1,p
′

i,2,. . . ,p
′
i,R)

is the fault probability trace after POI selection.
Compare h′

i and every column of P′
i and get

c′i = (c′i,1, c
′

i,2, . . . , c
′
i,R), which maximum value

is denoted as c′i. The maximum is denoted as
c′ = max{c′1, c

′

2, . . . , c
′
K } for all the c′i,. The key

k ′
i corresponding to c′ is the correct key.

B. ATTACK PROCESS
According to the above scheme, we attack the implementa-
tion of the AES-128 algorithm based on MCU. The attack
process is described in detail with the initial key of 0x03.

1) POI SELECTION
To reduce the computational complexity, we select the POIs
in the fault probability trace to find the sampling points
with the strongest correlation with the attack point to carry
out subsequent attacks. From the above model verification
results, we can see that the fault probability traces have a high
degree of discrimination, so we first classify the attack traces
based on the HW of the output data. Then, the summary of
the difference method (SOD) is used to select the POIs.

For the fault probability traces Traci (i = 0, · · · , 9) with
HW i(i = 0, 1, · · · , 8), calculate

SOD =

7∑
i1=0

8∑
i2=i1+1

(
Traci1 − Traci2

)
(4)

The SOD values of each sampling point are shown in
Fig. 7. The higher the SODvalue, themore significant the cor-
relation between the sampling point and HW, so we selected
2900, 2904, 2908, 2912, and 2916ns as POIs.

FIGURE 7. Selection of POIs.

2) RANDOM PLAINTEXTS SELECTION
We still choose the output of the first S-box in the first
round of encryption as the intermediate value and inject many
voltage glitches near the attack point. Find its maximum c′i for
each possible key hypothesis value ki (1≤ i ≤ K ).
Take k4 = 0x03 as an example to illustrate the attack

process. The hypothetical fault probability is h4 =

(5,5,5,4,3,5,3,3), and thus h′

4 = (5,4,3). The set of fault
probability traces after filtering is

p′

3 =

 0.4533
0.4567
0.4611

0.5689
0.5689
0.5711

0.6389
0.6411
0.6500

0.5733
0.5744
0.5756

0.3844
0.3856
0.4033

 .

3) ATTACK RESULT
Calculate that c′3 = (−0.9973,−0.8660,−0.09443,−0.9997,
−0.8930), c′3 = −0.9997.

For all the ki(1≤ i ≤256), the corresponding c′i calculated
by Eq.(1) is shown in Fig. 8. As can be seen that the correla-
tion coefficient of key 0x03 is closest to−1, 0x03 is supposed
to be the correct key. Thus, key recovery is successful.

VOLUME 11, 2023 113407



T. Wu et al.: Fault Probability Correlation Analysis Based on Secondary Filtering

FIGURE 8. Correlation coefficient of candidate keys.

FIGURE 9. The relationship between the success rate and the number of
fault probability traces.

C. ANALYSIS
Under the 2F-FPCA method, the relationship between the
success rate of key recovery and the number of fault prob-
ability traces is shown in Fig. 9. The number of attack traces
required for the proposed 2F-FPCA is less than that needed
for FPFCA. When the number of fault probability traces is
10 or more, the attacker has a 100% chance of recovering the
correct key.

We select 10 plaintexts randomly for key recovery. Under
each key assumption, only 4.45 traces are needed by selecting
plaintexts to complete the key recovery on average. By sub-
stituting M = 4.45 and N = 5 into Eq.(2), the algorithm’s
computational complexity is calculated as 9.11 × 104.
In recent years, some CPAs and improvement methods for

the AES-128 algorithm have been continuously proposed,
such as CPA with biased power traces [13], CPA based on
CPA with multiple filtering [19], and block CPA based on
artificial intelligence [20].

TABLE 3. Comparison of Cpa schemes.

Next, as shown in Tab.3, we compare the above CPA attack
methods with the FPFCA and 2F-FPCA attack methods pro-
posed in this paper. We propose two criteria for performance
evaluation: the number of traces required to recover the full
key and computational complexity.

As described in Tab.3, the number of traces and sampling
points required for the attack directly affects the compu-
tational complexity, consistent with Eq.(2). Therefore, the
attacker must select the appropriate number of traces and
sampling points to achieve high execution efficiency while
considering the accuracy of key recovery.

V. CONCLUSION
This paper proposes a fault correlation analysis method based
on secondary filtering. Based on the AES-128 algorithm
of the MCU, we conducted experiments and achieved key
recovery using 10 fault probability traces.

Compared with the existing CPA methods, 2F-FPCA has
the following advantages:

1) It is less affected by noise. We choose the FPHWmodel,
which does not need to collect ciphertext and only pays
attention to the response of the attack.

2) The correct key is of apparent characteristics. The
correlation coefficient between the actual fault probability
corresponding to the correct key and the hypothetical fault
probability value based on the FPHW model is as high as -1.

3) The computational complexity is low. We select plain-
texts with different HW of S-box output and POIs to reduce
the number of traces and sampling points. Therefore, the
computational complexity is significantly reduced, improv-
ing the attack efficiency.

Due to the difference in cryptographic algorithms and
selection methods, the selection results of POIs are different.
Next, we will use Deep Learning to realize the automatic
selection of POIs. At the same time, we consider expanding
the range of cryptographic algorithms targeted by attacks.
Testing new and masked cryptographic algorithms is the
critical research content for the next step.
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