
Received 12 September 2023, accepted 30 September 2023, date of publication 4 October 2023,
date of current version 10 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3321702

An Adaptive MP Algorithm for Underwater
Acoustic Channel Estimation Based on
Compressed Sensing
SHAOPENG MU , WENGEN GAO , YUNFEI LI , LING JIANG,
MENGXING PAN, AND HANWEN XU
School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China
Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Chinese Ministry of Education, Wuhu 241000, China

Corresponding author: Wengen Gao (ahpuchina@ahpu.edu.cn)

This work was supported in part by the Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving
Devices, Anhui Polytechnic University, under Grant JCKJ2021A02; and in part by the Anhui Polytechnic University Research Startup
Foundation under Grant 2021YQQ039.

ABSTRACT In underwater acoustic (UWA) communication systems, inter-carrier interference (ICI) caused
by the Doppler effect has significant negative impacts on system performance. To address this issue, this
paper introduces a delay-Doppler spread function (DDSF) to account for the effect of ICI and proposes a
new compressed sensing (CS) algorithm to estimate channels. Typically, proper termination of the iterative
process is a major challenge when applying the orthogonal matching pursuit (OMP) algorithms in channel
estimation, while other CS algorithms in the paper have high requirements in terms of complexity and
system power consumption. To overcome these limitations, a sparse channel estimation algorithm with an
adaptive sparse decision threshold is proposed. Given certain signal-to-noise ratio (SNR) conditions, the
proposed algorithm achieves comparable estimation accuracy to OMP with much lower computational cost.
Simulation results demonstrate that the proposed algorithm can achieve similar estimation accuracy to OMP
at lower computational cost with high SNRs. In conclusion, this paper presents a novel approach to address
ICI in UWA communication systems and offers a more efficient algorithm for channel estimation. The results
are significant for improving the performance of underwater communication systems and have potential
applications in various underwater communication scenarios.

INDEX TERMS Underwater acoustic communication, delayed-Doppler spreading function (DDSF),
adaptive algorithm, iteration termination condition.

I. INTRODUCTION
The exploitation of marine resources has significantly
increased, leading to a growing need for communication
technologies in ocean development [1], [2], [3]. However, the
penetration of electromagnetic waves into seawater is weak,
making it difficult for mature electromagnetic wave com-
munication technologies to be widely used in the ocean [4].
Nowadays, the exploitation of marine resources has increased
dramatically in the development of the ocean, a large number
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of communication technologies are needed, which leads
to the urgent need for high-speed UWA communication.
Due to the conductivity of seawater, the penetration of
electromagnetic wave to seawater is very weak, which makes
it difficult to use electromagnetic wave communication
technology in large scale in the ocean. Nowadays, UWA
communication technology is widely used in marine commu-
nication, but the development of UWA technology is slow.
Due to the maturity of electromagnetic wave communication
technology, people usually transplant electromagnetic wave
communication technology to UWA communication, which
makes marine communication technology develop rapidly.
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Due to the different propagation characteristics of UWA
and electromagnetic waves, UWA communication also faces
many challenges [5].

Among the challenges of UWA communication systems,
the main problems are the multipath effect and the Doppler
effect. Due to the complex UWA environment, there are
many reflection and refraction phenomena when the signal
is transmitted to the surface, causing severe multipath effects
in the UWA channel. Additionally, if objects on both sides
of the communication are moving, even at slow speeds, the
Doppler effect occurs due to the slow transmission speed
of underwater sound, which has a significant impact on the
transmission of channel data [6]. Therefore, DDSF is used
to describe the effects of UWA channel delay and Doppler
shift [7].

UsingDDSF to track first-order channel dynamics does not
require dynamic modeling of UWA channels and can balance
the complexity and accuracy of sparse channels. Compared
to the recursive least squares (RLS) algorithm for estimating
channel state information (CIR), the complexity of using the
search algorithm to estimate DDSF is relatively low [8]. This
is mainly due to two factors: there are few important weight
elements to predict in DDSF, and DDSF executes once for
each data block, rather than once for each symbol [9].
When using the DDSF model, the signals received at

the receiver are sparse due to the sparsity of the channel
environment. Most of the atoms in the observation matrix
have very small weights for the original signal, and only
a few of them contribute more. These atoms with small
contributions require a lot of calculation, which wastes
both system overhead and calculation time. Therefore,
it is essential to find a suitable estimation algorithm to
select them.

Traditional channel estimation algorithms include the
least-square (LS) [10], maximum likelihood estimation
(ML) [11], minimum mean square error (MMSE) [12],
Kalman filtering [5], [13], [14], [15], etc. These algorithms
usually rely on the prior information of the channel. When
the UWA channel changes rapidly, the outdated channel
information is not conducive to the estimation of the existing
channel, resulting in a significant reduction in the estimation
performance [9]. Therefore, people usually add CS channel
estimation algorithms to UWA channel estimation. Among
them, the OMP algorithm is usually used on a large scale
because of its good balance between the calculation cost
and the estimation accuracy, and has been widely used at
present [16], [17]. With the rapid development of UWA
channel estimation, the problem of long estimation time
and large computational cost of orthogonal match tracking
OMP algorithm has become increasingly prominent, which is
difficult to adapt to the operation of UWA channel estimation
[18]. In complex underwater communication scenarios, due
to the large sparsity of the channel matrix, the OMP algorithm
has a high calculation cost and a long calculation time,
resulting in a great impact on the communication delay.
In order to fully tap the potential of the OMP algorithm,

people began to use thresholds to optimize the number of
iterations, leading to more and more OMP class algorithms
[19], [20], [21]. However, most algorithms emphasize the
estimation accuracy and ignore the system computational
cost. To solve this problem, this paper adopts an improved
MP algorithm, which can set a fixed value to limit the number
of iterations according to the channel tapping value, thus
balancing the estimation accuracy and computational effort.
Meanwhile, this paper also employs Ordered Recursive
Least Squares MP (ORLSMP) [9], Sparsity Adaptive MP
(SaMP) [22] and Adaptive Step Size SaMP (AS-SaMP)
[23] for sparse time-varying underwater channel estimation
simulation.

The contributions of this article are as follows:
• By cleverly designing a dynamic termination condition,
the MP algorithm has been improved, making it more
applicable. In special sparse channels, for difficult to
achieve termination conditions, set a threshold for the
iteration coefficient to terminate the operation, making
the algorithm more applicable.

• This dynamic termination condition can greatly balance
the calculation cost and estimation accuracy. Due to
the reduced complexity of the algorithm, the power
consumption and computational time of the system are
reduced.

• Due to the dynamic termination condition of this
algorithm, it has better estimation performance com-
pared to other algorithms at low SNR.

In Section II, we present the DDSF model for UWA com-
munication systems. In Section III, we introduce the proposed
the threshold algorithm (T-MP), analyze the advantages and
disadvantages of the OMP algorithm and the T-MP algorithm,
and explain how the T-MP algorithm operates within the
DDSF framework. Section IV, we perform simulations to
compare the mean square error (MSE) and CPU compu-
tation time of the OMP algorithm, AS-SaMP algorithm,
SaMP algorithm, ORLSMP algorithm, and T-MP algorithm.
To ensure realistic simulations, the various algorithms are
simulated in the environment of the Pacific StormExperiment
2010 (PS’10) [24]. Finally, in Section V, we discuss the
advantages and disadvantages of the T-MP algorithm.

II. SYSTEM MODEL
In a UWA communication system represented by a discrete
time-varying signal x(n), n = 1, 2, . . ., the impulse response
is denoted by h(n). For a system with K channel delay taps,
the impulse response of the kth channel delay tap is expressed
as h(k, n), where k is the number of channel delay taps
sampled by the system. The sampled discrete DDSF of the
kth channel delay tap is denoted by u(l, k), where l represents
the number of Doppler sampling points such that 0 ≤ l ≤ L.
Therefore, the expression for the impulse response of the kth
channel delay tap [25] is given by:

h(k, n) =

L∑
l=1

u(l, k)ej2π fln1t (1)
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where fl = fmin + (l − 1)1f is the lth Doppler sampling
frequency, fmin is minimum Doppler sampling frequency, 1f
is Doppler sampling interval, 1t is time domain sampling
interval. For the kth channel delay tap, The unit impulse
response of the kth channel delay tap of time n is expressed
as h(n− k). The output symbol can be expressed as

y(n) =

K∑
k=1

h(k, n)x(n−k + 1) + w(n) (2)

where x(n−k+1) indicates the kth channel delay tap symbol
with transmission symbol x(n). And w(n) represents the
background noise of the marine environment. By substituting
equation (1) into equation (2), we can get the reception
symbol of the kth channel delay tap as

y(n) =

K∑
k=1

L∑
l=1

u(l, k)ej2π fln1tx(n−k + 1) + w(n) (3)

for the convenience of calculation, we can use the matrix
form of the Kronecker product as

y = [� ⊗ X]Tu + w (4)

where y = [y(n) y(n + 1), . . . , y(n + M − 1)]T is
the M × 1 receive symbol vector and M is the length of
each received symbol, w = [w(n) w(n + 1), . . . , w(n +

M − 1)]T is the corresponding M × 1 noise vector,
� = [ej2π f1n1t ej2π f2n1t , . . . , ej2π fLn1t ]T is an L ×

1 vector and ej2π fln1t is phase factor of Doppler sampling
frequency, X = [x(n) x(n − 1), . . . , x(n − K +

1)]T is the K × 1 transmitted symbol vector, and u =

[u(1, 1) u(1, 2), . . . , u(1,K ), . . . , u(L,K )]T is theKL×1
DDSF vector. It is assumed that the system operates under the
assumption that the parameters controlling the relationship
between transmitted and received symbols remain relatively
constant for a given duration. To facilitate the analysis of the
algorithm, equation (4) is written in the form of equation (5),
as follows

y = Au+ w (5)

where A = [� ⊗ X]T is an M × KL matrix, its ith row
equals to [�(n + i − 1) ⊗ X (n + i − 1)]T . In CS theory,
A is the sensing matrix composed of the weighted sum of
the Doppler effect and delay, and y is the receiving symbol
when it is sent as symbol X. Our goal is to estimate u given
the known y and A, and reconstruct u. Before calculation,
we need to define the parameters in matrix A. Let KL
denote the length of matrix u and I represent the number
of dominant components in u, which is referred to as the
sparsity level of the target signal in CS theory. Through the CS
algorithm, the process of compressing KL into I completes
the reconstruction estimation of u.
Due to the introduction of Doppler sampling, we need

to adjust the parameters, including data block length M ,
delay number K , and Doppler sampling L. For data block
length M , the estimation of an excessively long block will

introduce significant error [26]. It takes a lot of time for
the data block to process, and the dynamic change of the
environment is too fast, which makes the estimated channel
coefficients quickly outdated, resulting in the reconstructed u
being unable to adapt to the estimation of the following parts
of the data block. However, a longer blockM is beneficial for
reducing the correlation of the columns in matrix A, which is
very convenient for the reconstruction of u. Therefore, the
selection ofM should balance the relationship between these
factors. For the number of delayed samples (channel length),
K should be greater than the maximum delay in multipath
channels to aid subsequent equalization.
For Doppler sampling, L should be greater than the most

important part of the frequency shift of theDoppler effect, and
sampling the remaining part will cause waste in the system
and result in little improvement in system performance.
According to the derivation in [26], 1f > 1.4

πM1t . For M =

600 and a sample frequency fs = 24, 000Hz, this corresponds
to 1f > 17.83Hz. The purpose is to make the correlation
of columns in A low enough. To avoid aliasing in the time
domain and Doppler domain when DDSF represents CIR,
it is necessary to ensure that 1f1t ≤

1
N and 1t ≤

1
2fmax

.
Therefore, when selecting parameters, we must ensure that
the above parameter conditions are met to achieve the best
estimation effect.

III. CHANNEL ESTIMATION OF OMP ALGORITHM AND
T-MP ALGORITHM
This section discusses the performance limitations of the
conventional OMP algorithm, referred to as Algorithm 1 and
introduces an T-MP algorithm, referred to as Algorithm 2,
which can significantly enhance the algorithm’s performance.
The section also analyzes the reasons for the performance
improvement achieved by Algorithm 2. T-MP algorithm
given in Fig.1.

A. CHANNEL ESTIMATION OF OMP ALGORITHM
The OMP algorithm1 sequentially identifies the dominant

channel tap coefficients and selects them in descending
order of magnitude. In each iteration, the algorithm selects
the column vector most correlated with the residual of the
previous iteration from the matrix A [27]. The initial residual
vector is set to r0 = y, and the initial index set is �0 = ∅.
The index for the ith iteration is expressed as

si = arg max
j=1,2,...,KL

∣∣∣aHj ri−1

∣∣∣2∥∥aj∥∥2 (6)

where aj is the jth column in matrixA, and ri−1 is the residual
after the i−1th iteration. After finding the index si, the index
set is updated and used in the subsequent channel coefficient
calculation. The ith index set, �i, is updated as follows:

�i = �i−1 ∪ si (7)
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Algorithm 1 OMP Algorithm
1: Input

• Dictionary matrix A
• Received symbol y
• Physical sparsity I

2: Output
• Reconstructed signal û

3: Initialization
•Residual vector r0 = y
•Index set �0 = ∅

4: for i = 1, 2, . . . , I do
Find the index:Select the atomwith themaximum inner
product with the residual

si = arg max
j=1,2,...,KL

|aHj ri−1|
2

∥aj∥
2

Update the index set:Add the index obtained from the
ith iteration to the index set constituted by the previous
i− 1.
�i = �i−1 ∪ {si}
Compute the coefficient vector (A� denotes the

starvation matrix of the composition of atoms selected
from A).
ûi = (AH

�A�)−1AH
�ri−1

Update the residual vector
ri = ri−1 − A�ûi

5: end for

when calculating channel coefficients, the least squares of
matrix A should be computed. The formula is given by:

ûi = (AH
�A�)−1AH

�ri−1 (8)

where A = [a1i . . . asi ], in selecting the column vectors of A,
each column vector selected must be orthogonalized with all
column vectors of the index set in the previous step. Here, ûi
denotes the channel coefficients generated by the ith iteration.
After computing the channel coefficients, the residuals need
to be updated as follows:

ri = ri−1 − A�ûi (9)

repeat steps (6)-(9) until the number of repetitions equals
the channel sparsity. The algorithm terminates when the
number of repetitions reaches the specified value.

Although the OMP algorithm is widely used, it still
exhibits several shortcomings in complex environments. For
instance, implementing the OMP algorithm is challenging
due to the difficulty of obtaining the physical sparsity of the
UWA environment, which is a requirement for the algorithm.
In the execution process of the OMP algorithm, coefficient
calculation requires the least squares operation on the
selected atoms, which represents the most computationally
intensive part of the algorithm and requires a large amount of
computing resources. However, the underwater environment
is characterized by a large Doppler effect, and the number
of unimportant elements in u increases, leading to greater
sparsity. As sparsity increases, the computational power

FIGURE 1. The flowchart of the T-MP algorithm in channel estimation.

needed for least-squares operations on selected atoms in the
matrix A also grows substantially. The increase in sparsity
results in the OMP algorithm requiring a large amount of
computing resources, resulting in a longer calculation time
for the system. Since underwater environments are complex
and rapidly changing, extended computation times can limit
the estimation accuracy of the OMP algorithm. Therefore,
developing a suitable algorithm for such environments is
essential.

B. CHANNEL ESTIMATION OF T-MP ALGORITHM
The original OMP algorithm suffers from the cumbersome
balance between the estimation accuracy and the convergence
rates [9]. Generally, the fixed threshold of original OMP
algorithm may bring cumulative estimation errors and large
computational cost due to the amounted iterations. Compared
to the original OMP algorithm, the proposed T-MP algorithm
adopts the adaptive tradeoff between the estimation accuracy
and the convergence via utilizing the adaptive threshold T =

αe−γ ∗SNR
+β. Intuitively, the SNR [28] will impose intensive

impact over the threshold T , which leads to low threshold
with high SNR and high threshold with low SNR. Thus, the
proposed T-MP algorithm can reduce the computational cost
in low SNR and still keep accurate estimation in high SNR,
which is validated in the simulation results in Fig.4.

For the T-MP algorithm2, it is essential to configure the
algorithm parameters appropriately. Typically, the weight
coefficient difference denoted as η, is set to 0.0015, while the
parameter β plays a crucial role in adjusting the algorithm
iteration threshold, which is determined based on the specific
situation. In scenarios with high SNRs, β should be set to
a value less than 0.02, which corresponds to an iteration
threshold T less than 0.02. In the case of low SNRs, the bit
error ratio(BER) of the system is high, and it is necessary
to use a lower number of iterations to prevent the excessive
BER from affecting the estimation accuracy. In such cases,
the exponential part of the T expression plays a more
significant role in adjusting T , which is typically set to a
value greater than 0.13. By utilizing a lower number of
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Algorithm 2 T-MP Algorithm
1: Input

• Dictionary matrix A
• Received symbol y
•Iterations parameter α, β, γ, η

2: Output
• Reconstructed signal û

3: Initialization
•Residual vector r0 = y
• Threshold value T = αe−γ ∗SNR

+ β

4: while ûi > T do
Find index:Select the atom with the maximum inner

product with the residual
si = arg max

j=1,2,...,KL
|(aHj ri−1)|

Compute coefficient: the inner product of the
remaining vectors and the selected atoms
ui = ⟨ri−1, asi⟩
Update residual vector
ri = ri−1 − uiasi
Optimize decision threshold
if 1.2T ≥ ûi > T then
if η ≥ ûi−1 − ûi then
ûi+1 = 0

end if
end if
Update Iterations i = i+ 1

5: end while

iterations, the error resulting from low SNRs is reduced, and
theMSE performance in low SNR environments is improved.
Simulation results show that the T-MP algorithm is superior
to other algorithms in mean squared error when the SNR
is low. This is because the T-MP algorithm has a lower
threshold, fewer system iterations, and a smaller transmission
BER. The number of iterations of other algorithms remains
unchanged, and to obtain atoms with smaller weights, they
absorb more errors during the iteration process, which has a
significant impact on the estimation results.

In intricate UWA communication systems, the T-MP
algorithm swiftly computes elements with greater contribu-
tions in the dictionary matrix A, based on the magnitude of
the atomic contributions to the linear approximation. This
effectively balances estimation accuracy and speed. Unlike
the OMP algorithm, the T-MP algorithm does not necessitate
the atomic matrix generated in the prior iteration to be
orthogonal to the atoms of the current iteration, i.e., the
matrix’s Least Squares operation. In complex UWA systems,
such an approach would demand numerous calculations,
consuming considerable computation time and restricting
estimation accuracy in rapidly changing underwater envi-
ronments. As such, the T-MP algorithm is better suited for
quickly evolving UWA systems.

Nevertheless, when signal sparsity is excessively high,
the size of the matrix û to be reconstructed may become

FIGURE 2. Comparison of the NMSE versus iteration number in different
SNRs. From the figure, it can be obtained that there exists an optimal
iteration number under which the NMSE of the OMP algorithm is the
smallest.

substantially large. In the dictionary matrix, the system
selects column vectors with higher weights during early
iterations, allowing the received signal to converge rapidly
within the iterative process. Following multiple iterations,
the weights of column vectors diminish and their magnitudes
become similar. At this stage, satisfying the algorithm’s
termination condition may be challenging, and the remaining
column vectors contribute minimally to the estimation.
Therefore, it would be a waste of system resources to
continue the calculation. To rectify this issue, it is essential
to discard these column vectors and force the algorithm to
halt. The termination decision is made by comparing the
weight coefficients ûi and ûi−1 of the current and previous
iterations, respectively. When the magnitudes of ûi and ûi−1
are similar, the weight coefficient ûi+1 is set to 0, fulfilling
the termination condition and concluding the iteration. As a
result, when the weights of the dictionary matrix become
excessively small after several iterations, the system can
maintain the normal operation.

MSE =
1
KL

KL∑
i=1

(ui − ûi)2,NMSE =

∑KL
i=1 |ui − ûi|2∑KL
i=1 |ui − ū|2

(10)

Equation (10) is an expression forMSE and the normalized
mean square error (NMSE), where K denotes the channel
length and L represents the sampled DDSF of the channel, ui,
ûi and ū correspond to the actual sparse weight, the estimated
sparseweight and the average of actual sparseweight of UWA
channels, respectively. The expression for SNR is shown in
Equation (11). where PS denotes the signal power and PN
denotes the noise power.

SNR = 10 · log10

(
PS
PN

)
(11)

Fig.2 shows the relationship between the number of
iterations and the NMSE of the OMP algorithm for different
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FIGURE 3. The influence of different types of dictionaries on the rate of
convergence of T-MP algorithm.

SNRs. For SNR = 5 dB, the MSE converges to a minimum
when the number of iterations is about 20. Thereafter,
an increase in the number of iterations leads to a higher
NMSE. At SNR = 10 dB, the MSE reaches a minimum at
about 30 iterations. After that, the NMSE increases with the
number of iterations. As seen in the figure, the number of
iterations for the minimum value of NMSE varies as the SNR
varies. For the OMP algorithm, although the residuals of the
signal decrease with the number of iterations, the estimation
error caused by the low SNR is introduced during the iteration
process, which leads to an increase in the difference between
the estimated signal and the original signal. Therefore, it is
necessary to find a number of iterations that minimizes the
NMSE of the signal and brings the estimated signal closest to
the original signal.

Due to the inability of the OMP algorithm to adaptively
determine the number of iterations based on SNR, the
algorithm cannot always be at the optimal number of
iterations in environments with varying SNRs. However, the
adaptive iteration count of the T-MP algorithm effectively
solves this problemTdetermines the number of iterations
in the T-MP algorithm and corresponds to the relationship
between the optimal number of iterations and SNR, providing
better performance than the OMP algorithm in low SNR
environments. Therefore, compared to the OMP algorithm,
the adaptive T-MP algorithm provides greater flexibility and
can meet the requirements of a wider range of scenarios.

For the T-MP algorithm, we use different dictionaries
for simulation, and the results are shown in Fig.3. The
Wavelet dictionary can better capture the signals of sparse
channels, especially the DDSF underwater acoustic channel
with obvious Doppler effect. The performance of Random
dictionaries is the worst, which also indicates the need
for targeted optimization of dictionaries for the special
environment of underwater channels. The effect of Hadamard
dictionary is average, possibly due to its simple structure
and difficulty in handling complex underwater channels.

Therefore, we use wavelet dictionaries for simulation in the
following simulations.

C. CONVERGENCE ANALYSIS OF T-MP ALGORITHM
Let y ∈ Rn be the input signal, and A = {a1, a2, . . . , ae} be
an overcomplete dictionary with e atoms, where each atom
ai ∈ Rn has unit norm (∥ai∥2 = 1) [29]. The goal of the MP
algorithm is to find a sparse representation of y using a linear
combination of a few atoms from A:

y ≈

I∑
i=1

uiasi , (12)

where I ≪ KL, ui is the coefficients, and si is the indices of
the selected atoms.

The MP algorithm iteratively selects the atom that has the
maximum inner product with the current residual and updates
the residual accordingly. The algorithm can be summarized as
follows:

1) Initialize the residual r0 = y.
2) For i = 1, 2, . . . , I

a) Select the atom with the maximum inner product
with the residual: si = arg max

j=1,2,...,KL
|⟨ri−1, aj⟩|.

b) Update the coefficient: ui = ⟨ri−1, asi⟩.
c) Update the residual: ri = ri−1 − uiasi .

3) Output the sparse representation y ≈
∑I

i=1 uiasi .
To analyze the convergence of the MP algorithm, we will

examine the decrease in the residual’s energy (squared norm)
at each iteration:

Ei = ∥ri∥22 = ∥y −

I∑
i=1

uiasi∥
2
2. (13)

For any input signal y and dictionary A, the energy of the
residual decreases monotonically at each iteration of the MP
algorithm:

Ei ≤ Ei−1 − u2i . (14)

Let ri = ri−1 − uiasi . Then,

Et = ∥ri∥22 (15)

= ∥ri−1 − uiasi∥
2
2 (16)

= ∥ri−1∥
2
2 − 2ui⟨ri−1asi⟩ + u2i ∥asi∥

2
2. (17)

Since ∥asi∥2 = 1 and ui = ⟨ri−1, asi⟩,

Ei = Ei−1 − u2i . (18)

Thus, the energy of the residual decreases monotonically at
each iteration. Since the T-MP algorithm only changes from
MP in terms of the number of iterations, the T-MP algorithm
and the MP algorithm have similar convergence properties.

D. COMPLEXITY ANALYSIS OF T-MP ALGORITHM
The main operations of the T-MP algorithm include the
following steps:

1) Finding the index si.
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TABLE 1. System parameters in experiments.

2) Updating the index set �.
3) Computing the coefficient ûi.
4) Updating the residual vector ri.
5) Optimizing the decision threshold.
First, let’s consider step 1. For each iteration, the algorithm

needs to calculate KL inner products and find the maximum.
Calculating an inner product requires N multiplications and
N − 1 additions, so the time complexity of calculating KL
inner products is O(KLN ). Finding the maximum requires
KL − 1 comparisons, so the time complexity is O(KL).
Therefore, the total time complexity of step 1 is O(KLN ).
For steps 2 and 3, the time complexity is O(1) and O(N ),

respectively.
Step 4 involves vector-matrix multiplication and sub-

traction. Since asi is an N -dimensional vector, the time
complexity of this step is O(N ).

Step 5 involves conditional judgment and threshold
updating, with a time complexity of O(1).
In summary, in a single iteration, the main time complexity

of the algorithm comes from step 1, which is O(KLN ).
Assuming the algorithm performs a maximum of Imax
iterations, the total time complexity of the T-MP algorithm
is O(ImaxKLN ).

IV. SIMULATION RESULTS AND ANALYSIS
In this section, various algorithms are simulated for Doppler
underwater channel modeling. The superiority of the T-MP
algorithm in low SNR environments is derived by comparing
the mean square error simulation results of the OMP
algorithm, the AS-SaMP algorithm, the SaMP algorithm,
the ORLSMP algorithm and the T-MP algorithm. Then, the
CPU computation time of the above-mentioned algorithms
is compared and the low power consumption of the T-MP
algorithm is derived. After that, the MSE of T-MP algorithm
and OMP algorithm with different lengths of lead frequency
is simulated. Finally, the effect of sparsity on OMP algorithm,
ORLSMP algorithm and T-MP algorithm is also compared.

A. MSE COMPARISON OF DIFFERENT ALGORITHMS
The parameter settings provided in Table 1 were employed
to conduct simulations using the OMP algorithm, SaMP

FIGURE 4. MSE of different SNRs of OMP algorithm, AS-SaMP algorithm,
SaMP algorithm, ORLSMP algorithm, and T-MP algorithm in the DDSF
model.

algorithm, ORLSMP algorithm, as well as AS-SaMPand
algorithm, respectively, and the results are shown in Fig.4.

For the OMP algorithm, due to its sensitivity to noise,
it is easily affected by noise interference, and the MSE
performance with low SNR is not as good as the T-MP
algorithm [30]. Under high SNR, its MSE performance
is inferior to other algorithms due to fewer iterations.
However, compared to the T-MP algorithm, the vectors
selected during the iteration process are orthogonal, reducing
the impact of vector correlation during the iteration and
enabling fast recovery of the original signal. Therefore, its
MSE performance is better than the current T-MP algorithm
under high SNR. The SaMP algorithm adapts to changes
in the number of iterations through the sparsity of the
channel, and has high stability. It has better estimation
performance compared to the MP algorithm, and the adaptive
iteration of the algorithm can more accurately select channel
coefficients to prevent excessive non-zero coefficients from
causing estimation errors to increase. For the AS-SaMP
algorithm, it usually has better estimation performance than
the SaMP algorithm [31]. By introducing the mechanism of
dynamically adjusting the step size, the robustness and Rate
of convergence of the estimation are improved, but it has high
complexity. The ORLSMP algorithm is an iterative algorithm
based on least squares, which uses the basis functions of the
MP algorithm and then uses recursive least squares to update
the coefficients of these basis functions. At each iteration, the
channel parameters are updated recursively using previous
historical data to improve the accuracy and stability of
the estimation. Overall, none of the above algorithms have
introduced the size of SNR into the estimation process of
the algorithm, and SNR has a significant impact in the
channel estimation process. When the SNR is low, the
T-MP algorithm reduces the number of iterations through
the effect of SNR, thereby reducing the introduction of
estimation errors, resulting in better estimation performance
than other algorithms. The T-MP algorithm is of great
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FIGURE 5. Performance of the considered algorithms for M=600 with the
PS’10 experiment.

significance in communication that requires low energy
consumption and long cycles. For example, deep-sea oil well
sensors, deep-sea seismic observation instruments, and ocean
current meteorological observation instruments all have the
characteristics of difficult deployment and long periods,
and low-power communication plays a very important
role.

TABLE 2. System parameters in experiments.

To accurately simulate real-world conditions, the exper-
imental data from the PS’10 was employed [24]. The
parameter settings for simulation are shown in Table2, and the
simulation results of various algorithms are shown in Fig.5.
The simulation results show that the T-MP algorithm has
better performance than the OMP algorithm when the SNR is
below 12. However, when the SNR is below 6, there is better
performance than other algorithms. It is worth noting that
compared with the above experiments, there is a significant
difference in the performance of SaMP and ORLSMP. This
may be due to the low sparsity during the experiment,
which results in less information being transmitted during
the iteration process of the SaMP algorithm and poorer
estimation performance.

FIGURE 6. Comparison of CPU running time for various algorithms with
M=600 based on DDSF.

B. CPU RUNNING TIME OF DIFFERENT ALGORITHMS
As shown in Fig.6, the CPU running time of the T-MP
algorithm is significantly shorter compared to the other
algorithms. TheOMP algorithm requires picking atomswhile
orthogonal computations are being performed, which greatly
increases the computational effort of the system. ORLSMP,
on the other hand, introduces recursive updating, which
has to be updated all the time during the computation,
so it also has a considerable amount of computation. For
both SaMP and AS-SaMP contain sparse approximation
operations, which wastes the power consumption of the
system for channel environments with little sparse variation.
In summary, the T-MP algorithm has the characteris-
tics of simplicity and high efficiency, which can greatly
save the computation time and reduce the system power
consumption.

Since the number of iterations of OMP is related to the
sparsity of the system, it is generally believed that for a
fixed sparsity, the number of iterations is fixed and the
number of atoms selected in the operation is also fixed,
so the computational cost of least squares is also fixed,
and the change in SNR has no effect on the computational
cost of OMP [32]. For the T-MP algorithm, its iteration
stop threshold T is dynamic. At low SNR, the threshold
T is large, the number of iterations is small, and the
computation of the iterative process is reduced; At high
SNR, the threshold T becomes small, and the corresponding
computation increases.

The PS’10 experiment was conducted to compare the
CPU running time of different algorithms, and the simula-
tion results are shown in Fig.7. Among these algorithms,
T-MP algorithm has the shortest computation time. The
T-MP algorithm pursues atoms with significant weights,
which greatly saves CPU computation time. In con-
trast, the other algorithms pursue as many atoms as
possible, wasting a significant amount of system power
consumption.
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FIGURE 7. Comparison of CPU running time with M=600 in the PS’10
experiment.

FIGURE 8. Comparison of different pilot lengths of T-MP algorithm and
OMP algorithm. Three pilot lengths M = 400, M = 600 and M = 800 are
used to calculate the MSE.

C. INFLUENCE OF PILOTS WITH DIFFERENT LENGTHS ON
ESTIMATION ALGORITHM
The T-MP algorithm and the OMP algorithm exhibit the same
MSE points at various pilot lengths M , as demonstrated by
the intersection points in Fig.8. The intersection point is near
SNR = 5 dB for pilot length M = 800, near SNR = 8 dB
for M = 600, and near SNR = 14 dB for M = 400. This
observation suggests that within a certain range, a longer pilot
length M accelerates the convergence of OMP concerning
T-MP algorithm. The reason behind this is that at low SNR,
the over-iterations of the OMP algorithm generate many
errors, resulting in a lower MSE for OMP than for T-MP
algorithm. Increasing the pilot length decreases the error rate
of the OMP algorithm in a low SNR environment, hence
the longer the pilot length, the faster the OMP algorithm
converges. For the T-MP algorithm, the smaller number of
iterations reduces errors in the iterations, and atoms with
larger weights are selected while those with smaller weights
are discarded, leading to better tracking performance for

FIGURE 9. Constellations with different M of T-MP algorithm. Figures (a) ,
(b) and (c) represent pilot length M=400, M=600 and M=800.

T-MP algorithm compared to OMP. We then simulate the
constellation diagram of QPSK with different pilot lengths of
the T-MP algorithm according to the experimental conditions
in Fig.8, with results presented in Fig.9. For M = 400,
the output constellation of the equalizer is disordered and
exhibits a high BER. The output points of M = 600 have
good phase differentiation and a low BER. With M =

800, only a few points are challenging for the system to
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FIGURE 10. The impact of channel sparsity on different algorithms.

identify, meeting the requirements of systems with relatively
high BER. This illustrates the significant impact of pilot
length on channel estimation. Nonetheless, increasing the
pilot length also introduces certain issues. First, a longer pilot
length increases communication overhead, as more channel
resources are required for pilot transmission. Second, when
the pilot length surpasses the channel, the signal experiences
multipath effects, causing increased errors in channel sparsity
estimation.Moreover, excessively long pilot lengths may also
contribute to a rise in the computational complexity of the
algorithm, affecting real-time performance.

D. MSE OF DIFFERENT ALGORITHMS UNDER DIFFERENT
SPARSITY
As shown in Fig.10, we simulated the sparsity of different
algorithms at SNR = 10dB. The T-MP algorithm performs
better when sparsity is low. The biggest reason is that under
low sparsity, T-MP, OMP, and ORLSMP algorithms have
similar performance in selecting atoms, but under low SNR
conditions, T-MP has better performance. Under high sparsity
conditions, the performance of T-MP algorithm in selecting
matching atoms deteriorates, and the atoms selected in the
later stage of iteration may have a significant correlation with
the atoms selected in the earlier stage, leading to a decrease
in recovery ability. The OMP algorithm selects atoms that
are orthogonal, which has better recovery performance. The
ORLSMP algorithm has better estimation performance than
the OMP algorithm because it has the characteristic of
recursive updating, reducing errors caused by noise, and also
improving estimation stability.

V. CONCLUSION
In this study, the T-MP algorithmwas employed to investigate
underwater channel estimation using the DDSF. The perfor-
mance of sparse reconstruction was compared between T-MP
and OMP algorithms using the DDSF model. The dynamic
iterative threshold of T-MP algorithm offers a superior bal-
ance between computational accuracy and cost. Simulation

results demonstrate that T-MP algorithm outperforms OMP
in low SNR scenarios, significantly reducing computational
time. Under high SNR conditions, both algorithms exhibit
comparable performance; However, T-MP algorithm requires
less computational time. Consequently, T-MP algorithm
emerges as a preferable choice for underwater communi-
cation applications necessitating lower power consumption.
This study contributes to the development of more efficient
UWA channel estimation algorithms and holds potential
applications in a wide range of underwater communication
scenarios.

REFERENCES
[1] G. Qiao, X. Qiang, L. Wan, and Y. Xiao, ‘‘Chirp Z-transform based sparse

channel estimation for underwater acoustic OFDM in clustered channels,’’
in Proc. OCEANS MTS/IEEE Charleston, Oct. 2018, pp. 1–6.

[2] Y. Su, X. Liu, Z. Jin, and X. Fu, ‘‘Fast estimation of underwater acoustic
multipath channel based on LFM signal,’’ in Proc. Global Oceans, Singap.
U.S. Gulf Coast, Oct. 2020, pp. 1–5.

[3] W. Jiang and R. Diamant, ‘‘Sparse channel estimation for long range
underwater acoustic communication,’’ in Proc. 6th Underwater Commun.
Netw. Conf. (UComms), Aug. 2022, pp. 1–4.

[4] M. Murad, I. A. Tasadduq, and P. Otero, ‘‘Pilots based LSE channel
estimation for underwater acoustic OFDM communication,’’ in Proc.
Global Conf. Wireless Opt. Technol. (GCWOT), Oct. 2020, pp. 1–6.

[5] Y. Hu, J. Tao, M. Jiang, and C. Dang, ‘‘Improved dynamic compressive
sensing based channel estimation for single-carrier underwater acoustic
communication,’’ in Proc. OES China Ocean Acoust. (COA), Jul. 2021,
pp. 655–659.

[6] B. B. Yousif and E. E. Elsayed, ‘‘Performance enhancement of an orbital-
angular-momentum-multiplexed free-space optical link under atmospheric
turbulence effects using spatial-mode multiplexing and hybrid diver-
sity based on adaptive MIMO equalization,’’ IEEE Access, vol. 7,
pp. 84401–84412, 2019.

[7] C. Li, K. Song, and L. Yang, ‘‘Low computational complexity design over
sparse channel estimator in underwater acoustic OFDM communication
system,’’ IET Commun., vol. 11, no. 7, pp. 1143–1151, May 2017.

[8] S. Wang, W. Li, and R. Guo, ‘‘Underwater acoustic channel prediction
in delay-Doppler domain based on reinforcement learning,’’ in Proc.
OCEANS, Hampton Roads, Oct. 2022, pp. 1–7.

[9] Y. Zhang, R. Venkatesan, O. A. Dobre, and C. Li, ‘‘Efficient estimation and
prediction for sparse time-varying underwater acoustic channels,’’ IEEE
J. Ocean. Eng., vol. 45, no. 3, pp. 1112–1125, Jul. 2020.

[10] C. Bernard, P.-J. Bouvet, A. Pottier, and P. Forjonel, ‘‘Multiple access
acoustic communication in underwater mobile networks,’’ in Proc. 5th
Underwater Commun. Netw. Conf. (UComms), Aug. 2021, pp. 1–4.

[11] A. Kumar and P. Kumar, ‘‘Pilot-assisted maximum-likelihood estimation
for underwater acoustic communication,’’ in Proc. 5th Int. Conf. Comput.,
Commun. Secur. (ICCCS), Oct. 2020, pp. 1–6.

[12] X. Zhang, J. Tao, D. Li, Y. Wu, W. Chen, and Y. Chen, ‘‘VAMP based
frequency-domain turbo equalization for MIMO horizontal underwater
acoustic communications,’’ in Proc. OCEANS Chennai, Feb. 2022,
pp. 1–5.

[13] Y. Wu, Y. Wang, J. Tao, L. Yang, and Y. Qiao, ‘‘Outlier robust
Kalman filter based channel tracking for single-carrier underwater acoustic
communications,’’ in Proc. OCEANS, Hampton Roads, Oct. 2022, pp. 1–5.

[14] Y. Wang, H. Cao, J. Tao, L. Yang, and Y. Qiao, ‘‘Proportionate
Kalman filter for model-based channel tracking in underwater acoustic
communications,’’ inProc. OCEANS, SanDiego Porto, Sep. 2021, pp. 1–5.

[15] J. Tao, Y. Wu, Q. Wu, and X. Han, ‘‘Kalman filter based equalization
for underwater acoustic communications,’’ in Proc. OCEANS Marseille,
Jun. 2019, pp. 1–5.

[16] F. Yu, D. Li, Q. Guo, Z. Wang, and W. Xiang, ‘‘Block-FFT based OMP for
compressed channel estimation in underwater acoustic communications,’’
IEEE Commun. Lett., vol. 19, no. 11, pp. 1937–1940, Nov. 2015.

[17] N. U. R. Junejo, H. Esmaiel, M. Zhou, H. Sun, J. Qi, and J. Wang,
‘‘Sparse channel estimation of underwater TDS-OFDM system using look-
ahead backtracking orthogonal matching pursuit,’’ IEEE Access, vol. 6,
pp. 74389–74399, 2018.

109140 VOLUME 11, 2023



S. Mu et al.: Adaptive MP Algorithm for Underwater Acoustic Channel Estimation

[18] T. Fang, S. Liu, X. Wu, H. Yan, and I. U. Khan, ‘‘Non-cooperative
MPSK modulation identification in SIMO underwater acoustic multipath
channel,’’ in Proc. OES China Ocean Acoust. (COA), Jul. 2021,
pp. 607–612.

[19] Z.Wang, Y. Li, C.Wang, D. Ouyang, and Y. Huang, ‘‘A-OMP: An adaptive
OMP algorithm for underwater acoustic OFDMchannel estimation,’’ IEEE
Wireless Commun. Lett., vol. 10, no. 8, pp. 1761–1765, Aug. 2021.

[20] W. Jiang, F. Tong, and Z. Zhu, ‘‘Exploiting rapidly time-varying sparsity
for underwater acoustic communication,’’ IEEE Trans. Veh. Technol.,
vol. 71, no. 9, pp. 9721–9734, Sep. 2022.

[21] G. Qiao, Q. Song, L. Ma, S. Liu, Z. Sun, and S. Gan, ‘‘Sparse Bayesian
learning for channel estimation in time-varying underwater acoustic
OFDM communication,’’ IEEE Access, vol. 6, pp. 56675–56684, 2018.

[22] T. T. Do, L. Gan, N. Nguyen, and T. D. Tran, ‘‘Sparsity adaptive
matching pursuit algorithm for practical compressed sensing,’’ in Proc.
42nd Asilomar Conf. Signals, Syst. Comput., Oct. 2008, pp. 581–587.

[23] Y. Zhang, R. Venkatesan, O. A. Dobre, and C. Li, ‘‘An adaptive matching
pursuit algorithm for sparse channel estimation,’’ in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Mar. 2015, pp. 626–630.

[24] P. Qarabaqi and M. Stojanovic, ‘‘Statistical characterization and compu-
tationally efficient modeling of a class of underwater acoustic commu-
nication channels,’’ IEEE J. Ocean. Eng., vol. 38, no. 4, pp. 701–717,
Oct. 2013.

[25] W. H. Tranter, D. P. Taylor, R. E. Ziemer, N. F. Maxemchuk, and
J. W. Mark, Characterization of Randomly Time Variant Linear Channels,
2007.

[26] W. Li and J. C. Preisig, ‘‘Estimation of rapidly time-varying sparse
channels,’’ IEEE J. Ocean. Eng., vol. 32, no. 4, pp. 927–939, Oct. 2007.

[27] J. Wang, S. Kwon, and B. Shim, ‘‘Generalized orthogonal matching
pursuit,’’ IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6202–6216,
Dec. 2012.

[28] M. PremKumar, S. E. Chandra, M. AshokRaj, and M. G. Prasana, ‘‘Digital
signal processing issues for wireless communication systems in Line of
Sight(LOS) and Non Line of Sight (NLOS) environments,’’ in Proc. Int.
Conf. Circuit, Power Comput. Technol. (ICCPCT), Mar. 2016, pp. 1–5.

[29] S. G. Mallat and Z. Zhang, ‘‘Matching pursuits with time-frequency
dictionaries,’’ IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415,
Dec. 1993.

[30] W. Li and J. Preisig, ‘‘Estimation and equalization of rapidly varying sparse
acoustic communication channels,’’ in Proc. OCEANS, Sep. 2006, pp. 1–6.

[31] Y. Zhang, R. Venkatesan, O. A. Dobre, and C. Li, ‘‘Novel compressed
sensing-based channel estimation algorithm and near-optimal pilot
placement scheme,’’ IEEE Trans. Wireless Commun., vol. 15, no. 4,
pp. 2590–2603, Apr. 2016.

[32] A. Kumar and P. Kumar, ‘‘A new adaptive OMP-MAP algorithm-based
iterative sparse channel estimation for OFDM underwater communica-
tion,’’ Indian J. Pure Appl. Phys., vol. 61, no. 1, pp. 43–56, Apr. 2023.

SHAOPENG MU received the B.S. degree
from the East University of Heilongjiang, China,
in 2019. He is currently pursuing the M.S.
degree with the School of Electrical Engineering,
Anhui Polytechnic University, China. His research
interest includes acoustic underwater channel
estimation.

WENGEN GAO received the Ph.D. degree from
Jiangnan University, China. He is currently a
Professor with the School of Electrical Engi-
neering, Anhui Polytechnic University, China.
He has published a considerable number of articles
in international conferences. His main research
interests include microgrid control and energy
optimization algorithms.

YUNFEI LI received the B.S. degree in com-
munication engineering and the master’s degree
in automatic engineering from Anhui Polytechnic
University, in 2012 and 2015, respectively, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Macau, Macau. He is
currently with the Key Laboratory of Advanced
Perception and Intelligent Control of High-End
Equipment, Ministry of Education, Anhui Poly-
technic University. His research interests include

localization robust algorithm, secure localization algorithm, and statistical
signal processing.

LING JIANG received the B.S. degree in com-
munication engineering from Anhui Polytechnic
University, China, in 2020. She is currently
pursuing the M.S. degree with the School of Elec-
trical Engineering, Anhui Polytechnic University,
China. Her research interest includes position of
the autonomous underwater vehicles.

MENGXING PAN received the B.S. degree in
communication engineering from Chuzhou Uni-
versity, China, in 2021. She is currently pursuing
theM.S. degree with the School of Electrical Engi-
neering, Anhui Polytechnic University, China. Her
research interest includes the study of statistical
learning-based algorithms for indoor fingerprint
localization.

HANWEN XU received the B.S. degree in com-
munication engineering from Anhui Jianzhu Uni-
versity, China, in 2020. He is currently pursuing
theM.S. degree with the School of Electrical Engi-
neering, Anhui Polytechnic University, China. His
research interest includes the control of robotic
arms.

VOLUME 11, 2023 109141


