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ABSTRACT As the core equipment for AC/DC conversion in ultra-high voltage direct current (UHVDC)
transmission systems, thyristor converter valves are the main source of losses in converter stations. However,
it is difficult to directly measure the actual thyristor losses in UHVDC converter stations, and the existing
loss calculation methods have many shortcomings, lacking accuracy and real-time performance. In this
paper, a real-time monitoring method for thyristor losses in UHVDC stations based on wavelet optimized
genetic algorithm-backpropagation (GA-BP) neural network is proposed. Firstly, wavelet transform is used
to remove high-frequency noise from thyristor test data and extract features from the original signal. Then,
genetic algorithm is used to optimize the initial weights and biases of the BP neural network, and a
loss calculation model is constructed through dataset training. Finally, combined with the electromagnetic
transient operating point, real-time monitoring of thyristor losses is achieved. Through PSCAD-MATLAB
interactive interface simulation verification, this method can obtain real-time power consumption curves of
thyristors based on changes in operating conditions. Moreover, compared to traditional fitting algorithms
and standard neural networks, the wavelet optimized GA-BP neural network has the advantages of fewer
iterations and higher fitting accuracy.

INDEX TERMS UHVDC, converter station, thyristor, energy consumption calculation, real-time monitor-
ing, wavelet transform, GA-BP neural network.

I. INTRODUCTION
Ultra-high voltage direct current (UHVDC) transmission
systems enable long-distance and large-capacity power trans-
mission, which is of great significance for energy supply,
grid stability, and economic development. Due to the large
transmission capacity of the UHVDC transmission line, its
absolute losses are relatively large, and they are directly
included in the project construction cost. It is particularly
important to determine the composition and distribution of

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Raza .

system losses [1], [2]. The main sources of losses in the
UHVDC transmission system are transmission lines, thyris-
tor valves, converter transformers, AC and DC filters, etc.
Above all, the thyristor converter valve is the main source
of losses in the UHVDC converter station [3], [4]. It is dif-
ficult to determine the distribution of power loss of the main
energy-consuming components represented by the thyristor
converter valves, which poses a serious challenge for the
study of loss reduction in UHVDC transmission systems.

For the monitoring of thyristor loss, IEEE and IEC develop
several standards, which provide for the commissioning of
high voltage direct current converter stations and the power
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loss of major components [5], [6]. Relevant scholars have
modeled the UHVDC system and built a UHVDC system
simulationmodel based on transient simulation software such
as PSCAD/EMTDC and RT-LAB real-time simulation soft-
ware [7], [8], [9], [10], [11]. They also carried out a more
complete analysis of the control strategy and dynamic char-
acteristics of the UHVDC system [12], [13], [14]. For the
thyristor converter valve, Y. Lou put forward the simulation
calculation method of thyristor converter valve loss by estab-
lishing a high-precision simulation model of the thyristor and
saturation reactor and successfully calculated the loss of the
main components in the converter valve of the Ximeng con-
verter station under the rated condition [15]. But its refined
model has the drawbacks of low simulation efficiency and
complex model modification. P. A. Gbadega and A. K. Saha
studied the verification, determination, and calculation of the
total loss of the thyristor valve in UHVDC converter stations
and established the loss calculation model of the thyristor
valve in detail based on the theoretical calculation method
[16], [17]. But its calculation accuracy is not high and some
of the parameters required for the calculation are difficult
to be obtained in the different types of thyristors. In recent
years, data-driven modeling methods based on massive data
have developed rapidly [18], [19], [20], [21], and artificial
intelligence algorithms are widely used in electrical engi-
neering fields such as power equipment fault diagnosis, load
forecasting, power system optimization, etc. [22], [23], [24].
In the field of UHVDC transmission, C. Liu proposed a new
method based on the combination of wavelet transform and
wavelet neural network for commutation fault diagnosis, and
the simulation experimental data showed that its diagnos-
tic speed is fast and the recognition accuracy is high [25].
However, the method fails to realize real-time diagnosis of
the system operation, and the relevant artificial intelligence
algorithms are rarely used in thyristor loss monitoring.

At present, scholars have almost perfected the accurate
modeling and operation control strategies of the UHVDC
system, but there is relatively little research on the system
loss, especially the thyristor valve losses. There are still some
shortcomings in the existing research. On the one hand, the
existing thyristor valve theoretical calculation method is dif-
ficult to obtain some of the parameters, lacks accuracy, and
is difficult to achieve real-time monitoring of loss. On the
other hand, the refinement of the transient model has high
complexity, and low simulation efficiency, which is difficult
to accurately reflect the real-time loss under the influence
of multiple elements. In addition, data-driven artificial intel-
ligence algorithms are advanced, but they have not been
applied in the research of thyristor loss monitoring.

The purpose of this paper is to propose a real-time
monitoring method of thyristor loss in UHVDC converter
station based on wavelet optimized genetic algorithm-
backpropagation (GA-BP) neural network algorithm to accu-
rately calculate the thyristor loss and display it in real-time in
response to the above problems. In section II, the traditional
thyristor theoretical calculation method is introduced. Based

on the wavelet optimized GA-BP neural network algorithm
the system architecture of real-time monitoring and the mod-
eling of the UHVDC system is explained in section III. The
implementation of the proposed algorithm is elaborated in
section IV. In section V, the proposed real-time monitoring
method is validated based on the simulation model and com-
pared with other neural networks and traditional algorithms.
Finally, conclusions are drawn in section VI.

II. THEORETICAL CALCULATION METHOD
For each thyristor, it can be roughly divided into four states
according to the characterization of its turn-on process, con-
duction state, turn-off process, and blocking state. Since there
is almost no current flow during the thyristor blocking state,
the blocking state loss of the thyristor valve mainly depends
on the other components of the valve group, which is not
discussed in the study of this paper. Therefore, the theoret-
ical calculation of thyristor loss is presented below through
turn-on process loss, conduction state loss, and turn-off pro-
cess loss [6].

A. TURN-ON PROCESS LOSS
The turn-on process loss component of a thyristor is the
product of the rapidly rising current and the rapidly falling
voltage drop during its conduction. This voltage drop greatly
exceeds the ideal thyristor conduction state voltage.

Pthy1 = Nt × f ×

∫ t1

0
[uB(t) − uA(t)] × i(t)dt (1)

where, Nt is the number of thyristors in series with a single
valve; f is the AC frequency. t1 is the turn-on process time,
which can be calculated by t1 = (2π/3 + µ)/2π f ; uB(t) is
the instantaneous conduction state voltage of the thyristor;
uA(t) is the average value of the instantaneous conduction
state voltage drop of the thyristor under the same conditions;
i(t) is the instantaneous current flowing through the thyristor.

B. CONDUCTION STATE LOSS
The conduction state loss component of a thyristor theoreti-
cally corresponds to the product of conduction state current
and conduction state voltage. When the DC current is well
smooth, the theoretical calculation of its conduction state
loss applies equation (2); while equation (3) is used instead
provided that the RMS (Root Mean Square) value of the DC
side harmonic currents exceeds 5% of the DC component.

Pthy2a =
Nt × Id

3
×

[
U0 + R0 × Id × (

2π − µ

2π
)
]

(2)

Pthy2b =
Nt × Id × U0

3
+
Nt × R0

3
× (I2d +

48∑
n=12

I2n )

× (
2π − µ

2π
) (3)

where, Id is the DC current;µ is the commutation angle;U0 is
the current-independent part of the thyristor mean conduction
state voltage; R0 is the resistance that determines the slope of
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the thyristor mean conduction state characteristic; In is the
RMS value of the n-th harmonic current of the DC bridge.

C. TURN-OFF PROCESS LOSS
The turn-off process loss component of a thyristor is gen-
erated by the reverse recovery current flowing through the
thyristor during the turn-off process. The value of the reverse
recovery current is usually characterized by the reverse recov-
ery charge.

Pthy3 = Qrr × f ×
√
2 × UV0 × sin(α + µ+ 2π f × t0)

(4)

where,Qrr is the average value of the thyristor storage charge;
UV0 is the RMS value of the no-load line voltage on the valve
side of the converter transformer without harmonics; α is the
trigger angle; t0 is the reverse recovery time, which can be

calculated by t0 =

√
Qrr

/
(di/dt)i=0.

The total thyristor loss during system operation is the sum
of the above components:

Pthy =

3∑
i=1

Pthyi (5)

III. ARCHITECTURE OF THE REAL-TIME THYRISTOR LOSS
MONITORING SYSTEM
The theoretical calculation method of thyristor described in
the previous section is a common calculation method for
converter stations, which is universal but lacks calculation
accuracy for different actual UHVDC systems. At the same
time, it is difficult to obtain some data such as uA(t) and
uB(t) in the datasheet of thyristor, and the key parameters of
different types of thyristors are different, which brings certain
difficulties to the theoretical calculation method.

Aiming at the problem of thyristor loss monitoring, this
paper intends to propose a new method of data-driven real-
time monitoring. Based on the wavelet optimized GA-BP
neural network algorithm, an accurate loss calculation model
can be established through massive thyristor test data. At this
time, it is only necessary to provide data such as the operating
point of the system to analyze and calculate, and then the
loss calculation results with high accuracy can be derived.
To realize the real-time monitoring of loss, this paper adopts
the idea of combining electromagnetic transient and numer-
ical calculation. Firstly, the PSCAD simulation model of the
UHVDC transmission system is established. And then, the
BP neural network training is carried out by MATLAB to
form the loss calculation model. Finally, the operating point
data of the system is obtained through the PSCAD simulation
model, and the real-time monitoring of the loss is realized
based on the interactive interface [26], [27]. The architecture
of the real-time thyristor loss monitoring system is shown in
Fig. 1.

An electromagnetic transient simulation model in PSCAD
based on an actual UHVDC transmission system is

established in this paper, whose structure is schematically
shown in Fig. 2.

As shown in Fig. 2, the UHVDC transmission system is
mainly composed of thyristor valves, converter transform-
ers, AC filter bank, DC filter bank, DC smoothing reactor,
etc. The UHVDC transmission system model uses the basic
control method. The constant DC current control method is
applied on the rectifier side which makes the DC current
constant by the change of the trigger angle α. The constant
γ -angle control method is deployed on the inverter side to
make the thyristor’s arc extinguishing angle γ not less than
the minimum arc extinguishing angle avoiding the phase
change failure. At the same time, the rectifier side also
has the minimum trigger angle limitation control, and the
inverter side also has the current error control (CEC) and
voltage-dependent current order limiter (VDCOL).

Based on the operating point obtained from the UHVDC
transmission model, PSCAD interacts with MATLAB, which
realizes real-time monitoring and visualization through the
loss calculation algorithm. The algorithm is elaborated thor-
oughly in the following section.

IV. WAVELET OPTIMIZED GA-BP NEURAL NETWORK
A. OVERALL ALGORITHM FLOW
BP neural network is a common artificial neural network
model that approximates complex nonlinear functional rela-
tionships consisting of one or more layers of neurons. It is
trained and learned by a backpropagation algorithm, includ-
ing an input layer, a hidden layer, and an output layer,
as shown in Fig. 3.

It calculates the error between the predicted output and
the desired output and adjusts the weights and biases in
the network according to the error so that the output of the
network gradually approaches the desired output. The error
function and the amount of adjustment of the weights and
biases are given in the following equation.

e =
1
2

l∑
k=1

(dk − ok )2 (6)

1w = −η
∂e
∂w

(7)

1b = −η
∂e
∂b

(8)

where, e is the output error; dk is the desired output; ok is the
output layer output; w is the weight; and b is the bias.

For the thyristor loss which is affected by multiple factors
such as trigger angle, commutation angle, DC current, junc-
tion temperature, etc., the BP neural network can be trained
to obtain an accurate loss calculation model by fitting the
complex functional relationship between the loss and the
influencing factors. However, the standard BP neural network
has certain defects. On the one hand, it does not have a
pre-processing process for the data input. The massive test
data is very likely to produce some high-frequency noise or
contradictory data due to various reasons, which will have a
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FIGURE 1. Real-time thyristor loss monitoring architecture based on wavelet optimized GA-BP neural network algorithm.

FIGURE 2. Schematic diagram of the structure of ultra-high voltage direct
current transmission system.

certain impact on the model accuracy. On the other hand, the
training of the BP algorithm is very sensitive to the selection
of the initial weights and biases, and different initial values
may lead to different training results. In addition, the training
process uses the gradient descent method to minimize the
error function, while this may lead the network to fall into
the local optimal solution and not achieve the global optimal
solution. Consequently, some optimization of the algorithm
is required to achieve the desired results of the calculation
model.

In this paper, a wavelet optimized GA-BP neural network
algorithm is proposed. Wavelet transform is used to remove
high-frequency noise from thyristor test data and extract fea-
tures from the original signal. Then, genetic algorithm is used
to optimize the initial weights and biases of the BP neural
network, and a loss calculation model is constructed through

FIGURE 3. BP neural network structure diagram.

dataset training Fig. 4 shows the flow block diagram of the
algorithm.

B. WAVELET TRANSFORM
Wavelet transform is a multi-scale analysis method that
decomposes a signal into wavelet functions of different scales
and frequencies. Thewavelet function can be selected accord-
ing to the frequency and time domain characteristics of the
signal, which can effectively deal with high-frequency noise
in the signal.

The continuous wavelet transform is defined as:

Wf (a, b) =< f (t), ψa,b(t) >

=

∫
∞

−∞

f (t)ψa,b(t)dt

=
1

√
a

∫
∞

−∞

f (t)ψ(
t − b
a

)dt (9)
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FIGURE 4. Wavelet optimized GA-BP neural network algorithm.

where, f (t) is the original signal;ψa,b is the wavelet function,
commonly used wavelet function such as Haar, Daubechies,
Symlets, Coiflets, etc., and each wavelet function corre-
sponds to a different frequency and time domain resolution
characteristics; a is the scale factor, used to adjust the
frequency and width of the wavelet function; b is the dis-
placement factor, used for the translation of the wavelet basis
function in the position of the time axis.

In practical applications, discrete signals are often pro-
cessed. By discretizing the scale and displacement of basic
wavelets, a discrete wavelet transform can be obtained:

Wf (m, n) = 2−m/2
T∑
t=0

f (t)ψ(
t − n2m

2m
) (10)

where, a = 2m and b = n2m.
Considering that there are few data dimensions obtained

that affect the loss of thyristors, the test data samples in the
article are relatively simple. To reduce algorithm complexity,
Haar wavelet, one of the earliest wavelet functions proposed,
is selected to improve computational efficiency while main-
taining high accuracy. And although its performance is not
optimal compared to other wavelet functions, it is simple to
calculate and still effective in practical applications.

ψ(t) =


1 (0 ≤ t<0.5)
−1 (0.5 ≤ t<1)
0 (t < 0, t ≥ 1)

(11)

In this case, ψa,b can be expressed as:

ψa,b(t) = 2a/2ψ(2at − b) (12)

According to the spectral characteristics of the signal
and the characteristics of the noise, select the appropriate

threshold function to threshold the wavelet function, set the
noise coefficient to zero or make corrections, and obtain the
denoised signal through wavelet reconstruction.

f (t) =
1
Cψ

∫
∞

0

∫
∞

−∞

Wf (a, b) ·
1

√
a
ψ(

t − b
a

)dadb (13)

where, Cψ is the constant of the wavelet function.
The test data extracted by wavelet denoising can be trained

by BP neural network.

C. GENETIC ALGORITHM
Genetic algorithm is a guided stochastic search method for
solving optimization problems, which has a strong ability for
global search and global optimization. Aiming at the defects
of the BP algorithm, which is easy to fall into local optimum,
it can be used to optimize its initial weights and biases,
accelerate the convergence speed of the network, and improve
the prediction accuracy of the model.

The wavelet optimized GA-BP algorithm searches for the
optimal combination of neural network weights and biases to
minimize the loss function through the genetic algorithm. The
elements of the genetic algorithm include population initial-
ization, evaluation of fitness, selection operation, crossover
operation, and mutation operation.

The initial population is first randomly generated P =

{p1, p1, . . . , pn}, where pi denotes the i-th individual, includ-
ing the weights and biases of the neural network.

Next, each individual is applied to the neural network. The
output of the neural network and the value of its loss function
L(pi) are calculated, and the value of the loss function is
converted to the value of the fitness function F(pi) to obtain
the fitness of each individual.

F(pi) = k

(
n∑
i=1

abs(yi − oi)

)
(14)

where, n is the number of network output nodes; yi is the
desired output of the i-th node of the BP neural network; oi is
the predicted output of the i-th node; and k is the coefficient.

The selection operation uses the roulette method, and the
probability of selection P(pi) for each individual is calculated
based on the fitness values as follows:

f (pi) = k/F(pi) (15)

P(pi) =
f (pi)
N∑
i=1

f (pi)

(16)

where, k is the coefficient; N is the population size.
The crossover operation adopts the real number crossover

method. The k-th chromosome ak and the lth chromosome al
are crossed at the jth position, and the crossover operation is
performed as follows:{

akj = akj(1 − b) + aljb
alj = alj(1 − b) + akjb

(17)

where, b is a random number between [0,1].
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FIGURE 5. PSCAD simulation model of UHVDC transmission system.

The mutation operation is to select the j-th gene of the ith
individual for mutation:

aij =

{
aij + (aij − amax) · f (g) r > 0.5
aij + (amin − aij) · f (g) r ≤ 0.5

(18)

where, amax is the upper bound of the gene aij; amin is the
lower bound of the gene aij; f (g) = m(1 − g/Gmax)2, m is a
random number, g is the current iteration number,Gmax is the
maximum evolution number; r is a random number between
[1, 0].

Finally, a new population P′
= {m1,m1, . . . ,mn} is con-

structed, which includes the individuals obtained through
crossover and mutation as described above. The fitness of the
individuals is improved by selection, crossover, and mutation
operations to produce new weights and biases. Such an evo-
lution process will continue until the fitness requirement is
satisfied. And then the new weights and biases will be given
to the BP neural network to realize the global optimization of
the network.

V. CASE ANALYSIS AND VERIFICATION
A. PSCAD-MATLAB JOINT SIMULATION VERIFICATION
The proposed real-time monitoring method for thyristor loss
in ultra-high voltage converter stations based on wavelet
optimized GA-BP neural network will be verified by joint
simulation through the PSCAD-MATLAB interactive inter-
face. This paper performs a study based on a ±800 kV/5 kA
UHVDC transmission line from Northwest China to Central
China, whose relevant operating parameters are shown in
Table 1, and the PSCAD simulation model is constructed in
Fig. 5.

Based on MATLAB, the proposed wavelet optimized
GA-BP neural network algorithm program is written, and
the neural network is trained to establish the thyristor loss
calculation model throughmassive thyristor test data. Finally,
the PSCAD-MATLAB interactive interface setting is carried
out.

In this experiment, the simulation duration is set to 0.8 s,
and the UHVDC system works in the double great ground
return line operation mode to start the joint simulation.
The voltage, current, and monopole delivered power of the
UHVDC transmission system are shown in Fig. 6 which

TABLE 1. Operational parameters of the UHVDC transmission system.

FIGURE 6. Simulation results (a) Bipolar DC voltage (b) Bipolar DC current
(c) Monopole power delivered in rectifier station (d) Single thyristor
power loss.

correspond to the operating parameters of ±800 kV/5 kA
and 4000 MW.

The simulation model of the UHVDC system operates
under the rated operating conditions, and from the three
figures (a), (b), and (c) above, the voltage, current, and power
are consistent with the actual system, namely ±800 kV/5 kA
and 4000 MW. As a result, the PSCAD simulation model is
greatly close to the actual system, and the operating point data
obtained from the simulation are valid. The loss monitoring
needs the operating point data of the PSCAD transient sim-
ulation model, which is transferred to MATLAB through the
interactive interface, and then the real-time loss monitoring
results are output from the loss calculationmodel based on the
wavelet optimized GA-BP neural network algorithm. From
the real-time power loss diagram of a single thyristor in the
rectifier station, it can be seen that the thyristor loss can
be calculated and displayed in real-time as the voltage and
current of the UHVDC system change. Under the steady
state condition, the thyristor turn-off loss is about 386 W, the
thyristor conduction loss is about 3186 W, and the approx-
imate total thyristor loss is about 3572 W. The thyristor
single valve of this UHVDC system consists of 60 thyristors
connected in series, which results in a single-valve thyristor

109558 VOLUME 11, 2023



J. Yu et al.: Real-Time Monitoring Method for Thyristor Losses

conduction loss of 180.44 kW and a turn-off loss of 20.73 kW.
The result is similar to its theoretical calculations of 173 kW
and 23.19 kW, and the effectiveness of the proposed method
is verified. From the joint simulation experiments, it can be
concluded that the real-time thyristor loss monitoring method
of the UHVDC converter station based on wavelet optimized
GA-BP neural network algorithm proposed in this paper can
operate perfectly, and the strategy has both real-time and
accuracy, which is helpful for the accurate calculation of the
loss of the actual UHVDC transmission system.

B. COMPARISON OF ALGORITHMS
1) THE RESULTS OF THE PROPOSED ALGORITHM
To verify the effectiveness of the proposed wavelet optimized
GA-BP neural network algorithm, the test data of a certain
model of the thyristor is taken as an example for experimental
analysis. A total of 404 test data samples are selected for the
algorithm, and each sample data contains two input variables
(trigger angle, conduction current) and one output variable
(average conduction power), with 80% of the samples taken
as the training data and 20% of the samples taken as the test
data. In this experiment, a 2-5-1 neural network structure is
used, with a genetic algorithm population size of 20, 50 evo-
lutionary generations, a maximum number of 1000 iterations
of the neural network, and an objective error of 0.001. To eval-
uate its performance, Epoch, MSE, RMSE, R2, and MAE are
selected as evaluation indexes. Epoch is the number of neural
network training and other indexes are expressed as follows.

MSE =
1
n

n∑
i=1

(ŷi − yi)2 (19)

RMSE =

√√√√1
n

n∑
i=1

(ŷi − yi)2 (20)

R2 =

n∑
i=1

(ŷi − ȳ)2

n∑
i=1

(yi − ȳ)2
(21)

MAE =
1
n

n∑
i=1

∣∣ŷi − yi
∣∣ (22)

The model training results are shown in Fig. 7 and Fig. 8.
It can be shown in the results that the proposed algorithm is
extremely accurate and efficient.

2) COMPARISON WITH CONVENTIONAL ALGORITHMS
This paper is based on a data-driven approach to calculate
thyristor loss, which is essentially data fitting of complex
functional relationships between multiple inputs and outputs.
Traditional fitting algorithms, unlike artificial intelligence
algorithms, are usually based on statistical and mathematical
principles to fit given data.

The least squares method is one of the most common
traditional fitting algorithms that determines the best-fit curve

FIGURE 7. Experiment results (a) Number of evolutionary generations (b)
Algorithm performance (c) Prediction error (d) Training state.

FIGURE 8. Algorithm goodness of fit: R-squared.

by minimizing the sum of squares of the errors between the
data points and the fitted function, and it is applicable to both
linear and nonlinear function fitting. For a given data sample,
the sum of squares of errors for each data point is:

S =

m∑
i=1

|f (xi) − yi|2 (23)

For polynomial fitting by the least squares method, the
coefficients of the optimal function should be set to minimize
the sum of the squares of the errors. Thus, for the optimal
function, the partial derivatives of the sum of the squared
errors concerning each polynomial coefficient θj should be
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FIGURE 9. The proposed algorithm and traditional algorithm fitting
model.

satisfied:

∂S
∂θj

=

m∑
i=1

[
2
(
θ0 + θ1xi + θ2x2i + · · · + θnxni − yi

)
x ji
]

= 0

(24)

The fitting function is obtained by solving each poly-
nomial coefficient by constructing a matrix. In addition to
this, the local linear regression method is also selected as
a traditional fitting algorithm to compare with the proposed
algorithm. The traditional fitting algorithm program is writ-
ten, and the experiment results are as bellow. Fig. 9 shows the
fitting model of the proposed algorithm and the traditional
algorithm, and the related comparison results are shown in
Table 2.

TABLE 2. Comparison results with conventional fitting algorithms.

The above experiments are conducted by comparing
the MSE, MAE, RMSE, and R2 of the traditional fitting
algorithm and the proposed wavelet optimized GA-BP neu-
ral network algorithm. In terms of the fitting model, the
proposed algorithm has a better performance whose fitting
data is more complete and smoother. The proposed algorithm
outperforms the traditional fitting algorithm in all perfor-
mance indexes. Compared with the fitting effect of the least
squares method, the MSE, RMSE, and MAE of the proposed
algorithm decreased by 86.2%, 62.8%, and 20.5%, respec-
tively, and the R2 increased by 0.036%, which indicates that
the computational accuracy was significantly improved. The
fitting effect of local linear regression is similar to that of
the least squares method. Due to the limited data resources,
and only two input variables (theoretically, the thyristor
loss is affected by multiple factors such as trigger angle,
DC current, junction temperature, commutation angle, etc.),
the traditional fitting algorithm is still practical in the case of
simple data distribution, so that the proposed algorithm has
limited room for improvement in some performance indexes.
It can be concluded that the wavelet optimized GA-BP neural
network algorithm improves significantly compared with the
traditional algorithm, and its effect is more obvious when the
data volume is more and more complex.

3) COMPARISON WITH OTHER BP NEURAL NETWORK
ALGORITHMS
The proposed algorithm is also compared horizontally with
other BP neural network algorithms. For the data prepro-
cessing session of wavelet transform and the initial value
optimization session of the genetic algorithm, the experi-
ments are divided into four groups here, which are labeled
as No.1 to No.4. Compare their performance indexes through
neural networkmodel training, and the comparison results are
shown in Table 3 and Fig. 10.

Comparison results show that the wavelet optimized
GA-BP neural network algorithm outperforms other BP neu-
ral network algorithms in all performance indexes. Compared
with the standard BP neural network, its Epoch is reduced
by 89%, and the MSE, RMSE, and MAE are reduced
by 97.8%, 85.3%, and 84.6%, respectively. Similar to the
results of the previous experiment, the R2 values are slightly
but not significantly improved, and these BP algorithms
all have superior goodness of fit. The wavelet transform
applied to the BP neural network model as data preprocessing
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TABLE 3. Comparison results with bp neural network algorithms.

FIGURE 10. Performance comparison of BP neural network algorithms.

significantly improves these performance indexes of MSE,
RMSE, and MAE so that the computational accuracy is
improved compared to the BP neural network model without
this link. Meanwhile, the genetic algorithm is applied to
the initial weights and biases optimization of the BP neural
network model to avoid falling into the local optimum. From
the experiment results after adding the genetic algorithm for
optimization, its Epoch has been significantly reduced, which
indicates that the computational efficiency has been greatly
improved and the computational accuracy has been improved
slightly. In summary, compared with other BP neural network
algorithms, the wavelet optimized GA-BP neural network
algorithm proposed in this paper has the advantages of fewer
iterations, higher computational efficiency, and higher fitting
accuracy.

VI. CONCLUSION
The UHVDC transmission system has a huge transmission
capacity, with large absolute loss during operation, and the
loss of the thyristor is difficult to be obtained. Given this
problem, this paper proposes a real-time monitoring method
for thyristor loss in UHVDC converter station based on the
wavelet optimized GA-BP neural network algorithm. Firstly,
the PSCAD simulation model of the UHVDC transmission
system is built based on the actual system. Secondly, the
wavelet optimized GA-BP neural network algorithm is pro-
posed, and based on the test data of the thyristor, the thyristor
loss calculation model is trained and built. Finally, the joint

FIGURE 11. Digital twin platform for energy efficiency analysis of UHVDC
transmission systems.

simulation through the PSCAD-MATLAB interactive inter-
face verifies that it can run perfectly to calculate the loss of
the UHVDC transmission system in real-time. The real-time
monitoring method for thyristor loss has been embedded into
a digital twin system for energy efficiency calculation and
analysis, and Fig. 11 shows a screenshot of the digital twin
platform software.

The method proposed in this paper has significant advan-
tages and implications:

(1) The proposed wavelet optimized GA-BP neural net-
work algorithm has fewer iterations, high computational
efficiency, and high fitting accuracy. Comparedwith the tradi-
tional fitting algorithm, its MSE, RMSE, andMAE decreased
by 86.2%, 62.8%, and 20.5%, respectively, and R2 increased
by 0.036%. Compared with the standard BP neural network
algorithm, its Epoch was reduced by 89%, and its MSE,
RMSE, andMAEwere reduced by 97.8%, 85.3%, and 84.6%,
respectively.

(2) The proposed method solves the problems of existing
theoretical methods and simulation models for calculating
thyristor loss. It takes into account real-time monitoring
and high accuracy, and the loss results can be displayed in
real-time along with the changes of the working conditions of
the simulation model. Furthermore, the artificial intelligence
algorithm is used to fill the gaps in the field of thyristor
loss monitoring, and the accuracy of the calculation model
is higher.

(3) The loss calculation and distribution of the main
loss source thyristor in the UHVDC converter station are
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determined to provide an effective basis for the further study
of the loss distribution and loss reduction technology of the
UHVDC transmission system.
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