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ABSTRACT The interplay between Connected Automated Vehicles (CAVs) and Human-driven Vehicles
(HDVs) in mixed traffic environments is often presumed to influence the behavior of the other, and the
dynamic impacts of such interplay on traffic flows is a critical aspect that is absent in most existing studies.
This study employs a data-driven optimization approach to model the driving behavior of Connected Auto-
mated Vehicles (CAV) in mixed traffic and investigates the impact of CAVs on overall traffic performance.
Specifically, considering a scenario of a gradual increase in the penetration of CAVs in the conventional
traffic stream, currently dominated by Human-driven vehicles (HDV), four possible car-following con-
figurations are identified where a CAV has to behave differently. Regarding such configurations, existing
car-following and lane-changing models of CAVs are tuned using a Lipschitzian optimization algorithm and
a local search method with data obtained from the WAYMO Open Dataset. The developed driving model of
CAVs is used to simulate mixed traffic on a freeway section attached to an on-ramp, which often induces
traffic bottlenecks. Under varying market penetration of CAVs, traffic performances, including travel time,
throughput, and string stability, are compared with conventional traffic. The findings suggest significant
improvements at a network level, for example, by delaying and dampening shockwaves. However, on an
individual level, CAVs feel hindered by the slower-moving HDVs.

INDEX TERMS Connected automated vehicles, freeway on-ramp, mixed traffic microsimulation, model
optimization, Waymo open dataset.

I. INTRODUCTION
The emerging sector of automated vehicles, expected to rep-
resent a $7 trillion opportunity by 2050 [1], has garnered
recent, widespread attention as its potential societal, eco-
nomic, and environmental advantages have become widely
coveted. As companies race to become leaders in this new
industry, the question of how automated vehicles will influ-
ence and redefine mixed traffic dynamics must be answered
- particularly during the transitional phase that will occur
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as automated vehicles gradually seize market share from
conventional human-driven vehicles.

A relatively new area of study, conclusive and extensive
literature on automated vehicles has yet to be published [2],
and several research gaps remain to be discussed before the
global deployment of these vehicles. Currently, the assump-
tions that inform the objectives and methods in available
literature on automated driving models in mixed traffic vary
significantly. This is partly due to the interdisciplinary nature
of this research direction, and further, the lack of field data
has made the calibration of automated driving models dif-
ficult. Currently, microscopic models are calibrated from
the NGSIM dataset [3], [4], which can reasonably only be
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applied to human driving or synthetic data [5], which is often
unable to reflect real-world conditions. Moreover, Human-
driven Vehicles (HDVs) and Connected Automated Vehicles
(CAVs) have distinct driving mechanisms, and thus interact
and respond differently to each other’s behavior. These inter-
actions simply describe how the presence of a CAV affects
the behavior of an HDV, and vice versa. In mixed traffic
conditions, there are four possible car-following interactions:
(1) CAV follower and CAV leader; (2) CAV follower and
HDV leader; (3) HDV follower and CAV leader; and (4) HDV
follower and HDV leader.

Most studies of automated driving behavior have only
focused on one-dimensional analysis of traffic flow, namely,
car-following in the same lane. Very few have attempted
to include lane-changing maneuvers into their microscopic
traffic model and assessed their impacts on mixed traffic flow
[6], [7], despite lane-changing being associated with stop-
and-go oscillations that propagate upstream and eventually
affect traffic throughput [8], [9]. These oscillations occur
during a lane change because of sudden, responsive changes
in the car-following behavior of the surrounding vehicles,
including the abrupt deceleration of the new follower in the
target lane [10], [11].

Typically, a lane change is completed in two stages:
(1) anticipation, which occurs when the subject vehicle pre-
pares to move into a target lane, and (2) relaxation, which
occurs when the subject has successfully merged into the
target lane and begins to follow its new leader steadily. As a
subject vehicle transitions from the anticipation stage to the
relaxation stage, there is a change in the car-following interac-
tions of the surrounding vehicles involved in the lane change.
Some recent studies have discussed automated driving during
lane-changing but are largely focused on the relaxation stage,
which is regarded as the most significant cause of capac-
ity drops [12], [13]. As a result, there is less clarity in a
microscopic traffic model that can describe the surrounding
vehicles’ responses to a lane change during the anticipation
stage.

This in turn raises three research questions: (a) How can
a two-dimensional microscopic traffic model depict interac-
tions between two vehicle types during both car-following
and lane-changing behaviors? (b) How can inter-vehicular
interactions be quantitatively optimized to facilitate reliable
results? (c) Can this new microscopic traffic model effec-
tively incorporate inter-vehicular interactions to obtain traffic
performance results for mixed traffic?

To address the research questions above, this study
develops a microscopic traffic model, which quantifies the
interactions between CAVs and HDVs during car-following
behavior [14], [15] and, importantly, incorporates these inter-
actions into the lane-changing model during both the antici-
pation and relaxation stages. This is achieved by describing
the interactions through car-following model parameters and
by using a lane-changing model that is based on the longi-
tudinal model. Therefore, the proposed model combines the

IDM car-following algorithm and the MOBIL lane-changing
algorithm to form a new microscopic traffic model. Further,
each interaction is optimized to ensure accurate mixed traffic
performance results.

The main contributions of this study are summarized as
follows:

• To develop a two-dimensional model that describes both
car-following and lane-changing behavior by consider-
ing inter-vehicular interactions. This is critical due to
the inherently different control strategies of CAVs and
HDVs [16]. Those interactions are transferred to the
lane-changing model during both the anticipation and
relaxation stages of the lane change.

• To optimize the microscopic model, utilizing a Lips-
chitzian Optimization algorithm combined with a local
search method on trajectory data from the Waymo Open
dataset to rapidly identify a global optimum solution for
each possible car-following interaction in mixed traffic.

• To investigate the network performance of multilane
traffic at varying CAV penetration in terms of travel
time, throughput, and stability within a test bed con-
sisting of an on-ramp attached to a three-lane freeway
section. This traffic environment is representative of typ-
ical bottleneck situations, which have received limited
attention in mixed traffic [17].

This paper is organized as follows. The following section
provides an overview of the relevant microscopic studies
of automated vehicles and highlights key gaps. Section III
then presents the proposed microscopic traffic model at an
on-ramp and calibrates the model parameters for the potential
interactions. Section IV analyses and discusses key findings,
and the final section concludes the paper and suggests future
research direction.

II. RELATED WORK
Many studies have provided insight into the advantages of
pure CAV traffic [18], [19], [20], [21], [22], which is the
long-term vision of traffic automation. However, the traffic
flow dynamics of mixed autonomy remain under-explored,
and yet, this will be the reality of traffic in the near future as
we gradually transition into fully automated driving. There-
fore, this study focuses on investigating the aspects of mixed
autonomy that are expected in the short term. More specif-
ically, we explore how HDVs and CAVs interact with and
influence each other. In mixed traffic, where CAVs and HDVs
co-exist, car-following algorithms may be classified into four
interactions as follows: [23], [24]

• CAV leader and CAV follower – When a CAV fol-
lows another CAV, the vehicles can exchange real-time
information on distance gaps or speed differences via
Vehicle-to-Vehicle (V2V) communication. Thus, the
movement of the follower is synchronized with its
leader. This type of behavior is known as Cooperative
Adaptive Cruise Control (CACC).
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• CAV follower and HDV leader – When a CAV follows
an HDV, there is a degradation in the CAV’s ability to
synchronize its behavior to its leading HDV because the
vehicles cannot communicate with each other. This is
known as Adaptive Cruise Control.

• HDV follower and CAV leader – There are two schools
of thought regarding this interaction. Most studies
assume that an HDV is unable to differentiate between
a leading CAV or HDV and would therefore treat the
CAV as an HDV. On the other hand, if the HDV were
able to differentiate between a CAV and an HDV, the
HDV would treat the CAV as a different vehicle type
and adjust its movement accordingly. For example, these
studies have suggested that an HDV will tend to imitate
the shorter time headway of a CAV [25], [26].

• HDV follower and HDV leader – This interaction has
been thoroughly investigated and documented. Due to
the fickleness of human driving, this is the least advan-
tageous interaction for optimal traffic performance.

Several algorithms have been proposed to describe the
automated driving behavior of CACC-equipped systems [27],
[28], [29], [30]. However, the presence of HDVs in mixed
traffic streams is likely to impact the behavior of CAVs [17],
in part due to a loss of communication, which degrades the
CAV’s following behavior from CACC to ACC. Currently,
the literature regarding the modeling of inter-vehicular inter-
actions in mixed traffic is scarce, and the assumptions and
methods vary significantly [31]. Therefore, it is unclear how
CAVs and HDVs may influence each other due to a lack
of complexity in terms of the traffic ecosystem investigated
in existing studies. Most current research on mixed traf-
fic focuses on two polar scenarios – where a single CAV
is employed amongst a dense number of HDVs, or where
many CAVs are simulated with no interaction with human-
controlled counterparts. Much less emphasis has been on
the far more significant yet challenging transition between
these two extremes due to the current uncertain and com-
plex interactions between the two vehicle types. However,
it is exactly this type of hybrid human-machine subspace (or
mixed autonomy) that deserves attention [32].
Some recent mixed traffic microsimulation works have

found that the throughput of a freeway section will increase
at high CAV penetration rates, causing smaller queue lengths
and congestion areas [33], [34]. In this vein, Zhou and Laval
[35] surveyed the longitudinal control of CAVs and also
report the benefits on traffic congestion. This was assumed
to be caused by CAVs’ ability to adopt smaller time head-
way spacing. However, since there was no distinction made
between the CAV’s time headway with a leading HDV and a
leading CAV, the results may be overestimated as, in reality,
we could expect a longer time headway when the leader is an
HDV. Moreover, the studies have not explored the influence
of lane-changing behavior on local capacity drops and con-
gestion areas as they dealt solely with single-lane freeways
with no disturbances. Other relevant studies have focused on

the environmental advantages that CAVs could offer, report-
ing lower emissions of greenhouse gases due to smoother
acceleration profiles [20], [36]. These findings were based
on straight single-lane freeways with no added disturbances
and therefore, cannot dissect the impact of lane-changing on
acceleration rates. Lane-changing leads to imperfect acceler-
ation and deceleration, which subsequently increases traffic
speed heterogeneity and negatively affects traffic perfor-
mance. The prevalent research focus on car-following only
has therefore created a research gap in the industry on the
effects of lane-changing in mixed traffic flow.

As researchers becamemore aware of the nuances of traffic
behavior in simple scenarios, studies have refocused their
attention on some complex study environments by including
arterials and secondary urban roads in the traffic environ-
ment under investigation [37], [38] or by exploring signalized
[39], [40] and non-signalized [41] intersections. Further,
researchers have refocused their attention on bottleneck
situations, such as freeways with on/off-ramps, as compre-
hensively reviewed by Zhu et al. [42]. However, most existing
studies at on/off-ramps are either based on single-lane analy-
sis [43], [44] or on an oversimplified traffic composition with
not enough focus on mixed traffic conditions [45], [46].

In general, microsimulation practices can provide mean-
ingful insight into traffic behavior, but the integrity of the
outcomes is highly sensitive to the adequacy of the calibration
of the base models used to ensure closeness to the expected
real-life conditions. In some sense, the traffic model can
describe traffic behavior qualitatively, whereas the calibration
of the model tunes the characteristics quantitatively. There
are typically two basic methods of trajectory-based optimiza-
tion processes. In the global-fit approach, the position and
speed of the follower are only used as input in the first time
step, and the trajectory is updated serially at each later time
step, which forms a time-continuous and sequential model
of the acceleration function. The complete trajectory data is
then compared with the simulated trajectory. This approach
is usually non-linear, non-convex, and represents the more
difficult optimization task. In the local-fit approach, the posi-
tion and speed of the follower are input at each time step
to compute the car-following behavior at the next time-step
only, which translates into a discrete and time-continuous
calibration task. Although this approach is less realistic and
flexible, it requires significantly less computational power.
Many mathematical formulations have been employed for
microscopic model calibration using trajectory data, such as
trial-and-error Iterative Adjustments (IA) algorithms [47],
Genetic Algorithms solution [48], Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithms [49], [50] or
Memetic Algorithms [51]. Li et al. [52] perform a rigorous
comparison of many types of non-linear optimization pro-
cesses and develop their own by combining a Lipschitzian
search algorithm with a local search method. It was reported
that the new model finds the global minimum solution 98 %
of the time. These methods have been widely implemented
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for the calibration of microscopic models of HDVs, but the
lack of data regarding automated driving has hindered the
calibration of the CAV car-following behavior. It is only
recently that companies have started testing their prototypes
in large-scale scenarios, hence enabling data to be collected
and compiled for the research community. Large-scale testing
with conventional vehicles has provided valuable information
on how a CAV and an HDVmay interact with each other. For
example, the Waymo Open dataset contains high-resolution
sensor data collected by Waymo automated vehicles across
several cities in the US and in a wide range of mixed traffic
situations.

As demonstrated above, there are several research gaps on
mixed traffic flow, primarily due to (1) a lack of complexity
in terms of the traffic compositions, (2) the oversimplis-
tic one-dimensional analysis of non-critical situations, and
(3) a lack of optimization to facilitate accurate results. There-
fore, this paper seeks to develop a mixed traffic model that
describes inter-vehicular interactions of CAVs and HDVs
and extends the traffic model to a two-dimensional analy-
sis by enabling lane-changing maneuvers. The traffic model
can then be optimized with data from the Waymo Open
dataset to ensure an accurate description of each interaction,
hence enabling a more accurate evaluation of mixed traffic
performance.

III. METHODOLOGY
To gain a more profound understanding of mixed traffic
dynamics, this paper will investigatemixed traffic comprising
HDVs and CAVs in a multilane freeway with an attached
on-ramp acting as a disturbance to the free-flowing traffic.
The traffic performance of the study environment is inves-
tigated in terms of travel times, throughput, and stability
from 0 % to 100 % CAV penetration. The proposed mixed
traffic model conveys the expected inter-vehicular interac-
tions through model parameters that have been optimized
with real-life data from the Waymo Open dataset.

A. CAR-FOLLOWING MODEL
The car-following model describes the longitudinal behavior
of a vehicle with respect to a leader in the same lane, typically
by prescribing an acceleration component. Gipps [53] devel-
oped the first popular car-following model to analyze traffic
performance, after which several others followed [54]. Unfor-
tunately, many of these are obsolete for CAVs because of the
inherently different control mechanisms of these automated
vehicles [55].
This study uses the Intelligent Driver Model (IDM) as the

base longitudinal model as it is easily adaptable to different
vehicle types, produces realistic acceleration profiles, allows
for rapid simulation, and may be calibrated from empirical
data [56]. In the IDM model equations, the acceleration
is assumed to be a continuous function of the following
vehicle’s velocity, the distance gap, and the approaching
rate (relative velocity), as defined by (1). This expression
is ‘‘an interpolation of the tendency to maintain a nominal

acceleration in normal conditions (denoted by ‘a’), and the
tendency to brake with deceleration (denoted by ‘b’) when
the follower is too close to its leader’’ [57](p. 6). Moreover,
the desired minimum gap dynamically varies with the veloc-
ity and approaching rate as defined by (2).

ẍn+1(t) =

1 −

(
ẋn+1(t)

ẋ0

)δ

−

(
S∗
{
ẋn+1(t),1ẋn+1(t)

}
Sn+1(t)

)2

(1)

S∗
{
ẋn+1(t),1ẋn+1(t)

}
= S0 + ẋn+1(t).T +

{
ẋn+1(t).1ẋn+1(t)

}
2
√
ab

(2)

where ẋn+1(t),ẍn+1(t) are the velocity and acceleration of the
follower car; S∗

{
ẋn+1(t),1ẋn+1(t)

}
is the desired gap between

two adjacent cars;1ẋn+1(t) is the velocity difference between
the leader (n) and the following (n+1) car; ẋ0 is the free flow
velocity; T is the safe time headway between two adjacent
cars; a is the acceleration in normal traffic scenario; b is
the comfortable braking deceleration in normal traffic sce-
nario; S0 is the minimum bumper to a bumper distance of two
adjacent cars; Sn = xn−1 − xn − lc, where lc is the length of
the leader car, and δ is the constant acceleration exponent.

B. LANE-CHANGING MODEL
In this study, the lane-changing model describes the binary
decision process of a lane change. Although lane-changing
models have been much less explored than car-following,
considerable effort has been made to describe lane-changing
maneuvers [58], [59], [60], [61].

This study uses the Minimalizing Overall Braking Induced
by Lane-change (MOBIL) model due to its compact for-
mulation, which significantly reduces the complexity of
microsimulation. Further, since MOBIL is based on IDM,
the properties of the car-following model are transferred to
the lane-changing model; therefore, the inter-vehicular inter-
actions modelled in the IDM are applicable to MOBIL. The
model is time-continuous and formulates the binary checks
to be performed before a lane change is performed. In the
MOBIL model, a lane change is performed when (a) a safety
criterion is met by limiting the maximum deceleration rate
to a pre-defined limit, and (b) an incentive criterion is met by
ensuring that a lane changemaneuver would improve the traf-
fic conditions for the relevant road users. The MOBIL safety
and incentive criteria are based on the car-following acceler-
ations derived from the underlying car-following algorithm
(IDM) and are defined by (3), and (4), respectively. We use
a symmetrical lane-changing directive in this paper, where a
vehicle is not restricted to a lane change in any direction.

ã ≥ −bsafe (3)

(ãc − ac) + p.(ãn − an + ão − ao) ≥ 1ath (4)

where ãn is the deceleration of the successor on the target
lane; bsafe is a safe deceleration limit, ãc, ãn, and ão are the
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FIGURE 1. Overview of the four configurations.

new decelerations of the lane-changing vehicle, the succeed-
ing vehicles on the target and the current lane respectively;
ac, an and ao current decelerations of the lane-changing vehi-
cle, the succeeding vehicles on the target and the current
lane respectively; and p is the politeness factor; 1ath is the
lane change threshold. Quantities with a tilde refer to a new
configuration after a lane change.

C. PROPOSED MICROSCOPIC TRAFFIC MODEL
To develop the new microscopic traffic model that describes
inter-vehicular interactions, we must first delineate their
different driving and communication mechanisms. Firstly,
CAVs are fully connected to each other via V2V connectivity
and can exchange information with each other instanta-
neously – this leads to deterministic, low-variance accel-
eration profiles and speed distributions. Moreover, a CAV
can identify the vehicle types of all vehicles in its immedi-
ate surroundings. On the other hand, HDVs have stochastic
behavior, and cannot identify the vehicle types of surrounding
CAVs and HDVs.

In the car-following behavior, the IDM algorithm (2) is
made to accommodate each of the four possible interactions
by modifying the time headway parameter value. Fig. 1
denotes the time headway of each interaction as follows:
(1) time headway between a following CAV and leading CAV,
denoted by h11; (2) time headway between a following CAV
and leading HDV, denoted by h10; (3) time headway between
a following HDV and a leading CAV, denoted by h01; and
(4) time headway between a following HDV and lead-
ing HDV, denoted by h00. The initial setting of the IDM
time headway parameter will form the basic definition of
the car-following behavior of each interaction before opti-
mization. Eventually, the IDM model parameters will be
optimized for each interaction. The following assumptions
were employed in the initial time headway settings:

• CAV-CAV – The time headway between two CAVs (or
the intra-platoon headway) is the lowest of the four
possible interactions. This is due to the advantage that

automation and connectivity offers. In the current HDV-
dominated environment, it is less likely for a CAV to
encounter another CAV, hence making modeling the
interaction difficult.
h11 = min {h11, h10, h01, h00}

• CAV-HDV – When a CAV follows an HDV, there is
a degradation of the longitudinal control from CACC
to ACC due to a loss of connectivity, and therefore,
communication. Therefore, the time headway is higher
than when a CAV follows another CAV.
h10 > h11

• HDV-CAV – Given the lack of conclusive behavioral
data on HDVs being able to differentiate between a CAV
and an HDV, we employ the principle that an HDV
cannot differentiate between a leading CAV and HDV,
and thus, treats them equally.
h01 = h00

• HDV-HDV – This interaction has been thoroughly ana-
lyzed and we assume that it constitutes the largest time
headway value.
h00 = max {h11, h10, h01, h00}

A typical lane change is depicted in Fig. 2, where NS and
NL respectively refer to the succeeding and leading vehicles
on the target (new) lane, OS and OL respectively refer to the
succeeding and leading vehicles on the current (old) lane, and
VC refers to the lane-changer. A successful lane change will
involve the following behavior during the relaxation stage.

• A large gap is created between OS and OL, allowing OS
to adopt a larger acceleration to close the distance gap.

• The lane change creates a disturbance on NS in the target
lane. Ns is forced to decelerate to avoid a collision. Note
that a lane change does not occur if the deceleration of
NS is unsafe with respect to (3).

• After a lane change, VC will follow NL(instead of OL)
and will adjust its acceleration based on this new inter-
action. Similarly, NS will follow VC and will adjusts its
acceleration accordingly.

When a vehicle changes lanes, the traffic configuration, and
therefore, the associated car-following interactions change.
As a result, the properties of the inter-vehicular car-following
interactions are transferred to the lane-changing model. The
following steps represent the simulation procedure to imple-
ment a lane change.
Step 1 – Gather information about the current traffic con-

figuration. (t = t0)
To compute the possibility for a subject vehicle to initi-

ate a lane change, environmental data (such as position and
velocity) is collected at the current time, t0, for the subject
vehicle (VC), the successors, and leaders on the target lane
(NS and NL), and the current lane (OS and OL). We refer to
the arrangement of the vehicles before a lane change as the
initial configuration (Fig. 3). The data acquired allows for the
computation of the initial IDM accelerations of VC, NS, and
OS, denoted by ac, an snd ao respectively in (4).
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FIGURE 2. Typical lane change maneuver.

FIGURE 3. Initial configuration of a potential lane change at t0.

The velocity and longitudinal position of the subject vehi-
cle at the current time can be denoted by vt0 and xt0 ,
respectively.
Step 2 – Gather information about potential virtual traffic

configurations. (t = t0)
A virtual configuration must then be created for a lane

change in each possible direction (Fig. 4 and Fig. 5) to
represent the arrangement of vehicles after a potential lane
change. A lane change to the left is denoted by the subscript
‘‘L’’, and a lane change to the right is denoted by the subscript
‘‘R’’. To create the virtual configuration, we assume that
the vehicle has translated laterally to its target lane, either
to the left or to the right. The potential IDM accelerations
of the current vehicle, the old successor on the old lane,
and the new successor on the target lane are then computed

with (1) and (2). These are denoted by
〈
ãc,L

〉
, ⟨ão⟩, and

〈
ãn,L

〉
respectively, for a lane change to the left, and

〈
ãc,R

〉
, ⟨ão⟩,

and
〈
ãn,R

〉
respectively for a lane change to the right. The

velocity and longitudinal position of the subject vehicle under
the virtual configurations are vt0 and xt0 respectively, but the
subject vehicle is assumed to be on the target lane.
Step 3 – Check the MOBIL criteria of virtual configura-

tions (t = t0)
Once the IDM accelerations of VC, NS, and OS are known

in the initial configuration (before the lane change) and in
the virtual configuration (after a potential lane change), the
MOBIL criteria (3) and (4) must be checked. We highlight
that if MOBIL finds that a lane change is possible in both
directions, the subject vehicle will perform the lane change

FIGURE 4. Virtual configuration of a lane change to the left.

FIGURE 5. Virtual configuration of a lane change to the right.

in the direction that offers the highest benefits. This repre-
sents the direction of the lane change which allows for the
involved vehicles to adopt the highest accelerations and can
be calculated from (5).

Highest benefits

= max
[∑

(⟨ãcL⟩ − ac) + p · (⟨ãnL⟩

− an) ,
∑

(⟨ãcR⟩ − ac) + p · (⟨ãnR⟩ − an)
]

(5)

Step 4 – Initiation of the lane change. (t = t0 + 1t)
If the MOBIL criteria (3) and (4) are met, the simulation

will initiate a lane change in the next time step, t = t0 + 1t .
This step represents the anticipation stage of the lane change.

If the MOBIL criteria are not met, the simulation will not
initiate the lane change. Therefore, the initial traffic con-
figuration is maintained until the next time step, when the
simulation procedure is reset.
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The velocity and the longitudinal position of the vehicles at
the initiation time step (t = t0 + 1t) may be obtained from
(6) and (7), respectively.

vt0+1t = vt0 + ac.1t (6)

xt0+1t = xt0 + vt0 .1t (7)

Step 5 – Completion of the lane change. (t = t0 + tLC )

If the MOBIL criteria (3) and (4) are met, and the sub-
ject vehicle initiates a lane change in the next time step as
described in Step 4, we assume that the lane change will be
completed in time tLC , where tLC ≤ 3 s. The velocity and the
longitudinal position of the vehicles after a successful lane
change may be calculated from (8) and (9).

vt0+tLC = vt0 + ac.tLC (8)

xt0+tLC = xt0 + vt0 .tLC (9)

At this step, one of the virtual configurations will be
adopted as the new traffic configuration (Fig. 6 and Fig. 7),
and the virtual accelerations are set as the new accelerations.
This is the relaxation stage of the lane change maneuver.

For a lane change to the left,

ãn,L =
〈
ãn,L

〉
(10)

ãc,L =
〈
ãc,L

〉
(11)

ão = ⟨ão⟩ (12)

For a lane change to the right,

ãn,R =
〈
ãn,L

〉
(13)

ãc,R =
〈
ãc,R

〉
(14)

ão = ⟨ão⟩ (15)

D. SIMULATION ENVIRONMENT AND SETTINGS
The proposed two-dimensionalmicroscopicmodel was tested
in a simulation environment set out as a unidirectional
three-lane freeway section, spanning a net distance of approx-
imately 4.5 km. Buffer zones were provided at the start of the
main section of the freeway to provide the spatial warm-up for
vehicles entering the study environment, thereby facilitating
accurate results. An on-ramp with an imposed speed limit of
70 km/hr was introduced at around 1.3 km along the freeway
to act as an additional disturbance to the free-flowing traffic.
An illustration of the study site is shown in Fig. 8, with ‘X’
denoting the distance along the freeway section.

The pipeline of the simulation can be summarized as:
• Vehicles are generated upstream of the road segment
based on a specified traffic volume and vehicle compo-
sition (analogous to market penetration).

• Environmental data is collected for each driver at each
timestep.

• The proposed microscopic traffic model is computed to
control the behavior of the vehicle, following which the
position of each vehicle is updated at each timestep.

Table 1 summarizes the simulation settings used in PTV
Vissim. The vehicles are simulated for two hours, with results

FIGURE 6. Adopted configuration of a successful lane change to the left.

FIGURE 7. Adopted configuration of a successful lane change to the right.

TABLE 1. Vissim simulation settings.

extracted from the 600 s mark onwards to provide a buffer
period at the start of the simulation to allow for the traffic flow
to stabilize and ensure accurate results. The simulations are
run for a traffic volume assumed to be close to peak capacity,
chosen as 3500 veh/hr on the main freeway and 1000 veh/hr
on the on-ramp.

Table 2 summarizes the IDM-recommended parameter set-
tings for HDVs and CAVs and is later optimized based on the
four possible car-following interactions, with the initial head-
way settings for each interaction subsection in accordance
with our previous assumptions listed in C.

This study deals with a minimalistic lane-changing
MOBIL model, where the politeness factor is set to 1 and
the lane-changing threshold is taken as 0.1 m/s2 to limit
unbeneficial stop-and-go jerks. Since this study deals with
symmetrical lane-changing, the lane-changing bias is obso-
lete. The parameters used in the lane-changing model are
summarized in Table 3.

E. OPTIMIZATION PROCEDURE
To ensure that our proposed model is accurately describing
the expected real-world conditions, the model parameters
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FIGURE 8. Overview of the study environment.

TABLE 2. IDM parameter settings.

TABLE 3. Mobil parameter settings.

were calibrated using the Waymo Open dataset, which
contains high-resolution sensor data collected by Waymo
automated vehicles across several cities in the US, and in
a wide range of mixed traffic scenarios. The dataset was
initially created to help align efforts regarding automated
vehicle driving, and contains trajectory data from 1000 seg-
ments, each with frames of data measured at 0.1 s intervals
for 20 s. The curated and processed dataset by Hu et al. [62]
was used in this paper.

The car-following parameters were optimized through a
process proposed by Li et al. [52], who combine a global
and local approach to the calibration task. In the first phase,
a Lipschitzian global optimization is used known as DIRECT,
named after its core process – DIviding RECTangles [63],
[64]. During this phase, the first step is to transfer the initial
solution space to a hyper-rectangle. Then, the center point
of that hyper-rectangle is picked to evaluate the objective

function and the hyper-rectangle is divided into smaller rect-
angles iteratively. By doing so, a set of potentially optimum
subspaces are identified with a high probability of enclosing
the global minimum. An overview of the process is given
in Appendix B. Once a termination criterion is met, and a
pre-set number of rectangle divisions have been made, the
algorithm will then switch to a local search method known
as the SQP (Sequential Quadratic Programming) local search
method. The SQP algorithm is then applied to all the identi-
fied subspaces from the first phase to find a local minimum in
each of them. A local search method is chosen in the second
phase to accelerate the overall convergence time because the
solution space is relatively flat around the global minimum.
Therefore, the DIRECT+SQP algorithm has a high probabil-
ity of finding the global minimum rapidly. For conciseness,
we do not discuss these algorithms and their mathematical
formulations further, but instead, re-direct interested readers
to the available literature.

For the car-following optimization problem, the IDM
parameter vector θ = [a, b,T ] were constrained within a
potential solution space with a lower bound θmin = [1 m/s2,
1 m/s2, 1 s] and an upper bound θmax = [10 m/s2, 10 m/s2,
5 s], such that θmin ≤ θ ≤ θmax . An objective function of
the Sum of Square Errors of gap was used in the optimiza-
tion task, which is expressed as in (16). The SSE of gap is
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TABLE 4. Optimized IDM parameter settings.

FIGURE 9. Fitting landscape with respect to parameters a and T for
(a) CAV-HDV and (b) HDV-CAV & HDV-HDV.

thought to contain the most degrees of freedom and there-
fore, constitutes the most challenging calibration task. This
is because platoon consistency may imply that cumulative
differences between speed data may be zero in the long term.
Conversely, no such restrictions apply to the distance gap.
Moreover, speed or speed differences values are unsuitable
for calibrating IDM time headway parameters [56].

minθ=ξ f (θ) =

∑N

i=1

[
xj (iT |θ) − x̂j(iT )

]2 (16)

where θ is the IDM parameter vector to be optimized; ξ is the
solution space; i is the optimization iteration count; T is the
time step of the optimization task; xj (iT |θ) is the computed

FIGURE 10. Comparison of the gap and speed difference for (a) CAV-HDV
and (b) HDV-CAV & HDV-HDV.

longitudinal position of the follower j at time iT ; and x̂j(iT ) is
the observed longitudinal position of the follower j at time iT .

Three important assumptions are used in the calibration
task, due to the limitations of data of the Waymo Open
dataset:

• Since the number of automated vehicles available in
the testing environment was quite low, the dataset
does not contain data about the CAV-CAV interaction.
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FIGURE 11. Average delay per vehicle at varying CAV penetration.

However, the main advantage of this interaction comes
from the improved communication behavior, which
enables a CAV follower to acquire accurate informa-
tion about speed differences and distance with its CAV
leader. This would allow the following CAV to adopt a
low time headway, which was chosen as 0.6 s [65], [66],
[67].

• The data is incomplete for most trajectory sets concern-
ing the main dynamic driving situations (accelerating,
cruising, braking, and standstill) and does not con-
tain standstill distances. Therefore, it was assumed that
the standstill distance is 2.0 m irrespective of the car-
following interaction.

• As discussed earlier, an HDV’s car-following behavior is
unchanged for a leading CAV and leading HDV. There-
fore, the same set of model parameters apply for the
HDV-CAV and HDV-HDV interactions.

IV. RESULTS & DISCUSSION
A. OPTIMIZATION RESULTS
The results of the optimization process are presented as
follows. Fig. 9 shows the fitting landscape of the objec-
tive function around the global minimum solution, whereas
Fig. 10 presents the data from the observed and calibrated
models.

Referring to Fig. 9, the objective function was smooth
and unimodal within the pre-defined boundary conditions,
which is often impossible when calibrating incomplete
single-vehicle trajectory data globally. However, by restrict-
ing the calibration only to parameters relevant to the Waymo
Open dataset (and not calibrating standstill distances S0),
we escaped being stuck in a local secondary minimum or a
fitting landscape with no unique minimum value. The opti-
mized car-following parameters are summarized in Table 4.

B. NETWORK PERFORMANCE RESULTS
1) IMPACT ON TRAVEL TIME
Travel time and delay constitute the most significant measure
of a user-oriented level of service. In the context of this paper,

FIGURE 12. Cumulative travel time measured at 30-second intervals for
varying CAV penetration.

the experienced delays indicate the perceived traffic perfor-
mance on an individual level, whereas the cumulative travel
times are indicative of performance on a network level and
are linked to the cost of travel. Delays and travel times were
measured along the freeway section at 30-second intervals.

Fig. 11 shows the average relative delays (average delay
per vehicle) at varying CAV penetration rates. Significant
improvements occurred at very low CAV penetration, with
the average relative delay decreasing by up to 100% from
0% to 20% CAVs. Overall, this trend was consistent with
increasing CAV penetration, but the extent of the improve-
ments decreased considerably. This observation suggests that
the introduction of CAVs in conventional traffic would allow
more vehicles to travel at their desired speeds, without being
slowed down by the surrounding traffic.

Further, we observed that in mixed traffic, the average
relative delay of a CAV was slightly higher than that of
an HDV. This is because CAVs typically desire to travel at
higher speeds, which they cannot reach due to the presence
of slower-moving HDVs. Therefore, the perceived delays of
CAVs were higher than HDVs. The findings suggest that
as CAVs slowly infiltrate conventional traffic, the experi-
enced level of service may decrease because CAV users may
become accustomed to travel at higher speeds, and therefore,
will feel slowed down by the presence of HDVs.

Fig. 12 shows the cumulative travel times at varying CAV
penetration. The total travel time at 0% CAV penetration
resulted in approximately 21 hours but amounted to only
9 hours at 100%CAVpenetration. This amelioration in cumu-
lative travel times was observed at low penetration rates and
was consistent with increasing CAV penetration. This sug-
gests that although users may feel slowed down as discussed
above, the introduction of CAVs would also allow for shorter
total travel times, hence resulting in a decrease in the cost of
travel.

The instantaneous travel time in Fig. 13(a) shows multiple
oscillations during the two-hour simulation at low CAV pen-
etration (0% to 40%). These oscillations are representative
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FIGURE 13. Instantaneous travel time measured at 30-second intervals
for varying CAV penetration (a) 0, 20 & 40 % CAV penetration and (b) 60,
80 & 100 % CAV penetration.

of shockwaves that formed due to the disturbance caused by
the on-ramp traffic and have an important role to play in
the congestion levels across the freeway, contributing directly
to an increase in delays. At 0% penetration, three major
oscillations were observed. As the penetration of CAVs was
increased, the amplitude and frequency of the oscillations
decreased significantly, suggesting that CAVs were better
able to cope with disturbance.

Moreover, it may be inferred from Fig. 13(b) that CAVs
led to a temporal shift in the traffic breakdown represented
by a peak in instantaneous travel time. For example, it was
observed that the breakdown occurred at around 4000 s
at 80% CAV penetration, and 6100 s at 100% CAV pen-
etration. In other words, the traffic breakdown occurred
30 minutes later. In the real world, this improvement may
be significant during peak-hour traffic. By delaying the
formation of a traffic breakdown, traffic performance is pre-
served during the more critical middle phase of peak traffic.
As the traffic volume decreases as we approach the end of
peak hours, less vehicles are thereby affected by the traffic
breakdown.

2) IMPACT ON THROUGHPUT
To imitate typical cross-sectional measurements of real-life
data from inductor loop detectors, ‘virtual detectors’ were
used in the simulations to analyze the traffic throughput, Q,
and the mean harmonic velocity, v at 3-minute intervals. The
hydrodynamic relationship Q = ρv was then used to estimate
the traffic density, ρ. To better understand the impact of the
merging traffic from the on-ramp (x = 1300 m), the virtual
detectors were positioned 500 m before (x = 800 m) and
500m after (x= 1800m) the on-ramp, as depicted in the setup
presented in Fig. 8. The data points collected from the virtual
detectors were plotted in Fig. 14. The data points are labelled
as ‘‘Before’’ and ‘‘After’’ for the virtual detectors upstream
(x = 800 m) and downstream (x = 1300 m) of the bottleneck
respectively.

At any CAV penetration, the data points upstream of
the on-ramp showed linear behavior, hence depicting a
free-flowing traffic regime. Conversely, the data points down-
stream of the on-ramp were widely scattered and random,
indicative of a congested flow regime. This confirmed that the
on-ramp traffic had a significant impact on the free-flowing
traffic on the freeway and the creation of a bottleneck location
near the on-ramp. However, CAVs were better able to negate
the impacts of the on-ramp disturbance. As a result, the
levels of congestion decreased at increasing CAV penetration,
as indicated by the fact that the data points downstream of the
on-ramp were less randomly scattered, falling increasingly
within the linear region of the Q-ρ fundamental diagram.

In the same line, it was observed that the local capacity
drops that occurred at the on-ramp decreased with increas-
ing CAV penetration. For example, there was a decrease
of approximately 15% in throughput identified at 0% CAV
penetration. However, at 40% CAV penetration, there was
a reduction of only 10% in throughput. This is thought
to be because of the CAV’s ability to adopt shorter time
headways in the car-following behavior, thereby allowing
them to ‘absorb’ the disturbance of the on-ramp traffic more
easily. The dynamic improvement in local throughput that
was observed at the on-ramp at high CAV penetration may
be transferred to other types of similar bottleneck situations,
such as in the event of a car breakdown.

3) IMPACT ON TRAFFIC STABILITY
Fig. 15 below shows the surface plot of the spatiotemporal
traffic dynamics of the freeway with an attached on-ramp.
The temporarily reduced speed area at the on-ramp bottleneck
induced a reduction in local capacity and led to the formation
of a shockwave. The average lane velocity of the freeway was
plotted along the Z-axis of Fig. 15 to explain this phenomenon
along the road during the simulation period.

The results demonstrated the formation of a backward
forming shockwave that was caused by the merging on-
ramp traffic. As a result, a queue was formed upstream of
the on-ramp location. It was seen that with an increasing
CAV penetration, the shockwave dissipated quicker. This
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FIGURE 14. Flow-density data measured from ‘virtual detectors’ at 30-second intervals and averaged across three lanes. Data points are labelled ‘Before’
for the detector at 500 m before the on-ramp (x = 800 m) and ‘After’ for the detector at 500 m after the on-ramp (x = 1800m).

indicated that a CAV can easily adapt its speed when a traffic
breakdown occurs. This led to smoother deceleration rates
that have a lower impact on the succeeding vehicles, thereby
facilitating the dissipation of the shockwave.

Further, it was observed that the congestion areas around
the bottleneck were reduced at higher CAV penetration. This
can be inferred from Fig. 15, which shows flat and deep
oscillation peaks at low CAV penetration. With increasing
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FIGURE 15. Spatiotemporal traffic dynamics along the freeway, measured at 10 m intervals in regular 30-second intervals.

CAV penetration, the peaks of oscillations are sharper and
shallower, indicating that less areas of the road are congested
with slower-moving vehicles.

As discussed in Section IV-A, Fig. 15 also shows that CAVs
may delay the formation of shockwaves. In this study, the
shockwave was not eliminated due to the high traffic volume
of the disturbing on-ramp traffic, and its imposed speed limit.
However, the presence of CAVs noticeably reduced traffic
congestion and led to higher string stability.

V. CONCLUSION
This paper proposes a data-driven two-dimensional micro-
scopic traffic model that considers the inter-vehicular inter-
actions between HDVs and CAVs. By using a lane-changing
model that is based on the car-following model, the
inter-vehicular interactions of the car-following model are
transferred to the lane-changing model. The four possible
car-following interactions were optimized from trajectory
data of the Waymo Open dataset and utilizing a combination
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TABLE 5. List of notations used.

of a Lipschitzian Optimization algorithm and a local search
method.

The optimized model was then tested on a three-lane free-
way with an attached on-ramp to investigate mixed traffic
performance at varying CAV penetration. At higher CAV
penetration, the results suggested a deterioration in perceived
experienced delays on an individual level, but a significant
improvement in total travel times, and therefore the cost of
travel, on a network level. Further, CAVs were better at deal-
ing with disturbance from the on-ramp traffic, and therefore,
they were able to maintain a stable free-flowing traffic. In the
same line, the local capacity drop at the on-ramp decreased
significantly at higher CAV penetration. It was also noted that

the presence of CAVs led to a temporal shift in the traffic
breakdown, hence delaying the formation of a shockwave.
This finding is thought to be significant during peak hour
traffic and would likely cause less vehicles to be negatively
affected by the traffic breakdown.

Future research should evaluate the use of this model in
other critical traffic situations to validate the improvements
that this paper suggests at higher CAV market penetration.
Further work should also aim to optimize performance in
mixed traffic scenarios; this can be possible with dedicated
automated driving lanes or platooning mechanisms. This
would assist in formulating a framework that can be used to
facilitate the imminent deployment of CAVs.
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FIGURE 16. Overview of the search and dividing process of the DiRECT
algorithm proposed by Jones [63] after three iterations. The hatched
rectangles represent the subspaces of interest at each iteration.

APPENDIX A
OVERVIEW OF DIRECT ALGORITHM
See Figure 16.

APPENDIX B
LIST OF NOTATIONS
See Table 5.
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