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ABSTRACT This study employs deep learning and artificial intelligence (AI) clustering analysis techniques
to evaluate the suitability of integrated rural land for three industries. Diverse datasets pertaining to
rural development, encompassing land use, agricultural production, and rural tourism, are gathered and
harmoniously amalgamated. An innovative land suitability assessment model, merging ResNet-50 with the
k-means algorithm, is devised. Specifically, ResNet-50 is harnessed for the classification and recognition of
rural land-use images, thus deriving feature vectors for each sample. These feature vectors are subsequently
fed into the k-means algorithm to cluster samples with akin land-use patterns. The ensuing examination of
land use composition within each cluster facilitates the evaluation of rural land’s suitability for three-industry
integration. Experimental scrutiny discloses that this study achieves an accuracy rate of 88.3% in rural
land-use classification and recognition, outperforming alternative algorithms by at least 3.1%. Furthermore,
it yields an average intersection over union (IoU) of 67.29%. Remarkably, the k-means algorithm exhibits
superior clustering outcomes. Consequently, the model introduces herein demonstrated substantial enhance-
ments in rural land-use classification and recognition accuracy, average IoU, and clustering performance.
It offers an innovative tool for policymakers to advance rural industry integration, fostering economic
diversification. Additionally, this model aids decision-makers in identifying prospective opportunities and
challenges, thus facilitating the formulation of forward-thinking and viable rural development strategies.

INDEX TERMS Artificial intelligence, deep learning, integrated rural land for three industries, cluster,
suitability evaluation.

I. INTRODUCTION
A. RESEARCH BACKGROUND AND MOTIVATIONS

Against the backdrop of population urbanization, mounting
resource and environmental pressures, and the imperative of

As social productivity continues to advance, Chinese agricul-
ture is undergoing a transition towards modernization. The
conventional rural economic framework, primarily centered
on agriculture, has encountered challenges, including uneven
resource utilization and a narrow industrial focus, which fall
short of meeting the evolving expectations for a quality living
environment and diverse industrial requirements [12], [30].
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rural economic transformation and upgrading, the concept of
rural tri-sector integration has emerged as a prominent and
extensively discussed strategy. Its primary objectives encom-
pass stimulating rural revitalization and achieving sustainable
development.

The concept of rural tri-sector integration pertains to the
organic and coordinated development of agriculture, rural
industries, and rural tourism within a shared geographical
space. This model harnesses the distinctive strengths of these
sectors, facilitating resource sharing and complementarity,
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thereby augmenting the diversity and comprehensive advan-
tages of rural development [8]. Nonetheless, during the
implementation of rural tri-sector integration, a crucial chal-
lenge arises: how to judiciously manage land resources and
ascertain the appropriateness of land for integrated use [16],
[28]. This study explores the utilization of deep learning
techniques to process extensive land-use data, enabling the
extraction of crucial features pivotal for assessing integrated
land use [18], [25]. Furthermore, it investigates the applica-
tion of artificial intelligence (Al) clustering analysis methods
to classify diverse land-use data types, thereby furnishing
essential support for subsequent evaluations [23].

This study addresses several pivotal concerns. Firstly,
it recognizes the imperative for rural areas to achieve
economic diversification and sustainable development by
integrating primary, secondary, and tertiary industries.
As urban-rural disparities diminish, rural regions must
amalgamate agriculture, industry, and services to achieve
comprehensive industrial development. Consequently, inves-
tigating the suitability of rural land becomes paramount to
facilitating the integration of these sectors. Secondly, the
study acknowledges the remarkable strides made in deep
learning and Al technologies, particularly in image process-
ing, pattern recognition, and data analysis. Leveraging these
advanced technologies, which excel in handling large-scale,
multi-source data, is expected to enhance the precision and
efficiency of land suitability assessments. Thirdly, the study
recognizes the need for scientific land suitability assess-
ment methods to guide policy formulation and strategies
aimed at propelling rural economic growth. This assessment
extends beyond agriculture and encompasses areas like rural
tourism and the service industry. Thus, the development of a
decision-support-oriented land suitability assessment model
is imperative for informed decision-making by governments
and stakeholders.

B. RESEARCH OBJECTIVES
The objective of this study is to assess the appropriateness
of rural land for tri-sector integration employing deep learn-
ing and AI cluster analysis. By systematically collecting
and processing data pertinent to rural development, coupled
with the application of deep learning and cluster analysis
techniques, the study endeavors to precisely discern distinct
categories of integrated land, including their attributes, and
gauge their suitability and developmental prospects. This
endeavor serves as a scientific foundation and point of ref-
erence for rural development planning and decision-making
and contributes to the advancement of rural revitalization
and the realization of sustainable development goals. Fur-
thermore, the methodologies and findings presented in this
study hold substantial theoretical and practical significance
in terms of optimizing land resource allocation and propelling
the transformation and elevation of rural economies.

This study introduces a pioneering land suitability assess-
ment model that merges deep learning and clustering analysis
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methodologies. Employing ResNet-50 for image classifi-
cation and recognition, in conjunction with the k-means
algorithm for clustering analysis, this model adeptly evaluates
rural land’s suitability for seamless integration of primary,
secondary, and tertiary industries. This approach’s innovation
stems from applying advanced Al technologies to the domain
of land assessment, significantly enhancing assessment pre-
cision and efficiency. This study presents a comprehensive
and scientifically rigorous approach to evaluating land’s mul-
tifaceted potential, empowering decision-makers to gain a
deeper understanding of rural land’s attributes and prospects.
This innovative method provides invaluable support for the
harmonization of rural industries and the cultivation of sus-
tainable development. Decision-makers can utilize this model
to identify latent developmental opportunities and challenges,
facilitating the formulation of forward-looking and viable
rural development strategies ultimately advancing the endur-
ing prosperity of rural landscapes.

II. LITERATURE REVIEW

A. REVIEW OF RELATED RESEARCH IN THE FIELD OF
RURAL LAND USE EVALUATION

In the realm of rural development and land utilization assess-
ment, a multitude of research findings have emerged, all
bearing relevance to the theme of rural tri-sector integration
and suitability appraisal. Wei et al. [27] analyzed the spa-
tiotemporal characteristics and driving forces behind land
marketization in Shaanxi Province, uncovering notewor-
thy temporal and spatial disparities in marketization levels.
Lietal. [17] pioneered the formulation of an index framework
for sustainable rural development grounded in the concept
of ecological livability. This framework offers a compre-
hensive evaluation encompassing ecological, societal, and
economic factors, providing an effective means to assess
the sustainability of rural development. Soleimani et al. [24]
harnessed Monte Carlo simulation and sensitivity analysis to
gauge groundwater quality and nitrate risk, revealing nitrate
concentrations in groundwater as a hazard influenced by
diverse factors. Ghayour et al. [9] leveraged machine learning
algorithms to assess the performance of Sentinel-2 data in
land cover/use classification, culminating in commendable
accuracy and consistency. Wang et al. [26] examined the
potential contributions of rural revitalization by delineating
the structure of rural regional systems, thus supplying crucial
reference points and guidance for rural development planning
and decision-making.

Upon scrutinizing the aforementioned literature, it becomes
evident that they share a common focus on rural develop-
ment and land use assessment, albeit with variations in their
respective emphases, methodologies, and levels of depth.
Notably, there exists a dearth of all-encompassing and inte-
grated research efforts, which in turn impedes the efficacious
resolution of challenges related to the integration of the
rural tri-sector. This context offers a theoretical foundation
for the suitability evaluation of integrated rural land for
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three industries as presented in this study, bearing inherent
innovation and practical applicability.

B. REVIEW ON THE APPLICATION OF DEEP LEARNING IN
LAND USE EVALUATION

In recent years, there has been a growing interest in the
application of deep learning and artificial intelligence (AI)
to land use evaluation. Deep learning technology offers
robust pattern recognition capabilities, with its capacity to
acquire and distill features from vast datasets through the
construction of intricate neural network models. This tech-
nological advancement has garnered substantial attention
from researchers. For instance, Debella-Gilo and Gjertsen
[6] employed deep learning methods to map seasonal agri-
cultural land use types, yielding results distinguished by
their high accuracy and practical applicability. Likewise,
Masolele et al. [19] utilized deep learning techniques to infer
land use changes following deforestation, demonstrating the
method’s ability to accurately identify post-deforestation land
use types and uncover trends in land use alterations. Castelo-
Cabay et al. [4] harnessed deep learning to classify land
use and land cover, ultimately showcasing its efficacy and
accuracy. Zhu et al. [32] introduced a land use/land cover
change detection approach tailored for high spatial resolution
remote sensing images, founded on a twin global learn-
ing framework, achieving precise detection of land use/land
cover changes. Boonpook et al. [2] successfully employed
deep learning for the semantic segmentation of various land
use and land cover types, revealing the method’s capabil-
ity to accurately delineate diverse land use and land cover
categories.

In conclusion, these studies underscore the potential of
deep learning in land use assessment, highlighting its capac-
ity to enhance classification accuracy and detect land use
changes effectively. Nevertheless, a noticeable research gap
exists within the domain of rural land suitability assessment,
especially concerning the context of three-industry integra-
tion. There is a dearth of methodologies that amalgamate
deep learning with suitability assessment. Consequently, this
study’s focal point resides in evaluating rural land suitability
for integrating the three industries, representing a specific
and innovative research avenue. By integrating deep learning
and cluster analysis, this study introduces a novel approach
that offers substantial support for rural development and land
planning.

C. REVIEW ON THE APPLICATION OF THE CLUSTER
METHOD IN LAND USE

Cluster analysis algorithms play a pivotal role in categorizing
data samples into distinct groups, effectively distinguishing
similar samples from dissimilar ones. In the realm of land use
evaluation, cluster analysis methods serve to identify various
types and characteristics of integrated land use—a topic that
has garnered significant scholarly attention. Abera et al. [1]
explored the influence of clustering algorithms on ecosystem
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services when applied to the dynamics of land use and land
cover in forest biosphere reserves. This approach effectively
categorized water source protection, soil conservation, and
carbon storage within ecosystems. Seaton et al. [22] lever-
aged cluster analysis to group soil health based on national
soil indicator monitoring data. The outcomes revealed dis-
tinct cluster patterns in different regions, reflecting spatial
variations in soil health. Giao et al. [10] employed remote
sensing and multivariate statistical techniques to examine the
relationship between land use patterns and water quality in
Jiangyuan Province, Vietnam. The findings demonstrated a
discernible correlation between land use patterns and water
quality. Lastly, Kalisz et al. [15] delved into the utilization
of land use indicators in assessing land use efficiency, con-
cluding that judiciously selected land use indicators could
effectively gauge land use efficiency.

In summary, these documents underscore the wide-ranging
application of cluster analysis in land use evaluation, partic-
ularly in its capacity to discern diverse types, characteristics,
and relationships within data. However, there exists a notice-
able research gap in the assessment of clustering analysis
algorithms for the suitability of integrated rural land use for
three industries. Consequently, this study’s distinctive con-
tribution lies in the integration of deep learning with cluster
analysis to assess the suitability of integrated rural land for
three industries, presenting a novel and innovative approach
within the realm of rural sustainable development.

D. SUMMARY

In conclusion, while the studies conducted by the afore-
mentioned scholars have yielded valuable insights in the
domain of rural development and land use assessment, they
still exhibit certain limitations. Consequently, the novelty and
distinctiveness of this study lie in the fusion of deep learning
and artificial intelligence cluster analysis, as applied to the
evaluation of the suitability of integrated rural land for three
industries. By surmounting the constraints of conventional
methodologies, this approach promises to deliver more pre-
cise, scientifically grounded, and objective outcomes in land
use evaluation, thereby offering innovative support for rural
sustainable development and land planning. The innovative
significance of this method in the realm of rural development
and land use assessment cannot be overstated, as it intro-
duces a fresh perspective and solution to address practical
challenges and future endeavors.

Ill. RURAL LAND SUITABILITY EVALUATION THROUGH
THE INTEGRATION OF DEEP LEARNING AND Al
CLUSTERING ALGORITHMS

A. ANALYSIS OF INTEGRATION OF THREE INDUSTRIES
The amalgamation of three industries entails the integration
of agriculture, industry, and the service sector, with the opti-
mization of land use serving as a catalyst for the harmonious
development of these distinct sectors. Within the context of
the modern era, the amalgamation of these rural industries
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has emerged as the definitive path for China to transition
from traditional agriculture to the sustainable development of
cutting-edge, technology-driven, and service-oriented indus-
tries. This paradigm shift has propelled the realization and
implementation of China’s rural revitalization strategy [31].
Figure 1 illustrates the developmental framework underpin-
ning the integration of rural tertiary industries.
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FIGURE 1. Schematic representation of the developmental framework
driving the integration of rural tertiary industries.

In Figure 1, several noteworthy advantages emerge fol-
lowing the integration of three rural industries. Firstly,
land resources can be harnessed more effectively, resulting
in enhanced land use efficiency and the maximization of
resources. This integration also facilitates the optimization
and upgrading of the industrial structure. Secondly, it fos-
ters the diversified development of the rural economy by
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encouraging synergy among industries, mitigating reliance
on any single sector, and bolstering economic stability and
resilience. Furthermore, the integration of different indus-
tries generates increased employment opportunities, elevates
farmers’ income levels, and enhances the living standards
of rural residents. Consequently, it contributes to narrowing
the income gap between urban and rural areas. Lastly, the
amalgamation of the three industries has a positive impact
on the rural environment, leading to overall improvements
and creating a more appealing living environment for rural
residents.

B. DEEP LEARNING AND ITS APPLICATION IN LAND
TYPE IDENTIFICATION AND ANALYSIS

Deep learning is a machine learning technique that employs
artificial neural network models to simulate and acquire data
feature representations, enabling the recognition of intricate
patterns and advanced abstractions within the data. Deep
learning technology proves valuable in data analysis and
prediction, providing decision-making support for assessing
the suitability of integrated rural land for three industries.
One commonly employed deep learning model, the Convo-
lutional Neural Network (CNN), particularly excels in image
classification tasks [7]. The utilization of CNN for land type
identification is depicted in Figure 2.

Land image
input

Convolution g /
layer o

Pooling //
layer g

Fully connected
layer

o PN .. HHE

FIGURE 2. lllustration of CNN’s application in land type identification.
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In Figure 2, CNNs demonstrate exceptional suitability for
processing data characterized by spatial structures, including
images and geographic information. The convolution layer,
within this framework, employs convolution operations to
extract features from localized areas, while the pooling layer
serves to diminish the dimensionality of the feature map while
preserving key features. The process of stacking multiple
convolution layers and pooling layers results in the extraction
of increasingly abstract, higher-level features. This hierarchi-
cal feature extraction enables precise data classification and
recognition.

Within the CNN algorithm, ResNet50, a variant of ResNet,
holds significance [5]. In the domain of land type recog-
nition, ResNet-50 offers distinct advantages, characterized
by its depth, residual connections, and training on extensive
image datasets. These attributes equip it to effectively cap-
ture the intricate characteristics of land, thereby enhancing
classification accuracy and stability. The fusion of ResNet-
50 with meticulous data preprocessing and feature extraction
makes the realization of a more precise and resilient land type
recognition model attainable. ResNet50 involves five down-
sampling operations, with the second employing maximum
pooling to halve the feature map size, while the subsequent
four down-sampling stages employ a convolution step size
of 2, effectively extracting land type features while progres-
sively reducing the feature map size, as illustrated in Figure 3.

As depicted in Figure 3, when ResNet50 is employed for
image feature extraction, it comprises four residual mod-
ules, each composed of a convolution layer and a pooling
layer. Notably, the last two residual modules do not employ
down-sampling. Within this framework, the Batch Normal-
ization layer is commonly utilized to adjust the output data
distribution from the convolution layer, thereby expediting
convergence [11]. Suppose that the input of a batch at a spe-
cific neural network layer is represented as X = [xg, x1 - -,
Xxn], where x; denotes a rural land sample, and » signifies the
batch size. To begin, the mean value p of the elements within
the mini-batch is computed, as indicated in Equation (1).

1 n
s =~ D (1)

Next, the variance ag of the mini-batch is determined,
as illustrated in Equation (2).

1 <o
oh=->. (i~ pup)’ )

n
In this manner, each element can be normalized,
as depicted in Equation (3).

N = X HB 3)

1
‘/al%—i—s

In Equation (3), € represents a constant that prevents the
denominator from being 0. After performing the aforemen-
tioned operations, the data is transformed into a normal
distribution with a mean of 0 and a variance of 1, resulting
in the loss of data offset. To revert to the data as it was before
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FIGURE 3. Schematic representation of ResNet50’s application in land
type identification.

applying Batch Normalization, an identity transformation is
required, as demonstrated in Equation (4).

yi=yxi+p “)

In Equation (4), y; represents the ultimate output of the
network, while y and S denote the variance and offset of
the input data distribution, respectively. In networks lacking
a Batch Normalization layer, these two values are associated
with the nonlinear characteristics introduced by the preceding
layer. However, following transformation, they become inde-
pendent of the previous layer and instead serve as learning
parameters for the current layer. This adjustment is advan-
tageous for optimization and does not compromise network
capacity. During testing, the BN operation, denoted as x;,,
employs unbiased estimators of the mean value, E(x), and
variance, Var(x), recorded during each Mini-batch. The final
output is designated as y;, as outlined in Equations (5) to (8).

E(x) = Ep(1tp) ®)
Var(x) = ——~Ep(o}) (©)
, X% —EW) @

Y= Narote
Yie = VXie + B ®
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In the context of employing ResNet50 for land type iden-
tification, enhancing the model’s fitting capability can be
achieved by solely increasing its depth through the use of con-
volutional kernel residual structures. It is advisable to omit
the final two down-sampling layers to reduce computational
demands. Opting to remove the initial two down-sampling
layers may result in minor alterations to the feature map
recognition network.

When assessing the performance of a learning algorithm,
typical metrics such as accuracy, precision, recall, and F1
value are commonly employed to gauge the accuracy of land
type recognition. The precise equations for these metrics are
presented in Equations (9) through (12).

TP + TN d b
Accuracy = + = dz’—of i 9)
TP+ FP+ TN + FN Zizo Zj=opij
- TP > Lo pii
Precision = ==z 7 v
TP+FP 30 o pii + Dm0 Xm0 j2i Pil
(10)
TP >4 o pi
Recall = == ’_d i
TP+EN >0 opii+ 2io 2 j=0.j#i Pii
(11)

Precision x Recall
Fl=2x — (12)
Precision + Recall

Here, TP represents the count of true positive samples
correctly predicted as positive. FP stands for the count of neg-
ative samples inaccurately predicted as positive. FN denotes
the count of positive samples erroneously predicted as neg-
ative. TN signifies the count of negative samples correctly
predicted as negative. Here, d signifies the number of distinct
land types classified, p;; represents the count of pixels accu-
rately classified for each land type, p;; represents the count
of pixels belonging to the i-th land type but classified as the
Jj-th land type by the model (indicating false positives), and
pji refers to false negative pixels.

The mean Intersection over Union (IoU) serves as another
commonly employed metric. It quantifies the intersection-
to-union ratio between the model’s predicted area and the
expected output area for a specific land type, as visually
depicted in Figure 4.

As depicted in Figure 4, it represents the IoU ratio between
the model’s output area and the expected output area. Con-
sider a certain land type area as an ellipse A, and the model’s
prediction result as a rectangle B. The degree of overlap
between ellipse A and rectangle B determines the closeness
of the intersection and union areas and, consequently, the
proximity of the IoU value to 1. Conversely, if rectangle A
and rectangle B have no overlap whatsoever, the IoU value
approaches 0. A higher IoU value signifies a more accurate
model classification result. The mean intersection and union
ratio can be calculated as the mean IoU value across all land
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FIGURE 4. Visualisation of intersection and parallel ratio.

types, as shown in Equation (13).

d Dii

i—0 N~d d

=0 2opij + Zjzopji - Pi
In Equation (13), d represents the number of land types

being classified. p;; corresponds to the number of pixels cor-

rectly classified for each land type, while p;; and pj; represent
FP and FN samples, respectively.

(13)

1
MIoU=d+lz

C. APPLICATION ANALYSIS OF CLUSTERING ALGORITHM
IN LAND FUNCTIONAL ZONING

Typically, rural land use involves a complex and diverse set
of indicators. In the suitability evaluation of integrated rural
land for three industries, cluster analysis plays a crucial role
in classifying and identifying similar objects by establishing
data similarity. When applying cluster analysis to the study of
land use function zoning, it becomes possible to objectively
perform land use function zoning based on the similarities
among different rural land uses, thereby revealing the cor-
relations and distinctions between different integrated land
types. In this study, the primary cluster methods employed
are K-means and the Gaussian mixture model. The optimal
clustering scheme is then determined based on the Calinski-
Harabasz (CH) coefficient and contour coefficient.

In the k-means algorithm [14], the process begins by ini-
tializing k clustering centers. Each sample is then assigned to
the nearest clustering center. After this initial classification,
the clustering centers are updated by calculating the centroid
of the samples within each cluster. This iterative process
continues until the clustering centers no longer change or the
maximum number of iterations is reached. The detailed steps
are depicted in Figure 5.

In Figure 5, the initial step involves determining the num-
ber of clusters (k). Subsequently, k£ samples are randomly
chosen to serve as the initial cluster centers. The Euclidean
distance between each sample and the C cluster centers is
then calculated, as represented in Equation (14).

dij = |xi — w (14)
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FIGURE 5. Flow chart of land use classification under k-means algorithm.

In Equation (14), dj denotes the Euclidean distance
between the sample i and the cluster center j. x; represents
the coordinates of sample i. u; represents the coordinates of
cluster center j. The sample is assigned to the nearest cluster,
C 2> @8 shown in Equation (15).

Aj = argmin;d;; (15)

In Equation (15), A; represents the cluster to which the sample
is assigned, and dj; refers to the Euclidean distance from
sample i to cluster center j. The cluster center undergoes
continuous updates, as demonstrated in Equation (16).

, 1

M= =7

16
Gl iec;” (16)

Here, o/ refers to the centroid of the updated cluster j, and
C; signifies the j-th cluster.

The Euclidean distance of the cluster center for each sam-
ple is calculated iteratively until the cluster center remains
unchanged or the maximum number of iterations is reached.
The clustering result for each sample point is then returned.

While the K-means algorithm is known for its simplicity
and efficiency, it has its limitations. One such limitation is the
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need to manually specify the number of clusters, which can
be inaccurate and may lead to suboptimal results due to local
optimization. To address this issue, an optimization method
is employed. Initially, the number of clusters is determined
using the elbow method [21]. The elbow method employs
the Sum of Squares due to Error (SSE) to select the optimal
number of clusters, as illustrated in Equation (17).

k
SSE = Zi:l ZSEM s — m;|? (17)

A smaller SSE value indicates a better clustering outcome.
In Equation (17), k refers to the number of clusters, w;
refers to the i-th cluster, s rdenotesa sample in w;, and m;
correspond to the centroid of the cluster w;. Furthermore, the
K-means++ algorithm is employed to initialize the cluster
centers, mitigating the issue of random initialization leading
to local optima, as demonstrated in Equation (18).

o(ci)’
il o)

P(c;) represents the probability of selecting sample i as
the initialization centroid, and Q(c;)* denotes the distance
between sample i and the other samples.

In the Gaussian mixture model (GMM), the statistical
distribution of certain data is quantified by assuming that
the sample conforms to a linear combination of k£ Gaussian
distributions. The probability of each sample point belonging
to each cluster is calculated, and the sample point is assigned
to the Gaussian distribution with the highest probability of
completing the clustering [3]. Let the distribution of the
sample numbers be composed of k& Gaussian distributions,
and the mixed model of k Gaussian distributions is shown
in Equation (19).

P(c;) = (18)

P10 =Y kil (19)

k
D =1 e (20)

In Equation (20), A refers to the probability that the
sample belongs to the k-th Gaussian distribution; x refers to
sample data; ¢(x|6y) refers to the k-th Gaussian distribution,
as shown in Equation (21).

(o — ui)?
$(x]00) = ——e f20}

\ /2710,(2

sz refers to the variance of the k-th Gaussian distribution,
and ui refers to the expected value of the k-th Gaussian
distribution. Equation (22) is shown as follows.
N

="
k i—1 ik

4
N = Zi:l Nk
sir in Equation (22) is a hidden variable, and its equation
is as follows:

21

(22)

_JLxied
“_[Qm¢m @3
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Equation (24) can be derived based on Equation (23).

K N 1
InP (x,s|0) = Zk:l nilnky + Zi:l sik[—zann

2 =)’

1
— —lno 24
2k 2(7,{2 ] @4

N
Let s;x be marked as T(S), yi as E (T), and ng as >, yi.
=
Then, the maximum likelihood estimation is as sh(l)wn in
Equation (25).

_NF 1 L, -’
L(©) = zk:] nillnig — = In2x = > Ino _W]
S € )

= ko)

S M (x6r)

(25)

Let L (0) represent the partial derivative with respect to 6
separately, as presented in Equation (26).

1 N
Mk = a Zi:l YikXi
1 N
2 _ 1 e N2 26
% = Zizl Yik (X — k) (26)
ng

A = K
k=N

Equations (14) and (15) represent the steps of the Expecta-
tion Maximization (EM) algorithm, which iteratively max-
imizes the L(#) function to complete the training of the
Gaussian mixture model [20]. The parameter updating steps
for the Gaussian mixture model using the EM algorithm are
illustrated in Figure 6.

Finally, the optimal number of clusters is determined using
the Bayesian Information Criterion (BIC). The penalization
equation for this criterion is presented in Equation (27).

BIC = Kin (N) — 2In(L) Q27)

In Equation (27), K represents the number of models fitted
in the Gaussian mixture model, N denotes the number of
samples, and L signifies the likelihood function. The determi-
nation of the number of clusters relies on the BIC value, with
the k value corresponding to the minimum BIC selected as the
optimal number of clusters in the Gaussian mixture model.

Furthermore, the optimal clustering algorithm is chosen
based on internal clustering performance evaluation metrics,
including the CH coefficient and contour coefficient.

The CH coefficient evaluates the clustering effectiveness
by quantifying the cohesion within clusters and the sep-
aration among clusters. A higher value indicates a more
favorable clustering outcome. Its formulation is presented in
Equation (28).

2= nid?(Xi, Xp)(ne — 1)
Dicir Dex, A2, X)) [ (n = ne)

In Equation (28), X)s represents the center of the sample
data X. n. denotes the total number of data points contained

CH(n) =

(28)
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FIGURE 6. Flow chart of updating parameters of Gaussian mixture model
by the EM algorithm.

in category X;. D stands for the distance between data point
X; and cluster center Xy, .

The contour coefficient combines the two elements of
intra-cluster aggregation and inter-cluster separation to eval-
uate the clustering effect, as shown in Equation (29).

5 1 Zn ( b (i) — a(i) ) 29)

n i=1 "max[a (i), b(i)]

In Equation (29), S refers to the contour coefficient, with
values ranging from -1 to 1. A larger value indicates a better
clustering result. When the value is negative, it suggests
that the sample clustering might be incorrect.a(i) represents
intra-cluster dissimilarity, while b (i) signifies inter-cluster
dissimilarity.

D. CONSTRUCTION AND ANALYSIS OF SUITABILITY
EVALUATION MODEL FOR RURAL LAND INTEGRATION OF
TERTIARY INDUSTRY BASED ON DEEP LEARNING FUSION
CLUSTER ANALYSIS

This study introduces an advanced method that amalgamates
deep learning and clustering analysis techniques. The deep
learning model, ResNet-50, is harnessed to extract intri-
cate abstract features. Subsequently, clustering analysis is
deployed to categorize analogous land regions into coher-
ent clusters. The selection of the optimal clustering scheme
relies on the evaluation of C and silhouette coefficients.
An improved land suitability assessment methodology is
presented, markedly augmenting the precision and compre-
hensive appraisal of rural land concerning its viability for the
integration of the three industries. The model for evaluating
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model based on the fusion of deep learning and cluster analysis.
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the suitability of rural land for tertiary industry integration,
which is based on the fusion of deep learning and cluster
analysis, is illustrated in Figure 7.

In Figure 7, this model begins with a series of data prepro-
cessing and feature learning steps. Initially, diverse data from
rural areas, encompassing land use, agricultural production,
and rural tourism, is gathered. These data undergo a series
of operations including cleaning, denoising, and normaliza-
tion, to ensure data quality and consistency. Subsequently,
a ResNet-50 model is employed for training and feature
learning. In the process of transfer learning, the pre-trained
ResNet-50 model is loaded and trained on a substantial
image dataset, allowing it to acquire advanced features from
images. The model is then tailored to align with specific
task requirements. To preserve the learned feature representa-
tion capability of the pre-trained model, specific lower-level
convolution layers are frozen, preventing their weights from
being updated during training and retaining the features they
initially acquired from the source data. Ultimately, through
training on new layers, the model gradually adapts to the task
at hand, acquiring the ability to map the pre-trained feature
representation to the specific rural land suitability evalua-
tion task. ResNet-50 excels at learning advanced abstract
features within the data, including various land use types,
levels of agricultural production, and rural tourism resources.
This enables the model to more accurately capture regional
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FIGURE 8. Model algorithm flow.

characteristics and lays a robust foundation for subsequent
evaluation processes.

Secondly, the process involves feature fusion and clus-
ter analysis. Here, the advanced features extracted from the
ResNet-50 model are integrated with cluster analysis. This
method classifies similar plots or areas into the same cluster
through cluster analysis techniques by utilizing the features
derived from the deep learning model as input. This inte-
gration allows for a comprehensive consideration of various
factors and illuminates both the relationships and distinc-
tions among different categories of integrated land. Cluster
analysis plays a pivotal role in uncovering potential laws
and patterns, thereby enhancing the comprehensiveness and
accuracy of land suitability evaluations.

Thirdly, the process involves comprehensive evaluation
and result interpretation. The clusters generated through
cluster analysis serve as the classification of land types
for rural three-industry integration, facilitating a compre-
hensive assessment of land suitability. By comparing and
analyzing the characteristics of different clusters in align-
ment with existing rural development and land use policies,
a deeper understanding of the suitability of each type is
achieved, thereby furnishing decision-makers with a scien-
tifically grounded basis for their choices. This capacity for
comprehensive analysis enhances the credibility and practi-
cality of the evaluation results.

The core algorithm flow of this model is depicted in
Figure 8.

IV. EXPERIMENTAL DESIGN AND PERFORMANCE
EVALUATION
A. DATASETS COLLECTION
The data sources for this study are diverse and encompass
various categories, as outlined in Table 1.

After acquiring the data, this study preprocesses it and then
partitions it into a training set and a test set based on the data
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TABLE 1. Data sources of rural tertiary industry integration.

Data Belonging Data type Source
industry
Land use First Land use type, National land
data industry, land use area, land | use data
second use change, etc. network
industry (http://www.d
and third sac.cn/)
industry
Agricultur First Crop planting National
al industry | area, agricultural | Bureau of
production product output, Statistics
data agricultural input | (http://www.st
and income, etc. ats.gov.cn/)
Industrial Second The number, National
production | industry | scale, output Bureau of
data value, land area Statistics
and pollution (http://www.st
discharge of ats.gov.cn/)
industrial
enterprises, etc.
Rural Third The number of National
tourism industry tourist attractions, | Tourism
data tourists, tourism Administratio
income, etc. n
(http://www.c
taweb.org.cn/)

type, maintaining a 7:3 ratio between the training and test
sets.

B. EXPERIMENTAL ENVIRONMENT

All experiments are conducted on an Ubuntu 18.04 sys-
tem with an Intel 9900K CPU, featuring 8 cores and 1G
threads, with a maximum frequency of SGHz. The server is
equipped with 32GB of memory. An NVIDIA RTX 2080TI
GPU with 11GB of video memory is employed. The deep
learning framework utilized for these experiments is Tensor-
Flow, along with essential Python packages and tool libraries
such as NumPy.

C. PARAMETERS SETTING

In the training process, the following hyper-parameters are
employed: a weight decay of 0.00001, a momentum of 0.9,
and an initial learning rate of 0.15. A Cosine Annealing strat-
egy is adopted to modulate the learning rate as the number
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FIGURE 9. Accuracy results of rural land use classification recognition
under each algorithm.

of consecutive cycles increased. At the end of each cycle, the
learning rate is eventually reduced to 0.00001, and this train-
ing process is repeated 100 times. These parameter settings
allow the training process to commence with a high initial
learning rate, facilitating rapid convergence aided by momen-
tum. Subsequently, the learning rate is gradually reduced
using the Cosine Annealing strategy, enhancing the model’s
stability and generalization capacity in the later stages of
training. This adjustment contributes to the model’s improved
adaptation to the data, resulting in superior performance.
The optimization algorithm used in the model is Adam, the
activation function is ReLLU, and the batch size is 64. The
model consists of a total of 49 convolutional layers and 1 fully
connected layer.

D. PERFORMANCE EVALUATION

In the initial stage of the analysis, several algorithms
are employed, including the model algorithm proposed in
this study, ResNet50, CNN, Zhu et al. [32], and Boon-
pook et al. [2]. Rural land use classification and identification
accuracy are evaluated using various metrics, including accu-
racy, precision, recall, and F1 value. Figures 9 through
12 illustrate the outcomes of these assessments.

Figures 9 to 12 present a detailed analysis of rural
land use classification and identification accuracy using the
model algorithm developed in this study, ResNet50, CNN,
Zhu et al. [32], and Boonpook et al. [2]. These analyses con-
sider metrics such as accuracy, precision, recall, and F1 value
score. The results reveal that the rural land use classification
and identification accuracy achieved by the model algorithm
in this study is notably high, reaching 88.3%. This perfor-
mance surpasses that of the other model algorithms, with at
least a 3.1% advantage. The order of accuracy from highest
to lowest is as follows: the model algorithm in this study >
Boonpook et al. [2]> Zhu et al. [32] > RESNET 50 > CNN.
Furthermore, when examining precision, recall, and F1 val-
ues, it becomes evident that the research model algorithm
for rural land use classification and identification is superior.
This superiority may be attributed to the combination of
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FIGURE 10. Precision results of rural land use classification recognition
under each algorithm.

1.0
—m— The proposed algorithm
[ ] Boonpook et al.
0.84 77 Zhu et al. -— . —m
3 [ - - — - -
S ResNetS0 , =" Th b My b [y
' A N
- CNNg 5 §< N N N ;i ;i
M N | Y a X X N | N
B L % ) 1 %
= 0.6 DK i %l ’ "
s N ¢ K 5 g %
Q | | vk K X % 4
[} # K4 5 " %
= g x|
Vh K4 K] " "
g K % " "
h i %l " "
g y # K | R N
0.24| 7 9 7ol
. % % 4 K /] /]
¢ d K] % " "
vl % %l 1 % %
% < % K 1 " "
? Vh K K] " "
/ / IR nalll’
0.0 15 X X
0 40 60 80 100
Epochs

FIGURE 11. Recall results of rural land use classification recognition
under each algorithm.

ResNet-50 and the K-means algorithm, which enhances the
model’s ability to accurately capture land characteristics and
classify similar plots or areas, ultimately improving accu-
racy and the overall analytical capability for land suitability
evaluation. Consequently, this study’s rural land suitability
evaluation model based on deep learning fusion cluster anal-
ysis excels in rural land use classification and identification
accuracy.

Furthermore, a comparison of the average intersection and
union ratio for each algorithm is illustrated in Figure 13.

Figure 13 provides insight into the mean IoU ratio of
each algorithm. Analysis reveals a common trend of initial
increase followed by stabilization in the average intersection
ratio as the training period progresses. Notably, when the
training period reaches 100, the model algorithm introduced
in this study attains a substantial mean IoU of 67.29%.
In contrast, the highest mean IoU achieved by other model
algorithms peaks at 64.29%, significantly lower than that of
the algorithm reported here. Consequently, a comprehensive
analysis of experimental results consistently highlights the
superior accuracy of rural land use classification and iden-
tification achieved by the model algorithm presented in this
study.

Furthermore, to enhance the clustering performance of
the model, a comparative analysis of the CH coefficient
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and contour coefficient between the k-means algorithm and
GMM algorithm is presented in Figure 14.

Upon comparing the clustering scores of each algorithm,
depicted in Figure 14, it is evident that the k-means algorithm
attains scores of 102.97 for the CH coefficient and 0.29 for
the contour coefficient, while the GMM algorithm achieves
scores of 100.15 for the CH coefficient and 0.21 for the con-
tour coefficient. Clearly, the k-means algorithm outperforms
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in terms of both CH coefficient and contour coefficient, signi-
fying its superior clustering efficacy. Hence, this study selects
the clustering results generated by the k-means algorithm as
the foundation for classifying rural three-industry integration
land.

E. DISCUSSION

This study reveals that the algorithm developed in this study
achieves an impressive accuracy of 88.3% in rural land use
classification and identification, significantly outperforming
other algorithms in this regard. Additionally, the mean IoU
reaches 67.29%, indicating the superior feature identification
accuracy of this study’s model algorithm for integrated rural
land for three industries when compared to Zhu et al. [32]
and Boonpoke et al. [2]. Furthermore, in the analysis of
clustering algorithms, the k-means algorithm demonstrates
a strong clustering effect, notably surpassing the clustering
score of GMM, consistent with Jiang and Beck [13].

The model reported here offers a versatile array of practical
applications. Firstly, it enhances the accuracy of rural land use
classification, enabling a more precise understanding of land
use conditions. This, in turn, provides essential data support
for urban planners and decision-makers, facilitating the for-
mulation of more effective development strategies. Secondly,
it allows for more targeted planning of rural industrial land by
delineating the types and directions of industrial development
in rural areas. This precise planning can identify the specific
types of industrial development needed in rural areas, thereby
guiding future industrial development in different regions
[29]. Such guidance promotes industrial revitalization in vari-
ous locales, contributing to the realization of sustainable rural
development. In conclusion, the practical application of this
research model holds significant potential for rural develop-
ment planning and land use management, offering strategic
support and guidance for the sustainable development of rural
areas.

This guide offers a systematic approach for novice
researchers, particularly graduate students, aiming to apply
cutting-edge methods in unfamiliar fields or scenarios. The
proposed steps and recommendations encompass the follow-
ing key aspects:

1) Acquaintance with Current Methods: Beginners should
embark on a comprehensive exploration of the
prevailing methodologies and techniques. This entails
mastering deep learning models (e.g., ResNet-50),
familiarizing themselves with clustering analysis algo-
rithms (e.g., K-means and Gaussian Mixture Mod-
els), and grasping the foundational principles of land
suitability assessment. This proficiency can be culti-
vated through an extensive review of pertinent litera-
ture, engagement in online courses and tutorials, and
hands-on programming and experimentation.

2) Data Gathering and Organization: Graduate students
should undertake the collection of pertinent data per-
tinent to their new area of interest or research inquiry.
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This may encompass geographical information system
(GIS) data, remote sensing images, rural economic
statistics, and other relevant sources. Vigilance in pre-
serving data quality and consistency is paramount;
hence, data preprocessing and cleansing are indispens-
able stages.

3) Data Preprocessing and Feature Engineering: Novices
must become proficient in the art of data preprocessing
and feature engineering. These activities encompass
tasks such as data cleansing, noise mitigation, normal-
ization, and the extraction of salient features from raw
datasets. The caliber of feature engineering directly
impacts the model’s efficacy.

4) Model Selection and Training: Depending on the
research query, neophytes should elect an apt deep
learning model, potentially ResNet-50 or an alternative
well-suited model. Thereafter, they should engage in
model training using their proprietary data, which may
necessitate access to a computer equipped with GPU
acceleration. The refinement of the model’s hyper-
parameters to attain peak performance is also a pivotal
endeavor.

5) Clustering Analysis and Interpretation: Following the
acquisition of predictions from the deep learning
model, beginners can amalgamate these outcomes with
clustering analysis techniques. This synergy aids in the
revelation of latent patterns and cohorts within the data,
further elucidating the model’s prognostications.

6) Results Comprehension and Documentation: Lastly,
newcomers must interpret their research findings and
compile an exhaustive report or scholarly paper. This
entails bridging the model’s outputs with real-world
contexts, scrutinizing the import of the results, and
deliberating on the study’s constraints and prospective
avenues for further research.

This study outlines key avenues for advancing land suit-
ability assessment methods, focusing on improving model
performance, multimodal data fusion, interpretability stud-
ies, and cross-domain applications. Future research should
prioritize enhancing deep learning models’ performance in
new scenarios. This involves optimizing model architectures
and leveraging data augmentation techniques to increase their
effectiveness. Research efforts should explore techniques for
seamlessly integrating these multimodal data into unified
models in cases involving diverse data types (e.g., images,
geographic, economic). This integration can boost predic-
tion accuracy and offer a more holistic view of complex
landscapes. Addressing the interpretability of deep learning
models is paramount. Research should delve into methods
to elucidate model decisions and establish meaningful links
between interpretability findings and real-world contexts.
This direction aims to make models more transparent and
accountable. Extending these methods to different domains
(e.g., urban planning, environmental protection, natural
resource management) holds significant promise. Adapting
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these techniques to new scenarios across diverse fields can
lead to innovative solutions for multifaceted challenges.

By following these methods and recommendations, begin-
ners can acquire the skills to adapt existing techniques to
novel fields or scenarios and explore promising avenues for
future research. Furthermore, this practice encourages fellow
scholars to engage actively and contribute to the advancement
of pertinent domains.

V. CONCLUSION
A. RESEARCH CONTRIBUTION
This study introduces deep learning and clustering algorithms
and presents an innovative rural land suitability evaluation
model based on deep learning fusion clustering analysis. The
novelty of this study lies in the synergistic integration of deep
learning and cluster analysis, which yields more precise and
comprehensive support for rural sustainable development.
Experimental analysis reveals that the accuracy of rural land
classification achieved by the model algorithm presented in
this study reaches 88.3%. Additionally, the mean IoU attains
67.29%, demonstrating clear superiority over other algo-
rithms. The utilization of the k-means algorithm for clustering
land suitability enhances its utility, providing robust support
and guidance for the sustainable development of rural areas.
The ResNet-50 model employed in this analysis exhibits
several strengths and limitations. ResNet-50 is a deep CNN
model characterized by its substantial depth, which facil-
itates the extraction of high-level abstract features from
data. It excels at recognizing diverse land-use patterns,
agricultural production levels, and rural tourism resources,
thereby enhancing its feature extraction capabilities for
land characteristics. ResNet-50 adopts a transfer learning
approach, initially pre-trained on extensive image datasets
and subsequently fine-tuned for specific tasks. This strat-
egy expedites model convergence, diminishes the demand
for copious labeled data, and enhances the model’s gen-
eralization prowess. Parameter freezing is applied to the
lower convolutional layers of ResNet-50, ensuring that
these layers retain their original feature representations and
thereby aiding the model’s adaptation to the specific task.
In scenarios involving data with spatial structures, such
as image-based land suitability assessment and land-use
classification, ResNet-50 is renowned for its high perfor-
mance. However, it also presents several limitations. Notably,
deep learning models, including ResNet-50, necessitate sub-
stantial volumes of labeled data, which can be a limiting
factor when such data is scarce. Furthermore, the compu-
tational resources required for training and inference are
considerable, often mandating high-performance comput-
ing equipment and hardware acceleration. The numerous
hyperparameters inherent to deep learning models, including
learning rates, weight decay, and iteration counts, demand
meticulous tuning and optimization to achieve peak perfor-
mance. Inappropriate parameter configurations can lead to
reduced model efficacy or training instability. Lastly, deep
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learning models tend to be regarded as black-box models,
hindering their interpretability. In fields like land suitabil-
ity assessment, where interpretability is critical, additional
efforts may be required to elucidate the model’s decision-
making processes.

B. FUTURE WORKS AND RESEARCH LIMITATIONS
Nonetheless, this study has certain limitations. For instance,
while it utilizes multi-source data as the foundation, it lacks
detailed explanations regarding the specific processing meth-
ods for distinct types of data, including remote sensing
images, land use data, and tourism data. To address this,
future research could focus on expanding the scale and diver-
sity of datasets and integrating additional data sources, such
as geographic information system data and socio-economic
data. This expansion and integration would serve to enhance
the accuracy and comprehensiveness of the suitability evalu-
ation for integrated rural land for three industries.
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