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ABSTRACT Traditional anti-spoofing systems cannot be used straightforwardly with streaming audio
because they are designed for finite utterances. Such offline models can be applied in streaming with the
help of buffering; however, they are not effective in terms of memory and computational consumption.
We propose a novel approach called RawSpectrogram that makes offline models streaming-friendly without
a significant drop in quality. The method was tested on RawNet2 and AASIST, resulting in new architectures
called RawRNN (RawLSTM and RawGRU), RS-AASIST, and TAASIST. The RawRNN-type models are
much smaller and achieve a better Equal Error Rate than their base architecture, RawNet2. RS-AASIST and
TAASIST have fewer parameters than AASIST and achieve similar quality. We also proved our concept for
models with time-frequency transform front-ends and automatic speaker verification systems by proposing
RECAPA-TDNN based on ECAPA-TDNN. RS-AASIST and RECAPA-TDNNwere combined into the first
streaming-friendly spoofing-aware speaker verification system reported in the literature. This joint system
achieves significantly better quality than the corresponding offline solutions. All our models require far
fewer floating-point operations for score updates. RawSpectrogram usage significantly reduces the latency
of the prediction and allows the system to update the probability with each new chunk from the stream,
preserving all information from the past. To the best of our knowledge, TAASIST is the most successful
voice anti-spoofing system that employs a vanilla Transformer trained using supervised learning.

INDEX TERMS Anti-spoofing, ASVspoof challenge, automatic speaker verification system, countermea-
sure, SASV challenge, spoofing-aware speaker verification system, streaming.

I. INTRODUCTION
Technological advancement increases the diversity of meth-
ods for falsification and gaining unauthorized access.
Playbacks of recorded speech and modern algorithms for
synthesized speech can be roughly detected by a casual
user, and criminals can use them effectively. The fraud calls
from a person who pretends to be a bank or government
employee allow offenders to steal money from accounts and
sensitive information from documents. The integration of
voice assistants in smart home systems leads to burglars
gaining full access to apartment devices. Audio spoofing
attacks are classified into four groups [1]: impersonation,
text-to-speech (TTS), voice conversion (VC), and replay.
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Security improvements must be implemented to effectively
counter each type of attack.

Voice biometric systems consist of an automatic speaker
verification system (ASV) and countermeasure system (CM).
The ASV protects against impersonation attacks by distin-
guishing the bona-fide speech of the information owner from
an impostor’s voice. The CM is added to make the ASV
defensible against other types of attacks. A combination
of these two systems is called a spoofing-aware speaker
verification (SASV) system. It is a complete biometric
algorithm that covers all attacks. This research area is highly
supported by the ASVspoof initiative, which created data and
comparison standards and organized several competitions [2],
[3], [4], [5], [6].

Existing CMs and ASVs mostly operate with full-length
or very long (2-4 seconds) utterances. In fraud call and
voice assistant scenarios, the final length of the audio is
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FIGURE 1. Spoofing probability update for offline solution with buffering (left) and native-streaming (right).

unknown and can be infinite. Therefore, a system should be
able to continuously update its predicted probability of audio
spoofing. Moreover, the latency before a model decision
should be as low as possible, and two or four seconds may
be too long for business requirements. Thus, the traditional
way of applying biometric systems differs from that needed
for streaming audio, and conventional ASVs and CMs are not
designed for such use.

We classify approaches for the creation of streaming-
friendly SASV systems into two general categories:

1) Offline solution with audio buffering. The model
prediction is based on a buffer that is updated with
every chunk from the stream by removing old data from
the head and adding new data to the tail. See Fig. 1 (left)
for visualization.

2) Native streaming. The system processes only the
newest chunk, and the output probability depends only
on this new segment and the hidden state from the past.
See Fig. 1 (right) for visualization.

The audio-buffering approach consumes considerable
computational and memory resources because it requires
maintaining big data and reprocessing it fully every time.
Several optimization techniques can reduce the complexity
of the solutions. For example, for the convolution calculation,
an input is split into several subparts, some of which will not
change after the buffer update; therefore, there is no need to
count the results on these unchanged parts again. Whereas
the first category uses traditional systems with buffers, the
second applies models specifically designed for audio stream
applications. Native streaming solutions aim to work with
as small input as possible (much shorter than an ordinary
buffer) to quickly and frequently update the output score.
Moreover, these systems do not have an audio buffer; the
information from the past is preserved in a single object
that consumes less memory than a usual buffer and knows
about all previous chunks and not just the latest ones. Native
streaming models can have significantly faster updates of the

predicted probability. Indeed, regardless of the length of the
chunk w, offline models are applied to the buffer of length
b for each score update. Native streaming solutions process
chunks in a straightforward manner; therefore, the length
of their input is always equal to w. If w ≪ b, which is
usually true, offline solutions will require substantially more
floating-point operations for an update.

An offline model does not have any structural restrictions
and is therefore likely to be more robust than a native
streaming model. However, we argue that the latter is more
intuitive and, with a proper design, can be much more
lightweight while having similar anti-spoofing capabilities.
Our paper focuses on the development of a streaming-
friendly and resource-effective SASV system. We propose
a novel approach for audio processing, referred to as
RawSpectrogram. It allows the creation of representations
that adjust to a given task and enables effective native
streaming. For the CMs, there are two corresponding deep
neural network (DNN) models that use RawSpectrogram:
RawRNN (RawLSTM and RawGRU) and RS-AASIST
based on RawNet2 [7] and AASIST [8], respectively. We also
propose a model named TAASIST in which the recurrent
neural network from RawSpectrogram (see Section III) is
replaced with Transformer [9]. To the best of our knowledge,
this is the most successful usage of a vanilla Transformer
trained via supervised learning in voice anti-spoofing. This
model is not a native streaming model and is designed to
show how RawSpectrogram enables the easy optimization
of computations for offline solutions with buffering. All
our proposed CMs have fewer parameters than their base
offline architectures and update probabilities significantly
faster, preserving robustness. We prove that our concept also
works for ASV systems and models with non-raw front-ends
by proposing a RECAPA-TDNN model based on ECAPA-
TDNN [10] with 1024 channels. The resulting solution is
smaller than the base architecture, updates the output score
more than two times faster, and has a quality that is better
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than that of ECAPA-TDNN with 512 channels. Finally,
we combine RS-AASIST and RECAPA-TDNN into the first-
ever native-streaming SASV system.

The remainder of this paper is organized as fol-
lows. Section II describes the current state of the con-
sidered research area. RawSpectrogram with RawRNN,
RS-AASIST, TAASIST, and RECAPA-TDNN are intro-
duced in Section III. The setup of the corresponding
experiments is described in Section IV. The results and
conclusion are in Sections V and VI, respectively.

II. RELATED WORK
In this section, we describe RawNet2, AASIST, ECAPA-
TDNN, and streaming-friendly models from literature.

A. BASE CMS
RawNet2 [7] is the standard baseline architecture for
CMs that work with raw input. The main idea behind
it is to use a Sinc-layer [11] instead of a conventional
convolution. In RawNet2, a Sinc-layer is followed by several
ResBlocks [12] with Feature-Map-Scaling (FMS, [13]),
Gated Recurrent Unit (GRU, [14]), and two Fully-Connected
layers (FC-layers).

The state-of-the-art CM is AASIST, which was proposed
in [8]. It is a graph neural network (GNN) consisting of
several graph attention (GAT), heterogeneous graph attention
(HS-GAL) and graph pooling layers. The model uses a
RawNet2-based encoder without FMS and GRU to produce
temporal and spectral features. These features are separated
and judged as nodes of a complete heterogeneous graph
with three types of relations: between time nodes, between
frequency nodes, or mixed.

B. BASE ASV
ECAPA-TDNN [10] is a well-known ASV system. It uses
Mel-frequency Cepstral Coefficients (MFCCs) as input
and applies a 1D-convolution block with several Squeeze-
Excitation (SE) blocks and Attentive Statistics Pooling,
followed by an FC-layer. Themodules are designed to capture
a wider temporal context, which is beneficial for extracting
speaker properties. In our experiments, we used a publicly
available ECAPA-TDNN variant from [15].1 It has a slightly
different training scheme and replaces theMFCCs with aMel
spectrogram.

C. NATIVE STREAMING
There are three statements regarding native streaming mod-
els: (i) they are applied successively to each new chunk from
the stream; (ii) the complexity of processing one segment
depends only on its length; and (iii) the model output relies
on the hidden state that preserves information from the past.
Recurrent neural networks (RNN) exactly fit these criteria.
Thus, the CM and ASV systems that properly use RNN

1Implementation is available at https://github.com/TaoRuijie/ECAPA-
TDNN.

can be considered streaming-friendly, even though they were
originally developed as offline models.

The authors of [16] suggested replacing linear layers
in GRU with LightCNN [17] (LCNN) and proposed the
LC-GRU architecture. The latter system can be used for
native streaming. Indeed, LC-GRU works with a log-
magnitude spectrogram created by overlapping windowing
over utterance. We can create spectrogram frames from
each window independently and process them sequentially,
sharing the hidden state of the GRU architecture. A similar
approach can be applied to 3-layer LSTM (Long Short-Term
Memory, [18]) and GRU from [19]. Unlike these studies that
develop one architecture, we propose an approach that creates
a native streaming model from any offline one.

RawNet2 has convolutions before GRU, which are applied
to a full-length utterance. It could be possible to optimize
convolution and calculate it only on a new chunk, thereby
making RawNet2 streaming-friendly. However, FMS creates
a dependency between time segments, meaning that the new
chunk affects previous computations. AASIST does not have
RNN-type modules, and its complete inner graph creates
dependencies between all temporal nodes. Thus, both CMs
do not correspond to the definition of native streaming.
Therefore, it is reasonable to test our method on them.

For the ASV, RawNet [20] with optimized convolutions
can be considered streaming-friendly because it does not
have FMS as its advanced version, RawNet2 [13]. The
SE-blocks and attentive statistic pooling layer in ECAPA-
TDNN create the same problem as FMS for RawNet2,
meaning that ECAPA-TDNN cannot be used as a native-
streaming solution.

D. SASV
The existing solutions for SASV architectures can be divided
into three types:

1) Fusion over scores or embeddings of independent ASV
and CM systems.

2) A cascade approach, in which the two subsystems are
stuck after each other and the output of the second
model is constrained by the first one.

3) End-to-End systems.
There are several papers describing the second [21], [22]

and the third [23], [24] methods; however, the first method
usually outperforms others, although it is much simpler in
implementation. The fusion approach was described in [21],
[22], [25], [26], [27], [28], and [29]. In this paper, we consider
the method from [25], as it does not require extra DNNs
and thus preserves the effective resource consumption of our
proposed systems.

Having a pretrained CM and ASV system, the authors of
[25] suggest using a probabilistic framework based on the
product rule. The SASV score is computed according to the
following (1):

SSASV = σ (SCM) · f (SASV), (1)
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where SCM is the output score from the CM system, SASV
is the cosine similarity score from the ASV system, σ (x)
is a sigmoid function, and f (x) can be any function that
monotonically maps the cosine similarity score to [0, 1].
We consider two possible f functions from [25]. The first
is a linear mapping: f (x) =

x+1
2 . The second function

is sigmoid. The authors of [25] also proposed the use of
a calibration function; however, its performance was poor
owing to overfitting. There is also a version of (1) in which
SCM is conditioned on the ASV output. This is done via fine-
tuning the final FC-layer in the CM system by optimizing the
joint score.

III. RAWSPECTROGRAM
In this section, we define RawSpectrogram, RawRNN,
RS-AASIST, TAASIST, and RECAPA-TDNN.

A. METHOD DESCRIPTION
A straightforward approach for working with streaming
audio is to process it chunk-by-chunk. However, each
speech segment should have an informative representation
before passing to the network, and we should be able to
capture global and local contexts in the frequency and time
domains to achieve superior spoof determination capabilities.
We propose the following method to comply with the listed
requirements (see Fig. 2 for visualization).

First, we obtain overlapping windows with a fixed window
length W and hop size H from the audio stream. Each
segment is fed to an Embedding Network (EmbNet) to obtain
discriminative features. This idea is similar to the Short-Time
Fourier Transform (STFT) front-end: windowing is required
for the determination of artifacts in the time domain, and
EmbNet procures frequency information. EmbNet can be
any trainable DNN that is compatible with raw audio input.
If we compose the frequency-describing embeddings of each
window into one matrix, we will obtain a spectrogram-
like object from the raw chunks: rows and columns depict
changes in the time and frequency domains, respectively. This
interpretation leads to the ‘‘RawSpectrogram’’ name of the
method. Apart from other learnable STFT-like representa-
tions [30], [31], [32], [33], we have more degrees of freedom
by choosing the architecture for EmbNet and learning an end-
to-end embedding transform. The temporal convolutions in
Wav2Vec [34] and Wav2Vec 2.0 [35] are applied with the
given stride and, therefore, make windowing, but the concept
and learning strategy of these models completely differ from
our approach.

Second, the embeddings from EmbNet serve as input for
the RNN model to enable native streaming and capture the
global temporal context. The use of a unidirectional LSTM
or GRU is recommended to avoid vanishing gradients.

Finally, the output from the last RNN cell is sent to a binary
classifier that predicts the probability of audio being spoofed.
The choice of architecture for this part is unlimited.

In the inference phase, we obtain a new window from
the stream, calculate its embedding via EmbNet, feed it to

TABLE 1. EmbNet for the RawRNN architecture. It is based on the
RawNet2 model. For the convolution layers, k is the kernel size and f is
the number of filters.

the RNN cell, conserving the hidden state from the previous
segment, andmake a probability prediction, pushing the RNN
output to the classifier.

EmbNet allows the preservation of the effectiveness of the
original offline model. The task of capturing the temporal
context is transmitted to a powerful RNN that can be
relatively small, thereby reducingmemory and computational
costs. Thus, the RawSpectrogram approach leads to native
streaming models with the quality of the original offline
solutions and less resource consumption. W controls the
amount of temporal context in one window and the delay
before the first prediction. H regulates how frequently we
can update the probability and amount of shared temporal
context between adjacent segments. Both parameters define
the overall latency of chunk processing.

It should be noted that when native streaming is not the
objective, EmbNet embeddings can be stacked in amatrix and
work as a learnable front-end for offline models.

B. RAWRNN AND RS-AASIST
For a feasible study, we chose the two most impactful
models applicable to raw input: RawNet2 and AASIST.
These models can be converted into a native streaming format
by setting them as EmbNet in RawSpectrogram. We used a
2-layer MLP with BatchNorm, LeakyReLU, and the hidden
size equal to 256 as the classifier.

For RawRNN (RawLSTM or RawGRU), EmbNet is a
smaller version of RawNet2 with mel-scaled sinc filters.
We changed the hyperparameters, removed the last FC-layer
from the original RawNet2 architecture, and left only the first
two residual blocks. A complete description of the system is
presented in Table 1. The W and H are set to 512 and 256,
respectively. RawLSTM has two layers of LSTM with the
0.3 dropout probability and the hidden size equal to 256.
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FIGURE 2. RawSpectrogram Pipeline.

RawGRU has only one layer of GRU with the hidden size
equal to 100.

Setting AASIST as EmbNet and pushing each embed-
ding to RNN makes the AASIST architecture recurrent
(RS-AASIST, RawSpectrogram-AASIST). For this model,
we also reduced the size of the system by removing the
last two residual blocks and the last classification FC-layer.
The only hyperparameters we have changed were the
two last graph pool ratios and temperatures, which were
decreased from 0.5 to 0.3 and from 100 to 80, respectively.
The composition of the node-wise maximum and average,
together with the stack node from the EmbNet part, is fed
to a 1-layer GRU with the hidden size equal to 32. We tested
severalW and H for RS-AASIST and found thatW = 4096,
H = 2048 worked the best. Such large windowing
parameters are caused by the structure of the original
AASIST, which requires a big temporal input length. A long
window allows the model to preserve the context and
informative size of temporal graphs in the GAT and HS-GAL
parts of AASIST.

C. TAASIST
The TAASIST (Transformer-AASIST) architecture is similar
to RS-AASIST; however, the GRU layer is replaced with
a vanilla Transformer Encoder [9]. The output of EmbNet
is considered as token embeddings. We add an extra
classification token to the start of the sequence, which
representation after Encoder is passed to the classifier.
Transformer has two heads, 80-dimensional embeddings, the
feedforward size equal to 80, the dropout set to 0.2, and
one inner layer. We also used pre-normalization for faster
convergence [36], GELU activation [37], and a learnable
codebook for positional encoding. The EmbNet architecture
is the same as that in RS-AASIST; however, the number of
output channels in the last two residual blocks is reduced
from 64 to 48. The 160-dimensional outputs of EmbNet
are projected to 80-dimensional Transformer inputs using an
FC-layer.W and H are identical to those of RS-AASIST.

There has been research on the combination of Trans-
former and AASIST. In [38], the authors replaced the
RawNet2 encoder in AASIST with Wav2Vec 2.0 [35], which
is based on the Transformer architecture. However, this
solution uses self-supervised learning and pre-training on
external data, whereas we consider only supervised learning
and the datasets allowed in the ASVspoof Challenge.

The streaming application of TAASIST is done with audio
buffering. However, computations can be easily optimized
because there is no need to recompute representations from
EmbNet for chunks that have already been seen. This is also
more efficient in terms of memory because we conserve N
80-dimensional EmbNet embeddings instead of a raw audio
buffer of size N · H + W where N denotes the length of the
token sequence for Transformer.

D. RECAPA-TDNN
Our native streaming ASV system is Recurrent ECAPA-
TDNN (RECAPA-TDNN), which is a conversion of ECAPA-
TDNN [10] via RawSpectrogram. It differs from the CM
systems proposed above. If all EmbNet networks in our
CM systems operate on raw chunks, this system uses a
Mel Spectrogram as front-end. The application of the time-
frequency transform requires a significant increase in the
window length W . Indeed, the transform itself is STFT-like
and needs a large input time dimension to produce useful
features for DNN. We used W equal to 24120 and H set
to 12060.

We noticed that RECAPA-TDNN tends to overfit if we
only change the hyperparameters for EmbNet. Therefore,
we decided to use another approach to make EmbNet
smaller. First, EmbNet was set as the pretrained ECAPA-
TDNN with 1024 channels. Then we pruned 20% of the
output channels for each convolution layer and input features
for the fully-connected layers. To avoid feature dimension
mismatches between successive layers, we added padding
and pooling. Each convolution is followed by a padding layer
that adds fictitious zero channels to the output, replacing
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those that were pruned. The pooling layer is located before
the FC-layer and removes the activations in the input that
correspond to the pruned features. RECAPA-TDNN has one
GRU layer with 800 hidden units. The classifier consists
of BatchNorm, an FC-layer with 192 output features, and
another BatchNorm.

IV. EXPERIMENTAL SETUP
In this section, we describe the training scheme and
experiments for analyzing the anti-spoofing capabilities of
RawRNN, RS-AASIST, TAASIST, and RECAPA-TDNN for
streaming speech.

A. MODEL TRAINING
The training scheme for RS-AASIST was identical to that
of the original AASIST paper [8], except that we used
gradient accumulation. The batch size was set to five, and
the optimization step was done once in five sequential steps.
TAASIST was trained in a similar way but used 1Cycle
learning rate scheduler [39] with 5000 steps per epoch and
the maximum learning rate set to 10−4. The learning rate
increased for the first 10% of the cycle. We also replaced the
Adam [40] optimizer with AdamW [41].
For RawRNN, we used the Adam optimizer with a weight

decay and learning rate both equal to 10−4. The learning rate
was divided by a factor of 2 every 2540 steps. The model was
trained for 60 epochs, with 127 steps in each. The batch size
was set to 200. The loss functionwasWeighted Cross Entropy
with weights equal to 0.1 and 0.9 for spoof and bona-fide
classes, respectively.

We used several data augmentation methods from PyRub-
berBand2 that were sequentially applied in the following
order:

• Pitch shift by random semitones between −3 and 3. The
probability of augmentation was set to 0.3.

• Time stretch by a random factor between 0.5 and 2. The
probability of augmentation was set to 0.3.

All CMs were trained on the training partition of the LA
ASVspoof 2019 dataset [4], [42]. For each audio, we defined
a fixed number of windows (128 for RawRNN, 40 for
RS-AASIST and TAASIST) created using the RawSpectro-
gram method. We did this by padding with duplication or
randomly cropping each utterance. However, audios are not
pre-processed in the evaluation stage, and all our models
operate with varying numbers of windows (for TAASIST in
the offlinemode, utterances are cut to have 40 chunks or less).

The training scheme for RECAPA-TDNN was similar to
that in [15].We used a pretrained ECAPA-TDNN for EmbNet
(see Section III-D) and pretrained parameters for AAM-
Softmax [43], [44], which were also taken from the pretrained
ECAPA-TDNN. The learning rate was set to 10−4 for the
pretrained parameters and to 10−3 for the other parameters,
and it was multiplied by 0.97 each epoch. To increase
the convergence speed and reduce overfitting, a knowledge

2https://github.com/bmcfee/pyrubberband, v.0.3.0

distillation [45], [46] technique with Mean-Squared-Error
(MSE) over embeddings from teacher and student was used.
The pretrained ECAPA-TDNN was a teacher. The final loss
function is expressed as follows:

LFinal = (1 − α) · LAAM-Softmax + α · LMSE. (2)

The α parameter in (2) controls the amount of distillation.
RECAPA-TDNN was trained on the development part of the
VoxCeleb2 dataset [47] for seven epochs with the batch size
equal to 400 and α set to 0.99. The learning rate was then
reduced to 10−5 for pretrained parameters and to 10−4 for
other parameters, the batch size was increased to 500, α was
set to zero, and RECAPA-TDNN was trained for eight more
epochs. We also trained ECAPA-TDNN with 512 channels
for comparison purposes, following the training scheme from
[15]. All the considered ASV systems used the augmentation
techniques described in [48] and SpecAugment [49].

Our SASV systemwas constructed identically to [25] using
the publicly available implementation.3 The only difference
is that we fine-tuned the entire classifier and not only the
last FC-layer. We consider four different models, choosing
whether f is a linear or sigmoid function and whether scores
from CM and ASV are independent. The proposed SASV
systems are named in the following form: RawSpectrogram-
X-Y, where X denotes the f function type (L for linear and S
for sigmoid) and Ywhether to do fine-tuning or not (I – direct
inference, F – fine-tune).

B. COMPLEXITY OF A PROBABILITY UPDATE
For the application of systems in streaming, we measured the
complexity and speed of a single score update by counting
the number of floating-point operations (FLOPs).

Native streaming models straightforwardly process
chunks; therefore, we simply pass an input of size W , which
is the chunk size, and calculate the FLOPs.

For offline models, we first have to define the size of
the buffer b. The most reasonable way is to examine the
input length in the evaluation scheme for the considered
offline solution. Indeed, if the model is tested on utterances of
length b1, we cannot assume that its quality will be the same
for audio of length b2, where b1 ̸= b2. For example, AASIST
was evaluated on 4-second-long utterances (64600 samples,
to be exact) in the original paper [8]; therefore, we set b
to 64600 for the experiments with AASIST. Likewise, for
RawNet2, b is equal to 64000 according to the original paper
[7]. When the length of the buffer is defined, we only need
to pass a buffer of length b as the input for the model and
calculate the FLOPs. It should be noted that b does not depend
on the chunk sizeW .
In Section III-C, we explained how computations for

TAASIST can be optimized. Hence, for this architecture, the
cost of a single update is equal to the number of FLOPs for the
inner Transformer and classifier forward step, summed with
the FLOPs for processing one chunk by EmbNet.

3https://github.com/yzyouzhang/SASV_PR
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C. PROBABILITY VS WINDOWS
The streaming audio produces successive chunks of infor-
mation. In this experiment, we aimed to understand how
probability changes with each new piece of utterance and
how this is reflected in the Equal Error Rate (EER). Hence,
we applied the classifier to each RNN cell and calculated the
probability for each window.

To better capture the difference between offline and
streaming-friendly models, we conducted the same experi-
ment for TAASIST, AASIST, and RawNet2 using buffering.
We split the audio into chunks, imitating stream, and succes-
sively updated buffers. TAASIST works with sequences of
length N = 40, which means that it requires a raw audio
buffer of length N · H + W . If the number of chunks is less
than N , Transformer uses a padding mask for the missing
segments. The W and H for TAASIST were the same as
those described in Section III-C. The buffer for AASIST is
4-second-long (64600 samples) because this was the size of
the input in the original paper [8]. If the current audio length
is shorter than that of the buffer, padding with repetition
is used. For this experiment with AASIST, we updated the
buffer by imitating chunks with W ,H both equal to 1292
(non-overlapping windows). Similarly, W ,H , and the buffer
size were set to 1000, 1000, and 64000, respectively, for
RawNet2.

The original RawNet2 weights are not published on the
Internet; therefore, for this experiment, we reproduced the
original model using the available implementation.4

V. RESULTS
In this section, we analyze the results of the experiments
described in Section IV for the CM systems, RECAPA-
TDNN, and our streaming-friendly SASV solution.

A. CM SYSTEMS
A comparison of the RawSpectrogram-based models with
the original architectures is presented in Table 2 in terms
of the EER and minimum tandem detection cost function
(min t-DCF, [4], [50]) on the evaluation set of the LA partition
of the ASVspoof 2019 dataset. We also show the number
of model parameters, FLOPs for processing a 4-second-long
utterance (offline mode), and FLOPs for updating the prob-
ability with a new chunk from the stream (streaming mode).
FLOPs were counted using fvcore.5 RawLSTM, RawGRU,
and RS-AASIST were trained according to Section IV-A. For
offline models, the complexity of updating the probability
with a new window is equal to that required for processing
the entire buffer (see Section IV-B). RawNet2 and AASIST
are applied to padded or cropped waveforms of a 4-second
duration in the original papers [7], [8]; hence, the buffer for
these models is a 4-second-long raw audio. It must be noted
that such a buffer length means that there is no difference in
the FLOPs for a probability update in the streamingmode and

4https://github.com/eurecom-asp/rawnet2-antispoofing
5https://github.com/facebookresearch/fvcore, v.0.1.5

for processing a single utterance in the offline mode. We also
included the metrics for our reproduced version of RawNet2.

RawLSTM and RawGRU achieve similar quality in terms
of EER and 12.5% relevant improvement from their base
model, RawNet2. In addition, we can see that RawLSTM
and RawGRU have more than 17 times fewer parameters
and FLOPs, which are needed for processing 4-second-long
audio. However, the min t-DCF is slightly worse. The metrics
for our reproduced RawNet2 are close to the original ones.

In contrast, RS-AASIST and TAASIST require almost
twice as many FLOPs for a 4-second-long utterance as
AASIST, but they have 70K (23.6%) and 80K (26.9%)
fewer parameters, respectively. Performance in terms of both
metrics has decreased; however, they are close to the three-
run average of 1.13 and 0.0346 for the EER and min t-DCF,
respectively, which were reported in the original AASIST
paper [8]. This means that this is a matter of a random
initialization seed.

The column for the FLOPs for the probability update
shows the effectiveness of the RawSpectrogram approach.
RawNet2 and AASIST require large buffers and, thus, many
computations. The optimization technique for TAASIST,
described in Section III-C, leads to a considerable decrease
in the computational costs. All our proposed models have
significantly faster (more than ten times) output score updates
than their base architectures.

An ablation study on the necessity of data augmentation
is presented at the bottom of Table 3. It is clear that both
RawLSTM and RawGRU have a substantial deterioration in
terms of both metrics when they are trained without Pitch
Shift and Time Stretch.

Fig. 3 shows the results of the experiment described in
Section IV-C. We can see that although our models can start
processing utterances with only a chunk of size W , they still
require many windows to achieve satisfactory performance.
This was expected because a large temporal context is
required for robust spoofing detection. Offline models with
buffering also suffer from this issue.

The metrics for AASIST, TAASIST, and reproduced
RawNet2 in Fig. 3 all fall to their lowest levels at first and
then show a clear rise, having large gaps between their best
and latest EERs. Thus, we cannot rely on the assumption that
offline solutions achieve the same performance when they are
applied in streaming. It must be noted that AASIST and the
reproduced RawNet2 show much worse performance over
time than our TAASIST. The plots for the native streaming
models are much more stable. The experiment shows why
we need streaming-friendly anti-spoofing systems and cannot
rely on offline systems.

Finally, we compare our native-streaming CMs with
solutions from the literature, which are discussed in Section II
and can be regarded as streaming-friendly. The authors of
[19] did not evaluate their model on the LA task; there-
fore, their models were not considered in the comparison.
Table 4 shows the results in terms of the EER and min
t-DCF on the LA partition of the ASVspoof 2019 dataset.
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TABLE 2. RawSpectrogram-based models compared to the original architectures. The offline mode in the FLOPs column is shown for a 4-second-long
audio. The streaming mode is shown for one probability update.

FIGURE 3. EER change with each new chunk from the stream for RS-AASIST, TAASIST, AASIST (the first and the second plots) and RawLSTM, RawGRU
(the third and the fourth plots) on the evaluation set of the LA partition of the ASVspoof 2019 dataset. RawNet2 is reproduced.

TABLE 3. Ablation experiments considering the effectiveness of
augmentation techniques for RawRNN-type models.

TABLE 4. RawSpectrogram-based native streaming CMs compared with
known streaming-friendly models.

LC-GRNN is much worse in terms of EER; however, its min
t-DCF is close to that of RawGRU and is better than that
of RawLSTM. Thus, our RawSpectrogram-based models are
more lightweight or perform better than solutions from the
literature.

B. ASV SYSTEM
A comparison of RECAPA-TDNN with different versions
of ECAPA-TDNN is presented in Table 5 in terms of the
EER and minimum Detection Cost Function (minDCF, [51])
computed according to the Vox1-O benchmark [52] on the
VoxCeleb1 dataset [53]. Similarly to the CMs, we show
the number of parameters and FLOPs in different modes.

The EERs were calculated using Matrix Score Averaging
(MFA, [54]) without AS-norm [55] with 3-second-long
segments. We cannot assume that the quality of ECAPA-
TDNN will be the same with an input of a different length;
therefore, for streaming mode, we set the buffer size to
3 seconds and compared the FLOPs in offline mode on a
3-second-long utterance.

We can see that RECAPA-TDNN has 0.54M (3.50%)
fewer parameters and processes chunks twice as fast as the
original ECAPA-TDNN with 1024 channels. Our model is
slightly slower in the offline mode and has worse quality
in terms of both metrics. Nonetheless, RECAPA-TDNN
significantly outperforms ECAPA-TDNN with 512 channels
in terms of EER and minDCF while still being more
optimal in the streaming mode. Hence, our ASV solution is
sufficiently robust. The smaller version of ECAPA-TDNN
surpasses our architecture only in terms of the number of
parameters.

We also compared our system with RawNet [20], which
can be regarded as native-streaming after optimization of
convolutions. The results are presented in Table 6. The
authors reported only the EER for their model. We used a
publicly available implementation to calculate the number of
parameters and FLOPs for offline mode.6 Although RawNet
is slightly smaller and requires fewer FLOPs in the offline
mode, its quality dramatically degrades relative to that of
RECAPA-TDNN. Optimization of convolutions is a difficult
engineering task that we have not done in this paper, as it
might not be worth it with such EER.

6https://github.com/Jungjee/RawNet
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TABLE 5. Our RECAPA-TDNN compared with the 512 and 1024 channels versions of ECAPA-TDNN. The offline mode in the FLOPs column is shown for a
3-second-long audio. The streaming mode is shown for one probability update.

TABLE 6. Our RECAPA-TDNN compared with RawNet, which could be regarded as streaming-friendly after the application of engineering techniques. The
offline mode in the FLOPs column is shown for a 3-second-long audio.

TABLE 7. Our RawSpectrogram-based SASV system compared with the systems from [25]. The best values are in bold. Solutions are denoted in the
Method-X-Y form, where X denotes the f function type (L for linear and S for sigmoid) and Y whether to do fine-tuning or not (I – direct inference,
F – fine-tune).

TABLE 8. Ablation experiments considering different choices of layers to tune for a RawSpectrogram-based SASV system. The type of the solution is
denoted in the X-Y form, where X denotes the f function type (L for linear and S for sigmoid) and Y whether to do fine-tuning or not (I – direct inference,
F – fine-tune).

C. SASV SYSTEM
We compared different setups of probabilistic fusion for
our RawSpectrogram-based models with the corresponding
combinations of ECAPA-TDNN and AASIST from [25]. The
results are presented in Table 2 in terms of SASV-EER,
SPF-EER, and SV-EER on the development and evaluation
sets of the LA partition of the ASVspoof2019 dataset. The
first metric is general and defines the capability of the model
to distinguish both non-target attacks and synthesized speech.
The second one is similar to the EER from Section V-A

but does not consider impostor utterances. The last one
checks how the solution discriminates between the target and
non-target speech.

The PR-X-Y models from [25] performed the best
with the fine-tuning approach. In contrast, the direct
inference of our RawSpectrogram SASV system leads to
lower EERs, surpassing the corresponding base offline
solution by a large margin. Raw-Spectrogram-L-F signif-
icantly outperforms PR-L-F in terms of all metrics. Sim-
ilarly, RawSpectrogram-S-F performs better than PR-S-F.
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Whereas the best quality is achieved when the ASV and CM
are considered independent, fine-tuned models have the least
SASV-EER on the development set and the largest on the
evaluation set. Hence, fine-tuning results in overfitting for
RawSpectrogram-based models.

The best SASV-EER is 0.69% by RawSpectrogram-L-I,
which is a 55% relevant improvement from the top system
PR-S-F proposed in [25]. Thus, the results confirm that both
RECAPA-TDNN and RS-AASIST can achieve the quality of
the original offline models and even surpass them.

For our SASV system, we set the output of GRU as
the embedding for our RS-AASIST and not the last hidden
activation. Therefore, we fine-tuned the entire classifier
in RawSpectrogram-S-F and RawSpectrogram-L-F, as dis-
cussed in Section IV-A. However, MLP with several layers
can be too much for tuning, which may be the reason for
overfitting. We did an ablation study in which we compared
two approaches: tuning the entire classifier and tuning only
the last FC-layer, as was done in [25]. The results are
presented in Table 8. We can see that all metrics have
dramatically worsened, except the SPF-EER, which slightly
decreased from 0.47% to 0.45% for the linear function
and from 0.56% to 0.50% for the sigmoid function. Thus,
overfitting is a general problem for the fine-tuning approach
for our models.

VI. CONCLUSION
In this paper, we proposed a novel approach for audio
processing called RawSpectrogram. It allows the conversion
of offline models into streaming-friendly models, preserving
the quality of the original architectures. At the same time,
our method reduces the number of model parameters and
significantly speeds up the predicted probability update
in the streaming mode. We proposed novel architec-
tures: RawLSTM, RawGRU, RS-AASIST, TAASIST, and
RECAPA-TDNN, which successfully employ the RawSpec-
trogram approach. However, RS-AASIST, TAASIST, and
RECAPA-TDNN still require many FLOPs when they are
applied to a finite utterance. Unlike the RawRNN-type
models, we did not change AASIST a lot when we used it
as EmbNet. A better choice of hyperparameters may enhance
the RS-AASIST and TAASIST architectures. Nevertheless,
TAASIST is the most successful CM that uses Transformer
and is trained via supervised learning. For RECAPA-TDNN,
a better investigation into the reasons for overfitting could
lead to a faster ASV.

Our SASV system, RawSpectrogram-L-I, significantly
outperforms the corresponding offline solutions and is the
first native streaming system that appeared in the voice
anti-spoofing literature.

CM and ASV tasks apply different architectures; however,
we demonstrated that our RawSpectrogram approach works
regardless of a task type and is compatible with both
raw and time-frequency-transformed inputs. It makes us
believe that the proposed EmbNet representation of an
utterance well characterizes the audio before passing to RNN.

Therefore, with a proper choice of EmbNet architecture, the
RawSpectrogram method can be applied in other speech-
related tasks.
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