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ABSTRACT Video Surveillance Systems (VSSs) are used in a wide range of applications including
public safety and perimeter security. They are deployed in places such as markets, hospitals, schools,
banks, shopping malls, offices, and smart cities. VSSs generate a massive amount of surveillance data, and
significant research has been published on the use ofmachine learning algorithms to handle surveillance data.
In this paper, we present an extensive overview and a thorough analysis of cutting-edge learning methods
used in VSSs. Existing surveys on learning approaches in video surveillance have some drawbacks, such
as a lack of in-depth analysis of the learning algorithms, omission of certain methodologies, insufficient
critical evaluation, and absence of recent learning algorithms. To fill these gaps, this survey provides a
thorough examination of the most recent learning algorithms for anomaly detection. A critical assessment of
the algorithms including their strengths, weaknesses, and applicability as well as tailored classifications of
anomaly types for different domains are provided. Our study also offers insights into the future development
of learning techniques in VSS, positioning itself as a valuable resource for both researchers and practitioners
in the field. Finally, we share our thoughts on what we learned and how it can help with new developments
in the future.

INDEX TERMS Machine learning, anomaly detection, video surveillance systems, supervised learning
methods, unsupervised learning methods, semi-supervised learning methods.

I. INTRODUCTION
THE rapid progress in closed-circuit television (CCTV)
technology, along with advancements in its underlying infras-
tructure [53] – including network, storage, and processing
hardware – has led to the surge in surveillance cameras
globally. The projected worldwide market for surveillance
cameras is estimated to reach a value of US $ 39.13 billion
[106] by 2025, with a compound annual growth rate (CAGR)
of 8.17% from 2021 to 2025. These surveillance cameras
generate a lot of surveillance data. To make any sense of
this data, it not only needed to be properly managed but also
required to be continuously monitored and analyzed to detect
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anomalies. These anomalies, also known as abnormalities
[59], novelties [231], and outliers [30], are described as
instances of unusual characteristics or the occurrence of
typical features in unexpected places or moments.

In the context of surveillance systems, a variety of
video anomalies may need identification, including atypical
motions, uncommon behaviors, or items that are out of place
in a particular setting. Video anomaly identification is a
specialized area within the broader realm of understanding
behavior patterns [179]. We grouped these anomalies based
on their characteristics and described them in Table 1.

However, given the immense volume of real-time video
generated in video surveillance systems [195], manual
analysis to detect anomalies by human operators [53] is
not only inefficient and costly but also nearly impossible.
This situation creates a significant demand for automated
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and intelligent methods to analyze video footage and detect
anomalies.

Machine Learning (ML) [36] has emerged as a powerful
approach for automated video anomaly detection. Extensive
research has been conducted to explore and devise various
anomaly detection methods. These learning methods utilize
machine learning techniques that can be categorized into
three main types: supervised, unsupervised, and semi-
supervised. Figure 1 provides a visual representation of these
techniques, illustrating the breadth and depth of our survey
coverage.

Moreover, it is well known that the effectiveness of an
ML method relies heavily on input data quality, [158], which
forms the basis for learning normal and anomalous behaviors.
Due to the dependence of results yielded by learning methods
on the input data, scientists and researchers seek standardized
data sets to compare their suggested methods with existing
ones. Table 2 presents commonly used datasets for video
anomaly detection purposes.

The research on anomaly detection using ML techniques
is constantly evolving and undergoing significant changes.
Anomaly detection methods using ML techniques have been
surveyed for their accuracy, efficiency, and comparison in the
recent past [13], [24], [158], [188], [212]. We discuss some
of these survey papers and critically analyzed them in the
following section.

A. RELATED WORK
Kiran et al. [101] start by introducing the concepts of anomaly
detection and its importance in various application domains,
such as surveillance, quality control, and healthcare. They
discuss the challenges of detecting anomalies in videos,
including the complexity of video data, high computational
requirements, and the need for efficient and accurate models.
The paper analyzes various deep learning architectures,
such as AEs, CNNs, RNNs, and their variations, that have
been used for unsupervised and semi-supervised anomaly
detection. The authors discuss the advantages and limitations
of eachmethod, as well as the specific scenarios in which they
are most effective. Although the study emphasizes unsuper-
vised and semi-supervised deep learning techniques for video
anomaly detection, it does not investigate supervisedmethods
or other cutting-edge learning strategies thatmight be relevant
to the reader’s interests.

Raja and Sharma [158] aim to present a comprehensive
review of recent advancements and future prospects in
the domain of anomaly detection in surveillance video.
The authors present a well-structured analysis, focusing on
various aspects such as detection methods, algorithms, and
available data sets. The paper also introduces a new taxonomy
for crowd analysis and anomaly detection, which contributes
to the organization of existing works in the field. However,
the authors have not provided an in-depth analysis of the
strengths andweaknesses of specific algorithms andmethods.

Jebur and Hussein [91] has analyzed and summarized the
deep learning techniques employed in anomaly detection
(AD) for video streaming. The researchers have divided
anomaly detection into two primary categories including one
classification, which relies on the quantity of frames utilized
in the detection process, while the other focuses on the count
of anomalies within a given scene. They have evaluated the
efficacy of several well-known deep learning methods for
detecting anomalies and have organized them according to
their network type and architectural design. Additionally,
they provide a detailed list of benchmark data sets and
evaluation criteria employed to assess the efficiency of these
methods. However, they don’t critically analyze each method
for anomaly detection and consequently do not provide the
user with the idea of which method best suit their problem
domain.

Anoopa and Salim [13] present eight separate methods for
identifying anomalies in videos, half of which incorporate
deep learning approaches that use artificial neural networks
to extract features from input videos automatically. Rest
of them are classified under representation learning, which
extracts valuable information from input videos using prior
domain knowledge and applies dimensionality reduction to
decrease computational complexity. The paper investigates
deep learning methodologies, including the incremental
spatio-temporal learning strategy, unsupervised spectral
mapping, multi-layer perceptron, recurrent neural networks,
and genetic algorithm-based enhancement techniques. The
research examines various representation learning tech-
niques, including optical flow-based convolutional auto-
encoders, low-dimension descriptor-based detection, joint
video representation based on local motion, and low-rank
dictionary learning. However, the paper does not provide
in-depth explanations of these methods, limiting readers’
understanding of their practical implications.

Zhang and Zhang [221] carried out an extensive review
of various human action feature representation methods,
targeting a wide range of datasets. While their primary
emphasis is on human action recognition utilizing both
hand-designed features and deep learning techniques, the
survey does not cover the latest developments in deep
learning, such as Generative Adversarial Networks (GANs)
and Autoencoders (AEs), which are employed in surveillance
applications.

Javed and Jalil [90] presents a survey paper on the field
of video forensics. The authors aim to review the literature,
focusing on data extraction and forgery/counter forgery
techniques. They present observations and reporting on
current video data extraction, video forgery, and enhancement
techniques, along with a discussion on copy-move detection.
The authors also present a compilation of challenges faced
by users and researchers in video forensics, as well as a
discussion on different products used for evidence searching.
They highlight the need for a better understanding of Deep
Learning (DL) theory to determine the optimal number
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TABLE 1. Types of video anomalies.

of layers and the number of convolutional, recurrent, and
pooling layers. They also discuss the challenge of limited
datasets, which can result in decreased accuracy with DL
techniques. The emergence of Artificial Intelligence (AI) in
the Internet of Things (IoT) poses a challenge for forensics
investigations due to the complexity of IoT networks and
the vast amounts of data produced by heterogeneous devices
with finite memory, power, and processing capabilities.

The authors also discuss the need for real-time processing
of videos, which is currently a challenge for DL forensic
endeavors. In a related work, Abawajy et al. [3] studied
increasing threat of malware in Mobile-Internet of Things
applications on edge computing platforms is studied, with a
focus on identifying deceptive app behavior and exploring
a broader range of permissions. This research utilizes
behavioral analysis and a two-layer detection approach to
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FIGURE 1. Machine learning (ML) techniques used by anomaly detection methods covered
in this survey.

TABLE 2. Dataset used for video anomaly detection.

outperform other methods in detecting real mobile malware
IoT data.

Samal and Zhang [167] proposed model that integrates an
ABP-embedded Swin transformer with YOLOv3, offering
a promising enhancement over traditional YOLOv3 by
combining the benefits of both Swin transformer and
convolutional techniques. Attention-based pooling provides
a nuanced input analysis, while the Swin transformer
improves scalability and focus. Strategic placement of the
Swin transformer post the Darknet-53 block makes the
model more device-friendly. The integration of ABP directly
addresses disruptions caused by the linear embedding layer
at the start of the Swin transformer, ensuring better feature
interpretation. The model’s practicality is demonstrated
through its training on 13,500 annotated obscene images
and testing on an additional 3,000. However, sourcing from
copyright-free pornography sites may raise ethical questions.

Abbas and Hasan [4] introduces a deep learning method to
predict the future citation impact of academic articles in the
realm of Informetrics. Using temporal features, this method
aims to rank articles based on potential popularity. When
comparedwith existingmodels on various evaluationmetrics,
this new model generally outperforms them, especially in
the context of predicting future network behavior. Practical
applications range from identifying key influencers in social

networks to anomaly detection. However, challenges like
data biases, complexity, and lack of transparency exist. The
authors recognize these limitations and propose directions
for future research to enhance the model’s effectiveness and
interpretability.

Khan and Li [98] present the Growth-based Popularity
Predictor (GPP) model, designed to predict and rank web
content on online social media. The model considers the
unpredictable nature of people’s interest in online posts,
which can either grow or decay at various rates. The
GPP model’s effectiveness was evaluated using three real
datasets: Movielens, Facebook-wall-post, and Digg, and its
performance was measured against four information-retrieval
metrics. Results indicate the model can enhance prediction
accuracy by mapping scores to cumulative predicted item
rankings. Notably, the GPP model can forecast both already
popular items and emerging popular items. The datasets used
in this study offer insights into user interactions, modeled as
both monopartite and bipartite networks, helping to predict
item popularity.

Khan and Li [99] addresses the significant challenges
related to the stability analysis of power systems and
acknowledges the potential for further improvements. Tran-
sient disturbances in power systems are typically examined
through critical contingency simulations. Proper assessment
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of these disturbances is crucial for ensuring consistent power
supply and preventing generating units from desynchroniz-
ing. This study aims to create a swift and efficient online
tool for transient stability assessment, capable of categorizing
system operations and pinpointing critical system generators
during instability periods. The proposed solution is a
machine learning framework that utilizes a multi-feature
hybrid network, leveraging PhasorMeasurement Unit (PMU)
measurements to monitor system transient stability in real-
time. The framework has proven to be both fast and precise,
making it suitable for stability monitoring applications in
power systems.

In a recent study closely related to our work, Jebur
and Hussein [91] provides an overview of several real-
world applications of deep anomaly detection. However,
the study only provides a general description of selected
categories, which makes it difficult to understand depth of
approaches employed by contemporary methods and their
fundamental concepts. In contrast, our analysis seeks to
provide an in-depth understanding of the most recent deep
detection techniques, emphasizing their key aspects, inherent
capabilities, application areas, and constraints in relation to
video anomaly detection.

B. RESEARCH GAP – THE NEED OF THIS SURVEY
Although a number of studies have been dedicated to the
categorization and survey of the learningmethods in this area,
a few studies provide a comprehensive scoping review of the
field. Table 3 highlights the research gap and the need for our
work and summarizes the scope of our survey along with the
limitations of the other recent surveys on anomaly detection
in surveillance.

In the supervised learning, the study by Roka et al. [162]
noticeably lacks coverage on techniques such as Discrimina-
tive, Linear Regression, and Logistic Regression.Meanwhile,
the works of Kiran et al. [101] and Jebur and Hussein [91]
also do not delve into foundational supervised techniques like
Discriminative, Linear Regression, and Logistic Regression,
among others. The work by Rezaee and Rezakhani [161],
while comprehensive in some areas, neglects methodolo-
gies like Discriminative and Linear Regression. Similarly,
Suarez et al. [182] and Sreenu et al. [179] also fall short in
thoroughly examining the gamut of supervised techniques.
On the other hand, Behniafar et al. [24] omits a few critical
supervised approaches such as Discriminative and SVM.

In the semi-supervised learning paradigm, there is a
discernible gap in the literature. The works of Roka et al.,
Kiran et al., Sreenu et al., and Behniafar et al. do not appear to
touch upon any of the listed methodologies, including MIL,
OCC, and TL. Even though Jebur and Hussein and Rezaee
and Rezakhani do explore TL, they overlook MIL and OCC.

Turning our attention to unsupervised methodologies,
Roka et al.’s work, while including techniques like DNN, has
gaps in exploring autoencoder-based methods such as AE,
CAE, and CNN-AE. Similarly, Kiran et al. seems to sidestep

GANs, while Jebur and Hussein skips over architectures like
CAE. On a parallel note, Rezaee and Rezakhani doesn’t
delve deeply into generative methodologies such as GANs
or specialized autoencoders like CAE. Both Suarez et al. and
Sreenu et al. appear to have a similar limitation, missing out
on autoencoder variants like CAE. Lastly, Behniafar et al. also
misses an opportunity to discuss the nuances of autoencoder
architectures like CAE and CNN-AE.

Also, there are a wide range ML methods that can be
employed for anomaly detection, and choosing an appropriate
learning method for the given anomaly detection application
is a challenge. Therefore, there is a need for a detailed
review of the learningmethods w.r.t. their underlying learning
technique and their strengths and drawbacks. This work fills
this research gap and provides further insight by identifying
the future work required.

In sum, our work stands out as a holistic survey, bridging
the gaps found in various studies by offering an encompassing
examination of methods across all three paradigms: super-
vised, semi-supervised, and unsupervised.

C. METHODOLOGY
We employ a scoping reviewmethodology to survey the exist-
ing literature on anomaly detection in surveillance systems
providing a broad overview of the key concepts, theories,
sources, and evidence available. In contrast to systematic
reviews, which involve a rigorous assessment of the quality
and weight of the included studies, scoping reviews typically
do not assess the quality or weight of the literature considered.
Instead, it focuses on presenting a comprehensive view of the
research landscape. To gain access to a more comprehensive
research available on the topic, we select following
prominent representative search website used for academic
and research purposes: (a) ACM (www.acm.org/dl), (b) The
Internet Archive (www.archive.org), (c) ResearchGate
(www.researchgate.net), (d) Semantic Scholar (www.semanti
cscholar.org), (e) Google Search (www.google.com), and
(f) Google Scholar (scholar.google.com).

1) IDENTIFICATION
We employed keyword combinations including ‘‘anomaly
detection’’, ‘‘surveillance’’, and ‘‘machine learning’’ to
search for relevant existing work. Our emphasis was on
peer-reviewed research papers, cited research theses, and
articles published on reputable university, organization, and
company websites. A total of 839 articles were downloaded
and scrutinized, later managed using reference software
(Mendeley Desktop version for Windows).

2) EXCLUSION
Among these, duplicates were subsequently eliminated
through automated or manual processes. We also excluded
articles published before year 2015, with exceptions made
for seminal and highly-cited works. Articles that were
not cited or only self-cited were also excluded from our
consideration. The remaining articles underwent relevance
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TABLE 3. Comparison of our survey to the related work.

assessment based on their titles and abstracts, leading to the
exclusion of an additional unwanted studies.

3) ELIGIBILITY
Following this screening, 339 articles were chosen for
thorough reading and analysis. After a comprehensive review
of the full texts, 177 studies were ruled out due to their lack
of adherence to eligibility criteria concerning techniques used
for anomaly detection and relevance with our study.

4) INCLUSION
Ultimately, the screening process culminated in the inclusion
of 162 studies. Of these, 75% are from the last four years,
and over 30% are from the past one year alone. Out of all the
papers we reviewed, 15% are literature surveys and reviews.
The year-wise categorization of these papers can be found
in Figure 2.

D. CONTRIBUTIONS OF THE PAPER
Our objective is to pinpoint the constraints, inadequacies,
and disadvantages of prevalent video anomaly detection
approaches. We offer an exhaustive evaluation of anomaly
detection methods and classify anomaly types tailored
to the dataset for specific application domains. To our
knowledge, no prior research has presented such an in-depth
categorization of anomalies and their corresponding optimal
datasets. This paper not only scrutinizes recent academic

contributions but also critically assesses them. The emphasis
of this paper lies in the current tendencies in the field, and
its primary contribution differs from earlier reviews in this
domain. The key contributions of this review encompass:
1) Surveillance anomaly detection techniques has been

classified into three main groups: supervised learning
systems, semi-supervised learning systems, and unsu-
pervised learning systems.

2) A novel categorization of various types of anomalies,
enabling a more systematic review approach to anomaly
detection and analysis.

3) Provide a thorough evaluation of distinct anomaly
detection approaches concerning the datasets, which can
act as a valuable asset for professionals and researchers
alike.

4) Explain in detail the applications related to surveillance
for anomaly detection methods.

5) In-depth analysis of the drawbacks of anomaly detection
methods related to surveillance.

6) rovide a thorough assessment of distinct anomaly
detection approaches concerning the datasets, which can
act as a valuable asset for professionals and researchers
alike.

E. ORGANIZATION OF THE PAPER
This paper is organized as follows: Section II reviews
the supervised learning methods. Section III surveys the
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FIGURE 2. Publication year-wise distribution of the papers reviewed in this survey.

semi-supervised learningmethods explored, while Section IV
concentrates on literature survey of the unsupervised
learning-based anomaly detection methods. Section V
presents the key findings of this survey and provides
concluding observations.

II. SUPERVISED LEARNING METHODS
Supervised learning [194], [198], [200] employs a training
dataset to instruct models to produce the expected results.
The said dataset consists of inputs and their corresponding
accurate outputs, facilitating the model’s learning process
over a period. The model’s accuracy is evaluated through
a metric known as the loss function. The model adjusts
accordingly until the error reaches an acceptably low level.
The popular supervised methods and the state-of-the-art
research in the field are listed in Table 4.

A. SUPPORT VECTOR MACHINE (SVM)
Support Vector Machine, or SVM [157], [166], [192], is a
type of supervised learning algorithm predominantly used for
classification tasks, although it can also handle regression
tasks. The SVM algorithm functions by representing each
data item as a point in an n-dimensional space, where ‘n’
denotes the number of features. The value of each feature
corresponds to the value of a specific coordinate. Classi-
fication is achieved by identifying the optimal hyperplane
that distinctly separates the two classes. Among the many
potential hyperplanes that could be chosen to segregate the
two classes of data points, the goal is to find the one with
the maximum margin, which is the greatest distance between
the data points of both classes. By maximizing this margin
distance, the algorithm can classify future data points with
increased confidence. These hyperplanes serve as decision
boundaries, classifying data points based on which side
of the hyperplane they fall on. The dimensionality of the
hyperplane is contingent upon the number of features; for
instance, with two features the hyperplane is a line, while
with three it becomes a two-dimensional plane. Visualizing
the hyperplane growsmore complex as the number of features
exceeds three.

Ma and Sun [130] presents a novel model, SVM-L,
developed for anomaly detection in network traffic. This
model uses an innovative approach of treating raw URLs as
natural language, which are then converted into mathematical
vectors using statistical laws and natural language processing
techniques. These vectors are subsequently used as training
data for the kernel SVM classifier. The authors leverage
the dual formulation of kernel SVM and linear discriminant
analysis (LDA) to propose an optimization model for hyper-
parameter adjustment. The simplicity of the resulting one-
dimensional problem and the application of the golden
section method for its resolution are commendable. The
model was tested on three different datasets, demonstrating
the potential applicability of this novel approach. The use
of real-world datasets, from a well-known Chinese internet
company and campus network traffic, adds credibility to
their findings. However, the model’s requirement of a
pre-existing corpus of URLs for data transformation and
training is a significant limitation. This necessitates the
ongoing collection of emerging abnormal URLs, which
might not be feasible in certain scenarios. Also, the paper
does not discuss how the model performs in situations
where the URLs don’t exhibit characteristics included in the
training data. The authors’ proposal to address this issue
includes adding new abnormal URLs to the training samples,
updating lexicons, and retraining the classifier to detect new
types of abnormal URLs. This process seems to require a
substantial ongoing effort, potentially limiting the model’s
scalability and practical applicability. Furthermore, it would
be beneficial if the authors had compared their approach with
other existing methods in the literature.

Yang et al. [211] presents an in-depth exploration of
One-Class Support Vector Machines (OCSVM), a leading
approach for anomaly detection in machine learning, and its
application in Internet of Things (IoT). The authors acknowl-
edge the inherent challenges with conventional OCSVMs,
notably significant memory requirements and computational
expense, which can be prohibitive in real-world deployments
with large training sets. To address this, they propose two
approaches, OC-Nyström and OC-KJL, which incorporate
Nyström and Gaussian Sketching techniques, clustering, and
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TABLE 4. Popular supervised learning methods surveyed.

gaussian mixture models. These methods demonstrate sub-
stantial speedups in prediction time and space across various
IoT settings, without compromising detection accuracy. The
authors use a diverse range of IoT devices for testing,
including multi-purpose and simpler devices, and consider
both benign and malicious anomalies. Despite the promising
results, the authors recognize limitations such as model drift,
where a device’s normal behavior may change over time,
potentially leading to false positive detections. Additionally,
the authors highlight the need for output from these models to
be actionable and suggest potential areas for future research,
including the exploration of different data representations to
further improve efficiency.

1) APPLICATIONS
SVMs are widely employed in various fields including
surveillance, due to their ability to handle high-dimensional
data and provide accurate classification results. Examples of
SVM applications [17], [78] in surveillance comprise:

• Object detection [51]: SVMs are capable of detecting
and categorizing objects within a scene, including
people, vehicles, and various other items. This is
especially beneficial for identifying unauthorized indi-
viduals, overseeing traffic patterns, and pinpointing
suspicious objects or actions.

• Motion detection [220]: SVMs can be employed to iden-
tify motion patterns within video feeds. By examining
alterations in pixel intensities over time, SVMs can
recognize moving objects and classify them as needed.
This is advantageous for detecting unauthorized entries,
monitoring the movements of individuals or objects, and
assessing crowd dynamics.

• Physical Violence Detection [214]: SVMs can play a
crucial role in detecting physical violence in surveillance
systems. The core advantage lies in their ability to
understand signs of physical violence that may not

be readily apparent to human observers, thus enabling
timely intervention.

• Behavior analysis [169]: SVVM, as a supervised
learning model, can handle high dimensional data and
generate robust classification models based on input
features, making it an excellent tool for behavior pattern
recognition. It works by mapping input data to a
high-dimensional feature space where a hyperplane is
constructed to optimally segregate different behaviors.
This makes it particularly suitable for complex tasks
like emotion recognition, activity tracking, or customer
behavior prediction where distinct behavioral patterns
need to be identified from rich and diverse datasets.

• Mass Management [169]: SVM can be employed for
estimating crowd density and analyzing crowd flow in
public areas or at gatherings, providing valuable insights
for managing crowds and ensuring safety.

2) DRAWBACKS
SVM-based classifiers have gained popularity and shown
effectiveness in many applications, including surveillance.
Nevertheless, there are some potential challenges associ-
ated with employing SVM-based classifiers in surveillance
scenarios:

• Limited flexibility [68]: SVM-based classifiers might
exhibit less flexibility compared to other machine learn-
ing algorithms. Their primary focus is identifying the
optimal linear boundary between classes, which could
limit their ability to capture more intricate relationships
among features.

• Sensitivity to parameter tuning [68]: SVM-based clas-
sifiers come with multiple hyperparameters that require
proper tuning to achieve the best performance, including
the kernel function and regularization parameter. Sub-
optimal selection of these parameters could negatively
impact the classifier’s effectiveness.
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• Kernel choice matters [66]: Picking the right kernel
affects SVM’s performance, but finding the best one can
be tough.

• Sensitive to settings [124]: The performance of SVM
depends on the chosen parameters, and it’s hard to figure
out the best values.

• Needs a lot of memory [68]: SVM requires storing large
amounts of data, making it memory-intensive for big
data sets.

• Works best for two groups [68]: SVM mainly handles
two-group problems, although more groups can be
managed using other strategies.

• No probability explanation [68]: SVM doesn’t give a
probability-based reason for its decisions, which might
be a problem in some cases.

• Limited interpretability [174]: SVM-based classifiers
are sometimes considered as black-box models, as they
don’t offer clear explanations for their decisions.
In surveillance applications, comprehending the ratio-
nale behind a specific decision or classification is
crucial, which could be a limitation with these
classifiers.

In summary, SVM-based classifiers can prove valuable in
surveillance applications; however, it is essential to use them
carefully and in conjunction with other methods to address
their limitations.

B. RECURRENT NEURAL NETWORK (RNN)
Recurrent Neural Networks (RNN) [141] are a form of
supervised deep learning well-suited for handling sequential
data. RNNs differ from feed-forward neural networks due
to their looped connections, enabling them to retain hidden
states across time steps. As a result, RNNs excel at learning
patterns and dependencies within sequences.

Murugesan and Thilagamani [141] suggests an anomaly
detection technique for surveillance videos. They called their
proposed method multi-layer perception recurrent neural
network (MLP-RNN). Their primary focus is on improving
accuracy and reducing computational time. Even though they
have use their method on various datasets and have compared
the results, the proposed method have some limitations.
The paper requires more detail on architecture, training
procedures, and other contributing factors, along with visu-
alizations and examples. Additionally, a clearer explanation
of evaluation metrics used for performance assessment would
help readers better understand the method’s strengths and
weaknesses.

Gautam and Henry [64] introduce an RNN-based deep
learning method for anomaly detection in time-series data,
by examining various LSTM and GRU combinations and
sequence directions, with the Adaptive Gradient (AdaGrad)
optimizer proving most suitable. The model’s precision is
slightly lower than other classifiers like Random Forest,
Naive Bayes, KNN, and Ensemble methods, but it utilizes
fewer features for each sub-dataset. However, the authors

don’t analyze the computational complexity or discuss the
interpretability of their model. Information on training time
and resource requirements would be useful, and addressing
the ‘‘black-box’’ nature of deep learning models could
enhance the paper’s value.

1) APPLICATIONS
RNNs can be employed in numerous applications related to
surveillance, some are:

• Anomaly detection [141]: RNNs have the ability to learn
and represent the standard operations or patterns within
a supervised environment or system. By recognizing
any variations from the anticipated behavior, RNNs
can aid in pinpointing anomalies or possible risks in
monitored information. This is valuable for uncovering
unexpected events, pinpointing unwarranted access,
detecting trespassers, or observing questionable actions.

• Video analysis [141]: RNNs are effective in evaluating
video content within monitoring systems, enabling
object detection, event categorization, and identification
of actions or movements. By examining video frames
in a sequence, RNNs can grasp time-related data
and correlations, resulting in a more comprehensive
understanding of the scenario.

• Crowd analysis [11]: RNNs can be utilized for examin-
ing the actions of individuals in communal areas, like
airports, railway terminals, or sports arenas. Through
evaluating the motion tendencies and interpersonal
dynamics, RNNs contribute to detecting unusual activ-
ities, calculating the number of people in a space, and
forecasting possible areas of overcrowding.

• Object tracking [11], [67]: RNNs can be integrated
with additional deep learning techniques, such as
Convolutional Neural Networks (CNNs), to monitor
items or people in video footage. By leveraging the
time-related relationships in the information, RNNs can
assist in preserving the continuity of object identities
throughout the sequence.

• Audio surveillance [47]: RNNs can be employed for
handling and examining audio information gathered
from monitoring systems. They can identify particular
sounds like gunshots, glass shattering, or distinguish dis-
tinct noises or vocalizations that could signal potential
hazards or unlawful actions.

• Predictive analytics [28]: RNNs can be utilized for fore-
casting upcoming occurrences by examining previous
monitoring data. This enables security staff to gain
insights into possible threats or incidents, empowering
them to implement preemptive strategies to avert or
minimize potential issues.

• Multi-modal data fusion [92]: RNNs can be used to
combine and evaluate information from various inputs or
forms, including video, audio, and sensor data, offering
a more complete view of a supervised setting.
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2) DRAWBACKS
Overall, while RNNs [115], [145], [156] can be effective
in surveillance systems, there are the following potential
drawbacks of using RNN-based classifiers in surveillance:

• Computationally expensive [149]: RNNs necessitate
substantial computational resources for training and
execution, particularly when working with extensive
datasets. This can pose a considerable obstacle for
surveillance systems that must process vast quantities of
data in real time.

• Complicated activation function [149]: When employ-
ing ReLU or tanh as activation functions, processing
extensive sequences becomes highly time-consuming.

• Limited memory [77]: RNNs possess a restricted
memory capability, which may hinder their ability to
recognize long-range relationships within the informa-
tion. This limitation can pose challenges for monitoring
systems that require pattern detection over prolonged
duration, such as tracing an item or individual’s
movement throughout a time span.

• Noise Intolrence [116]: RNNs can be vulnerable to
noises in input information, a typical concern in
monitoring situations where external elements, like
lighting conditions or weather, can impact the quality of
captured images or videos.

• Inflexibility with variable-length sequences [215]:
Although RNNs can manage sequences of varying
lengths, designing them to excel across a broad spectrum
of sequence durations can be demanding. This factor
may influence their effectiveness in surveillance sys-
tems, where the duration of relevant events may vary.

C. LOGISTIC REGRESSION
Logistic regression [138] is a statistical method used to
analyze and predict the relationship between a binary
outcome (two possible results) and one or more input features
or variables. In simple words, it helps to determine the
probability of an event occurring (e.g., success or failure, yes
or no) based on certain factors or characteristics. Logistic
regression works by converting these probabilities into a
continuous range of values (usually between 0 and 1) using
a mathematical function called the logistic function. This
allows for easier interpretation and prediction of the binary
outcome based on the given input features.

Wang and Cherian [200] put forth a different model-based
strategy using logistic regression. Their approach is based
on the idea that among the numerous deep features created
from short video segments, at least one feature can accurately
describe the video. They theorize that a hyperplane might
separate this unknown yet distinguishing feature from the
rest. However, their SVM-based pooling method struggles
with large datasets, and their approach’s performance drops
when the number of features surpasses the training data.

Guo et al. [71] introduce a deep learning approach centered
on discriminative multiple spatial-spectral feature fusion.

Their proposed method relies on a CNN-based technique
for Hyperspectral Image (HSI) classification. They train
shallow layers to collect comprehensive information, which is
then expertly combined with semantic details extracted from
deeper layers. Nevertheless, their model could be enhanced
by incorporating a more extensive array of spatial spectral
features.

1) APPLICATIONS
Logistic regression is widely employed in monitoring
systems due to its ability to predict the likelihood of a
specific event or result. Various uses of logistic regression in
surveillance contexts are as follows:

• Fraud Detection [138]: Logistic regression enables the
estimation of the likelihood of a transaction or activity
being fraudulent by utilizing historical records and asso-
ciated risk elements. This assists financial institutions in
identifying and averting fraudulent behavior.

• Security Surveillance [16]: Logistic regression is capa-
ble of estimating the chances of a security com-
promise or breaches, considering behavioral trends
and additional risk aspects. This allows security pro-
fessionals to identify and mitigate possible security
occurrences.

• Traffic Surveillance [150]: Logistic regression is use
to model the probability of traffic incidents and rules
violations based on environmental and behavioral fac-
tors. This data helps in pointing out areas where risk
is more and introduce specific measures to decrease the
frequency of accidents and violations.

2) DRAWBACKS
Logistic regression has the following limitations when used
for surveillance applications:

• Assumes independence of observations [109]: In logistic
regression, one of the key assumptions is the indepen-
dence of observations, also known as the independence
of errors. This means that the residuals (errors) of
the predicted responses should not be correlated. Each
observation in the dataset should represent a separate
and distinct case. The problem with violating this
assumption is that it can lead to biased estimates of the
regression coefficients and the standard errors, which,
in turn, can lead to incorrect inference.

• Overfitting [163]: If there are fewer observations than
features, using logistic regression is not recommended,
as it can result in overfitting.

• Logistic regression may not be able to grasp intricate
relationships [163] as effectively as more powerful and
compact algorithms like Neural Networks can.

• Limited to binary outcomes [61]: Logistic regression is
constrained to modeling binary outcomes, which may
not be appropriate for all surveillance applications. For
instance, it might not be useful for predicting the severity
of a disease.
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• Limited to linear decision boundaries [61]: Logistic
regression is a linear classifier, meaning that it uses
a linear decision boundary to separate classes. This
linearity is in the parameters of the model - it assumes
a linear relationship between the logit of the outcome
variable and the predictor variables. With the help
of feature engineering, such as creating polynomial
or interaction terms, logistic regression can capture
non-linear relationships as well. However, this process
involves manual feature creation and might not always
be straightforward or possible for high-dimensional
data.

D. LINEAR REGRESSION
Linear Regression [103], [200], [212] is a basic statistical
method that helps to understand the relationship between a
dependent variable and one or more independent variables.
In simpler terms, it’s a way to predict an outcome (like a price
or a score) based on certain factors or inputs (such as size
or time). Linear regression works by finding the best-fitting
straight line, called the regression line, that represents the
relationship between the variables. The goal is to minimize
the differences or errors between the actual data points and
the predicted points on the regression line.

In surveillance, linear regression can be applied to
analyze and predict relationships between various factors
and outcomes. In simple terms, it helps to estimate how
one or more features impact a specific outcome, like the
number of people in a room or the temperature of an area,
or noise levels. By finding the best-fitting straight line that
represents these relationships, linear regression can assist in
predicting outcomes and trends in surveillance situations.
This information can then be used to make informed
decisions, improve security, and optimize the performance of
surveillance systems.

1) APPLICATIONS
Linear regression has numerous uses in the realm of
surveillance, focusing on the examination and forecasting of
data trends to improve security and observation initiatives.
Some of these applications consist of:

• Linear regression is capable of examining and forecast-
ing crowd density [212] by considering multiple factors,
including time, location, and associated events. This data
is valuable for managing public areas, devising security
strategies, and efficiently distributing resources during
events with high attendance.

• Anomaly detection: Linear regression can be utilized to
identify unusual trends or actions [210] in monitoring
data by examining the connections between various
factors. The model can detect deviations from known
patterns, which may indicate potential security risks or
questionable activities.

• Object tracking: In surveillance systems [104], linear
regression can be employed to estimate the motion of

entities or people. The model can project future paths by
assessing the historical locations of a subject, thereby
facilitating more effective tracking and observation.

• To guarantee optimal performance, survelliance systems
necessitate routine updates. Linear regression can be
utilized to predict [185] maintenance needs, taking
into account aspects such as usage, degradation, and
environmental factors. This enables the optimization of
maintenance planning and reduces system downtime.

• Camera placement optimization: Linear regression is
useful for establishing the connection between camera
positioning and coverage effectiveness. Examining ele-
ments such as the quantity of cameras, their placement,
and their viewing range, the model can estimate the ideal
camera locations to enhance coverage while reducing
areas with limited visibility.

• Traffic Monitoring: Linear regression [139] can be
employed to monitor traffic and congestion by con-
sidering aspects such as time, weather conditions, and
road structure. This data can aid in more efficient traffic
management, alleviating congestion, and enhancing
overall transportation effectiveness.

2) DRAWBACKS
Linear regression [132] can have several drawbacks when
used for surveillance applications, including:

• Non-linear relationships [185]: In the context of surveil-
lance, using linear regression could be problematic
when the relationship between the independent and
dependent variables is not linear. Linear regression
is an algorithm based on a linear approach where a
change in the predictor leads to a proportional change
in the outcome variable. If this assumption is violated
(i.e., the relationship between the variables is nonlinear),
the model might lead to inaccurate predictions and
conclusions.

• High dimensionality [58]: High-dimensionality in data
can pose substantial challenges for linear regression
models in surveillance. The term ‘‘high-dimensionality’’
usually refers to a situation where the number of features
(independent variables) in a dataset is quite large. Issues
arrises are Overfitting, Multicollinearity and Curse of
dimensionality.

• Incomplete data [132]: Surveillance data could be
incomplete or have missing values. Linear regression
necessitates comprehensive data for every variable
in the model, complicating its usage in surveillance
applications.

• Assumption of normality [185]: Linear regression also
presumes that residuals (the discrepancies between pre-
dicted and actual values) follow a normal distribution.
If this assumption is not satisfied, the results might be
unreliable.

• Causation versus correlation [26]: In surveillance appli-
cations using linear regression, it’s important to exercise
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caution when interpreting correlation between variables.
A key tenet is that correlation does not imply causation;
a relationship between variables, such as the number of
security cameras and reported crimes, does not necessar-
ily mean one directly causes the other. Multicollinearity,
a condition where independent variables are highly
correlated, can confound the individual effects of each
variable, complicating interpretation and prediction.
Spurious correlation, where two variables appear related
but have no causal connection or are linked through
a third variable, can also mislead analyses. Therefore,
careful examination of data relationships is essential in
surveillance studies using linear regression.

• Limited to continuous variables [183]: Linear regression
is a statistical modeling technique that predicts a contin-
uous dependent variable based on one or more indepen-
dent variables. Therefore, it’s indeed limited to dealing
with continuous variables as the output. However, the
independent variables in a linear regression model can
be either continuous or categorical. When categorical
variables are used, they are typically converted into
dummy variables (also known as indicator variables) for
inclusion in the model. A dummy variable is a binary
variable that indicates whether a certain category of a
categorical variable is present or not.

E. LONG SHORT-TERM MEMORY (LSTM)
Long Short-Term Memory (LSTM) [121] is a type of
RNN architecture designed to handle sequential data and
effectively capture long-range dependencies within it. Unlike
standard RNNs, LSTMs are better at remembering informa-
tion from earlier time steps due to their unique cell structure
that helps mitigate the vanishing gradient problem. This
problem occurs when gradients become too small during
training, causing RNNs to struggle with learning long-term
dependencies.

LSTMs consist of memory cells and three gates: input,
forget, and output gates. These gates regulate the flow of
information within the LSTM cell, allowing it to selectively
remember, forget, or update the cell’s internal state based on
the input sequence. As a result, LSTMs can learn complex
patterns and dependencies in time series data, making them
highly suitable for various applications, including natural
language processing, speech recognition, and time series
prediction.

Ullah et al. introduces a highly effective anomaly
detection framework in their study [190]. This framework
employs a deep features-based approach with minimized
time complexity. Features are extracted from a sequence of
frames based on space and time. These characteristics are
then inputted into an already trained convolutional neural
network. The deep features that are extracted are further
processed by a multi-layered Bi-directional LSTM model,
efficiently pinpointing anomalies and unusual patterns. The
proposed application domain focuses on detecting anomalies
in intricate surveillance scenarios within smart cities.

Hussain and Muhammad proposes an MVS framework in
their study [85], where multi-view videos are divided into
segments based on the presence of humans and vehicles.
These segments, accompanied by a timestamp, are stored
in a look-up table. After processing, deep features are
extracted and sent to an LSTM, which is trained to generate
probabilities according to informative and non-informative
categories. The final summary consists of data exhibiting the
highest probability of informativeness. However, their current
approach utilizes a complicated and resource-demanding
CNN model. This could be substituted with a streamlined
deep-learning approach that provides comparable or even
improved accuracy.

1) APPLICATIONS
LSTM networks, a type of RNN, are highly useful in
surveillance systems due to their ability to process sequential
data and recognizing patterns over time. They can effectively
detect anomalies or unusual activities by learning from
temporal dependencies in surveillance video sequences.
Major applications are:

• Crowd Behavior Recognition [179]: LSTM networks
are capable of examining group actions within surveil-
lance footage, enabling the detection of potential haz-
ards like congestion, stampedes, or aggressive events.
This proves valuable in public areas such as railway
stations, malls, and sports arenas.

• Gesture Recognition [75]: LSTM networks possess the
ability to identify human gestures in video surveil-
lance data, proving beneficial for uses such as sign
language interpretation, activity recognition, and behav-
ioral assessment.

• Fall Detection [32]: Utilizing LSTMs for detecting falls
or mishaps in surveillance footage is particularly advan-
tageous in overseeing elderly or susceptible individuals
within care facilities.

• Recognition systems [46]: By integrating LSTM net-
works with convolutional neural networks, recognition
in surveillance footage becomes possible, aiding in
the identification of recognized offenders or lost
individuals.

• Observation on traffic behavior: [9]: LSTMs can be
utilized for evaluating traffic trends and forecasting
traffic bottlenecks or collisions, thereby enhancing
traffic control and security measures.

• Predictive Maintenance [55]: LSTM networks can
anticipate potential equipment malfunctions or servicing
requirements by examining sensor information from
monitoring systems, minimizing downtime and boosting
overall system dependability.

• Detection of unauthorized access [121]: By examining
movement patterns, LSTM networks contribute to the
identification of unauthorized entry into protected zones
or computer infrastructures, strengthening the safety
measures of both physical and digital settings.
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2) DRAWBACKS
LSTMs gained popularity for their ability to address the
vanishing gradient issue, but they do not eliminate it entirely.
This is because data must still pass from one cell to another
during evaluation, and the cell structure has become more
complex due to additional features, such as forget gates.
These intrinsic limitations of LSTM impose some drawbacks
when used for surveillance systems including:

• Hardware Inefficiencies [8]: These networks demand
significant resources and time for training before
they can be applied in real-world scenarios. LSTMs
require high memory bandwidth because of the linear
layers in each cell, which can lead to hardware
inefficiencies.

• Enhanced Long-Term Memory [8]: As data mining
advances, there is a growing need for models capable of
retaining information for longer periods than LSTMs.

• Impact of Weight Initialization [8]: LSTMs are sensitive
to different random weight initialization, which can
cause them to behave similarly to feed-forward neural
networks. Therefore, they tend to perform better with
smaller weight initialization.

• Interpretability [140]: LSTMs face challenges in com-
prehending the rationale behind their predictions, which
may pose issues in surveillance systems where clarity
and interpretability are crucial for maintaining account-
ability and confidence.

• Resource Intensive Nature [151]: A major drawback
of using LSTM in surveillance is its computational
intensity, particularly for real-time applications. Train-
ing and implementing LSTM models, especially on
high-resolution video data, can require significant
computational resources and time, which may not be
feasible for real-time surveillance systems.

F. SUMMARY OF SUPERVISED LEARNING METHODS
In this section, we provided a comprehensive overview
of several supervised methods, emphasizing both their
applications and inherent limitations. The limitations and
strengths of supervised learning methods are listed in Table 5.

SVM are lauded for effectively classifying high-
dimensional data, especially in object and motion pattern
recognition. However, their shortcomings include sensitivity
to parameter tuning and a limited capacity for interpreting
intricate feature relationships. RNNs are adept at processing
sequential data, finding their niche in video analysis and
anomaly detection, yet they grapple with computational
demands, especially for expansive datasets. Logistic Regres-
sion, ideal for predicting binary outcomes, is frequently
applied in fraud detection and traffic monitoring but faces
challenges stemming from presumptive independent obser-
vations and potential overfitting. LSTM networks, designed
to process sequences with extended dependencies, are
instrumental in recognizing crowd behaviors. However, they
often encounter hardware inefficiencies due to their intensive

resource demands. Finally, Linear Regression, employed for
tasks like crowd density forecasting, is primarily effective
with continuous variables but struggles with discerning
causation from mere correlation and handling non-linear
relationships. Each method, while potent in specific contexts,
presents unique challenges that warrant consideration.

III. SEMI-SUPERVISED LEARNING METHODS
Semi-supervised learning plays a significant role in surveil-
lance applications, as it offers a practical approach to
anomaly detection and pattern recognition. Obtaining a large
volume of labeled data for surveillance scenarios can be both
challenging and time-consuming, semi-supervised learning
leverages the available labeled examples alongside a more
extensive set of unlabeled data to train models effectively.
This method not only improves the accuracy and efficiency
of detecting irregularities, but also enhances the overall
performance of the surveillance system, ensuring a more
robust and reliable security solution. Popular semi-supervised
learning methods in the field are listed in Table 6.

A. MULTIPLE INSTANCE LEARNING (MIL)
Multiple Instance Learning (MIL) [34] is a unique form of
supervised learning that handles ambiguously labeled data.
Unlike traditional supervised learning where each instance
in the training set is explicitly labeled, in MIL, instances
are grouped into bags, each of which is assigned a label.
If a bag is labeled as positive, it means there’s at least one
positive instance in it, but we don’t know which one. On the
contrary, if a bag is labeled as negative, all instances within
it are negative. This kind of learning framework is valuable
in situations where it’s hard or impractical to obtain precise
instance-level labels, and it finds applications in diverse fields
like image classification, text categorization, and medical
diagnosis.

The paper by [184] presents a MIL method for detecting
anomalies in surveillance videos. This approach utilizes two
bags of video segments and assumes that each bag has at
least one anomalous instance. A deep MIL ranking loss
is employed during training, which penalizes the classifier
if the positive bag’s highest score is lower than that of
the negative bag. The proposed technique demonstrates
across a range of benchmark datasets for anomaly detection
in surveillance videos. This work also presents a novel
dataset for detecting anomalies in traffic surveillance videos,
featuring diverse abnormalities like accidents, traffic jams,
and road infractions. The technique comes with multiple
advantages such as efficient anomaly detection, noise-
resistant annotations, and scalability. Nonetheless, it also
exhibits some constraints like limited compatibility, high
computational requirements, and rigidity towards bag size.
A more flexible MIL algorithms that can be capable of
handling different durations of anomalous events and varying
levels of anomaly is more desirable.

Zhou and Song [230] introduces a semi-supervised strat-
egy for anomaly detection leveraging Autoencoders (AEs).
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TABLE 5. Summary of supervised learning methods surveyed.

The procedure involves extraction of features from videos
by using encoding network, which are then fed into an
AE for reassembly. The divergence in the reconstruction,
noted as the reconstruction error, acts as an anomaly score,
with larger discrepancies hinting at a higher probability of
anomalies. The study conducts an in-depth analysis of the

experimental outcomes and provides valuable understanding
about the strengths and weaknesses of the proposed tech-
nique. A notable limitation of this method is its substantial
computing resource requirements for training and testing
the model. Furthermore, the approach’s interpretability
is restricted, posing a challenge in real-life applications
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TABLE 6. Popular semi-supervised learning methods surveyed.

where understanding the model’s decision-making process is
crucial.

1) APPLICATIONS
The following examples of MIL usage highlight its adapt-
ability in tackling diverse issues in the realm of surveillance,
especially when confronted with weakly labeled or noisy
information.

• Temporal Activity recognition [84]: Temporal Activity
Recognition utilizing MIL is a dynamic application in
the field of surveillance. Instead of identifying activities
based on individual frames or instances, MIL enables
us to group sequences of frames into ‘bags’ and assign
labels to these bags. In the context of temporal activity
recognition, a bag would be labeled as positive if it con-
tains at least one instance of the targeted activity, even if
the exact frame or sequence exhibiting the activity isn’t
precisely identified. If the bag is labeled as negative,
it means that none of the instances within the bag display
the targeted activity. This approach is especially useful
in surveillance scenarios where activities of interest
are dispersed over time, and pinpointing the exact
frames representing the activity can be challenging. For
instance, in monitoring suspicious activities in a public
area, an activity such as an unattended bag may only
be significant when observed over a certain duration of
time.

• Anomaly detection [97]: Utilizing MIL in surveillance
data facilitates the detection of abnormal events by
categorizing normal activities as negative bags and
irregular activities as positive bags. In this context, a bag
represents a sequence of video frames or the attributes
derived from these frames. The objective is to identify
the specific instances within the bag that contribute to
its classification as an anomaly.

• Weakly supervised localization [34]: When faced with
coarse labels in video streams, MIL can be employed to
localize objects or regions of interest effectively.

• Adaptive compression: By leveraging the content of the
surveillance feed, MIL can enhance video compression
algorithms, leading to improved storage and transmis-
sion efficiency of video data. This optimization enables
more effective utilization of resources in terms of video
storage and transmission requirements.

• Privacy protection [34]: With MIL, models can be
trained to automatically obscure or conceal sensitive
details, like faces or license plates, within surveillance
footage. This strategy ensures adherence to privacy
norms by protecting personal identities and sensitive
information within the captured video.

• Predictive analytic [44]: Through the analysis of histor-
ical surveillance data, MIL can assist in forecasting and
mitigating future incidents, including criminal activity
or traffic accidents. By leveraging patterns and insights
derived from past data, MIL aids in predicting and
preventing potential occurrences for enhanced safety
and security.

• Customizable alerts [117]: Through training, MIL can
acquire the capability to identify and detect particular
events or behaviors of interest. When such incidents are
recognized in real-time, MIL can promptly send alerts to
security personnel, enabling timely response and action
to address the detected occurrences.

• Integration with other systems [184]: MIL can be
utilized to merge data from various surveillance systems
such as video, audio, and sensors, resulting in a
holistic comprehension of the monitored environment.
By fusing information from multiple sources, MIL
enhances the overall situational awareness and provides
a more comprehensive understanding of the surveillance
context.

2) DRAWBACKS
Despite its many benefits, there are also some potential
downsides to employ MIL as a machine learning strategy.
Some of the primary limitations of MIL encompass:

• Task/Prediction problem on Instance level vs Bag
Level [80]: In certain situations, such as finding objects
in images (for content search, for example), the goal
isn’t to categorize groups (bags), but to classify single
items (instances). The group label indicates whether
the item is in the image or not. It’s also important
to note that a method’s ability to classify bags may
not accurately reflect its ability to classify individual
items. For instance, when examining negative bags, just
one False Positive can lead to the misclassification of
the entire bag. However, in positive bags, this doesn’t
change the label and shouldn’t impact the overall group-
level loss.
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• Label ambiguity [34]: Label ambiguity naturally occurs
in weak supervision. In MIL, this ambiguity varies
based on the problem’s assumptions. With standard
MIL, there’s no confusion in negative bag labels.
More relaxed MIL assumptions introduce additional
ambiguity sources, such as label noise and differing label
spaces for instances and bags.

• Lack of standard benchmarks [69]: The absence of
widely accepted benchmarks and evaluation metrics for
MIL makes it difficult to compare the performance of
different algorithms and approaches, limiting progress
in the field.

• Limited ability to handle rare classes [34]: MIL might
encounter difficulties in dealing with classes that have
limited representation in the labeled data. The lack of
sufficient examples for these rare classes can hinder
the candidate models from learning an accurate and
representative model, leading to lower classification
accuracy.

B. ONE-CLASS CLASSIFICATION (OCC)
One-Class Classification (OCC) [172], also known as unary
or single-class classification, is a machine learning approach
that focuses on recognizing the patterns of a single class,
treating all other patterns as outliers. This technique is
particularly useful in situations where the data for one class
(the ‘‘normal’’ class) is abundant, but the data for the other
class (the ‘‘anomalous’’ class) is scarce or non-existent.

In the context of surveillance, one-class classification
can be particularly beneficial. For instance, consider a
surveillance system set up to monitor a secured area where
intrusion is rare. The system has abundant data on the normal
scenario, i.e., when no intrusion is happening. However, data
on the anomalous scenario, i.e., an intrusion, is limited or
even absent due to the rarity of such events. In such cases,
a one-class classifier can be trained on the ‘normal’ data to
recognize typical activity patterns within the secured area.
Once trained, it can classify any deviation from these normal
patterns as an anomaly, thereby detecting potential intrusions.
This allows the system to effectively monitor for unusual
activities, despite the lack of explicit ‘anomalous’ training
data.

Gautam and Mishra [63] introduce a novel method for
one-class classification, integrating deep learning and kernel
techniques. However, the study could be enriched by a more
comprehensive comparison of the newly proposed method
with established techniques, encompassing an in-depth
discourse on the pros and cons of each approach.

1) APPLICATIONS
OCC [23] is a machine learning approach that is designed
to identify and classify anomalies by learning the defining
features of a particular class, usually representing as the
‘‘normal’’ behavior. It aims to detect instances that deviate

from this learned norm. OCC has proven to be advantageous
in diverse surveillance applications including:

• Binary Classification Problem [172]: In a simple binary
classification problem involving two groups (positive
and negative), a standard machine learning algorithm
tries to distinguish between them and create a model
that can correctly classify new, unseen examples from
both groups. In a situation where a computer needs to
tell apart two groups, it can struggle if one group has
many more examples than the other. This is called class
imbalance and can make the computer biased towards
the bigger group. When the imbalance is extreme, it’s
hard to accurately identify the smaller, more important
group. One-class classification (OCC) can help solve
this problem.

• Anomaly detection [172]: The utilization of OCC allows
for the representation of typical behaviors or actions
within a specific setting. By pinpointing occurrences
that diverge from the established standard, this technique
enables the real-time recognition of uncommon or
dubious activities, which could potentially avert security
risks or violations.

• Cyber Security [60]: Within the realm of cyber-security,
OCC proves valuable for scrutinizing network traffic.
By familiarizing itself with habitual network operations,
this method can identify irregular traffic behaviors or
unsanctioned access efforts, thereby thwarting possible
cyber intrusions.

• Crowd behavior analysis [172]: OCC can be employed
to simulate standard crowd movements and recog-
nize abnormal behavior, like unexpected distress or
aggression. Such insights can assist law enforcement in
foreseeing and averting incidents that threaten public
safety.

• Unattended object detection [95]: OCC can be used to
pinpoint items that are out of place in a supervised
setting, like unattended bags or parcels, which may
present security hazards.

• Motion pattern analysis: By understanding customary
movement patterns within an observed zone, this
technique can be used to discern anomalies in motion,
such as lingering individuals or unauthorized access to
restricted areas.

• Video tampering detection [143]: Additionally, OCC
can be applied to detect irregularities in video data,
like atypical pixel arrangements or alterations in video
attributes, thereby maintaining the credibility of surveil-
lance recordings.

2) DRAWBACKS
Despite the utility of One-Class Classification (OCC) in
identifying anomalies in data, there are certain potential
limitations when implementing it in real-world scenarios.
Here are some of those constraints:
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• Learning From imbalance data [31]: One major limita-
tion of OCC is that it does not utilize outlier instances
(positive cases) during training and instead discards
them. This indicates that a reverse modeling approach
(e.g., treating the positive case as normal) might be
worth considering concurrently. Moreover, the one-
class classifier could serve as an input for a group of
algorithms, with each algorithm leveraging the training
dataset in distinct ways.

• Dependence on training data [31]: OCC focus on a single
class of interest, and create difficulties in forming a
comprehensive decision boundary, as it’s trained on a
single class. This could potentially make it harder to
differentiate between diverse instances within that class.

• Noise Sensitivity [172]: OCC algorithm is prone to
noise within the data, possibly resulting in imprecise
anomaly detection. It may necessitate the use of pre-
processing techniques to get rid of noise and outliers
before applying OCC algorithms.

• Limited interpretability with feature selection [202]:
Additionally, feature selection could indeed become a
challenging task in OCC. As it deals with only one class,
the features to be chosen are based solely on theminority
class, which may not always offer a comprehensive
understanding of the entire data landscape, as would be
the case in a traditional binary or multi-class scenario.

C. TRANSFER LEARNING
Transfer learning [12], [22] is a powerful technique in
machine learning, which allows a pre-trained model from one
task is used as a foundation for a second, related task. The key
idea here is to harness the wealth of knowledge accumulated
from the first task, typically rich in data, and apply it to
enhance the learning process of a second task, which might
be data-sparse.

This method is especially advantageous in the realm of
surveillance. Surveillance situations are often characterized
by unique settings, and gathering sufficient labeled data for
training can be a daunting, expensive, or even unfeasible
task. By applying transfer learning, surveillance systems can
benefit from pre-existing models that were trained on similar
tasks or environments, thereby conserving both time and
resources.

1) APPLICATIONS
Transfer learning [122] has various applications in surveil-
lance, particularly in tasks that involve object recognition,
activity recognition, and anomaly detection. Leveraging
pre-trained models from related tasks can improve the
performance of models in surveillance with limited training
data or computational resources. Here are some applications
of transfer learning in surveillance:

• Object detection [12]: TL is use to enhance the precision
of object recognition models in surveillance, aiding
in the identification of people, vehicles, or objects.

Models pre-trained on extensive datasets like ImageNet
or COCO, such as YOLO, Faster R-CNN, or SSD, can
be fine-tuned to detect specific objects pertinent to a
surveillance scenario.

• Public safety [22]: Transfer learning can be used in
public safety applications to detect unusual events, such
as fires, accidents, or other emergencies, allowing for
faster response by emergency services.

• Anomaly detection [122]: The detection of anomalous
events or activities is crucial in surveillance systems.
Transfer learning provides a potent tool for anomaly
detection, an essential task in many domains such as
cyber security, fraud detection, health monitoring, and
industrial fault detection. Anomaly detection involves
identifying unusual or suspicious patterns that deviate
from typical behavior.

• Computer Vision [178]: TL is used in pre-trainedmodels
from large-scale image recognition tasks for specific
applications such as object detection, facial recognition,
and image analysis.

• Crowd analysis [25]: Transfer learning can be highly
effective for crowd analysis, a task that involves
assessing and understanding the behavior, movement,
and other characteristics of crowds. This is typically a
challenging task due to the variability in crowd density,
behavior, and environmental factors.

2) DRAWBACKS
While transfer learning can offer numerous advantages in
several surveillance use-cases, it’s not without drawbacks too.
Below are some of the principal constraints:

• Domain discrepancy [222]: Domain discrepancy is a
critical challenge in transfer learning, where the source
and target domains are different in terms of data
distribution or feature space. This discrepancy may lead
to a decline in the performance of the model when
applied to the target task.

• Negative transfer [93]: Negative transfer is a scenario
in transfer learning where the knowledge transferred
from a source task adversely affects the performance
of the model on the target task. This situation typically
arises when the source and target tasks are dissimilar or
unrelated.

• Privacy concerns [206]: Pre-trained models by using
teansfer learning may raise privacy concerns. Tech-
niques such as differential privacy and federated
learning are increasingly being used to ensure privacy
preservation. These methods aim to provide a balance,
allowing models to learn useful representations for
transfer learning while ensuring sensitive information
remains confidential.

• Computational resources [144]: Transfer learning, can
help reduce the need for large amounts of labeled data,
obtaining a suitable pre-trained model or the data neces-
sary for fine-tuning, does pose some challenges when
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it comes to resource utilization. Pre-trained models,
particularly those used for complex tasks like image
recognition or natural language processing, can be quite
large, requiring significant computational power and
memory for both training and inference.

• Adaptability and Generalization [93]: Adjusting a pre-
trained model based on a small dataset could result
in overfitting, where the model becomes too tailored
to the training data and performs poorly on unfamiliar
data. This can pose significant issues in surveillance
scenarios, where the model is expected to cope with
diverse conditions like fluctuating light levels, different
camera positions, or alterations in object visuals.

• Not good for large datasets [52]: Transfer learning
may not yield significant improvements for tasks with
larger data sets. While transfer learning can enhance
the performance of machine learning models, its impact
may be less pronounced for tasks involving larger data
sets. Conventional learning methods begin with random
weights and adjust them until convergence is reached.
In contrast, transfer learning starts with a pre-trained
model. However, the presence of larger data sets results
in a greater number of iterations, which can diminish the
importance of the initial weights.

D. SUMMARY OF SEMI-SUPERVISED LEARNING
METHODS
We provided a detailed overview of several semi-supervised
methods, highlighting both their applications and limitations,
listed in Table 7.

The table provides insights into various semi-supervised
methods, underlining their applicability and inherent limi-
tations. MIL emerges as an adept technique in pinpointing
anomalies within surveillance videos by using labeled bags of
video segments. Its proficiency extends to managing incon-
sistent or absent labels and varied camera angles, making it
ideal for activities recognition, anomalies detection, object
localization, and outcome prediction across different levels.
However, MIL grapples with challenges like prediction
discrepancies between instance and bag levels, ambiguous
labels, an absence of standardized benchmarks, constraints in
managing infrequent classes, and complexities in addressing
intricate anomalies spanning multiple bags or instances.
Furthermore, the method’s efficiency is swayed by the choice
of bag or instance representation and the similarity measure.

OCC zeroes in on single-class pattern recognition, rel-
egating all other patterns as outliers. Its strength lies in
anomaly detection, especially when ‘normal’ class data is
profuse but ‘anomalous’ class data is sparse. Yet, OCC is not
without its limitations. The method struggles with learning
from imbalanced data, is heavily reliant on training data,
exhibits noise sensitivity, and offers restricted interpretability,
especially in feature selection.

Transfer Learning is recognized for leveraging a model
pre-trained on one task to bolster the learning for a related

task. Given the scarce labeled data and unique settings in
surveillance, this technique is invaluable. Still, it’s not with-
out its caveats. Transfer learning can be hampered by domain
discrepancies, the phenomena of negative transfer, privacy-
related issues, the demand for extensive computational
resources, challenges with adaptability and generalization,
and its unsuitability for vast datasets.

IV. UNSUPERVISED LEARNING
Unsupervised learning is a method in machine learning
that discovers patterns and structures in data indepen-
dently, without the need for labelled samples. Generally,
unsupervised learning techniques are effective for anomaly
detection when labeled data is scarce or too costly to acquire.
In anomaly detection, unsupervised learning methods can
identify unusual behavior or data points based solely on
input features. One of the potential category of unsupervised
learning is dimensionality reduction. This approach identify
data points with high reconstruction errors when projected
onto a lower-dimensional subspace. Principal Component
Analysis (PCA) and Autoencoders (AEs) are two popular
dimensionality reduction methods. PCA is used to find the
lower-dimensional subspace, while AEs are neural network
structures trained to reconstruct input data. In this paper,
we will be focusing on Dimensionality Reduction Methods
only.

A. PRINCIPAL COMPONENT ANALYSIS (PCA)
Principal Component Analysis (PCA) is a statistical pro-
cedure that uses an orthogonal transformation to convert
a set of observations of possibly correlated variables into
a set of values of linearly uncorrelated variables, known
as principal components. The goal is to simplify the
complexity of high-dimensional data while retaining trends
and patterns. It does this by transforming the data into fewer
dimensions, which are constructed as linear combinations
of the original variables. The first principal component
captures the most variance in the data, and each subsequent
component accounts for as much of the remaining variance
as possible, under the constraint that it is orthogonal
(uncorrelated) to the preceding components. By embracing
PCA, one can efficiently and persuasively analyze complex
datasets, thereby enabling more informed decision-making
and enhancing overall understanding.

Arivudainambi et al. [15] presents traffic classification
system by combining PCA with ANN, which can classify
greater number of attacks accurately in a significantly
reduced time frame. They have used dimensionality reduction
approach, which minimizes data size and, consequently, the
amount of data requiring training. However, it is essential
to acknowledge that reducing the number of variables in
a dataset may also lead to a decrease in result accuracy,
as anticipated. Furthermore, it is worth noting that as the
network size expands, the number of network weights
increases, potentially leading to overfitting.
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TABLE 7. Summary of semi-supervised methods surveyed.

Xiao and Huang [208] introduce an innovative online
robust method, named Online Moving Window Robust
Principal Component Analysis (OMWRPCA), designed to
handle both slowly and abruptly fluctuating subspaces. This
cutting-edge approach integrates hypothesis testing into an
efficient online PCA framework, enabling the identification
of change points within the underlying subspace. As a result,
the low-rank subspace and sparse errors are concurrently
predicted. The authors assert that OMWRPCA is a pioneering
algorithm that not only detects change points but also
computes RPCA in an online manner. This breakthrough
technique is the first of its kind to manage gradually and
abruptly shifting spaces online. Nonetheless, the results
indicate that OMWRPCA performs well in the context of
gradually changing subspaces, while its performance may
be hindered when subspaces change abruptly, as the updates
are not accurately applied. When the new subspace differs
significantly from the original one, online updates may not
be the most suitable choice, and the update process may take
some time to complete.

1) APPLICATIONS
PCA [152] is a dimensionality reduction technique that has
been widely used in various fields, including surveillance
systems. In the context of video surveillance, PCA can be
employed for several purposes, such as object recognition,

background modeling, and compression. Here are some
specific applications of PCA in surveillance:

• Background subtraction [72]: Background subtraction
is a fundamental step in video surveillance systems,
as it allows for the separation of foreground objects
(e.g., moving people or vehicles) from the static
background. PCA can be employed to model the
background by capturing the most significant variations
in the scene. The low-dimensional representation of the
background can then be used to identify and subtract
the background, allowing for efficient foreground object
detection.

• Scaling [27]: One of the assumptions underlying PCA
is that the data is appropriately scaled and centralized,
which can pose a challenge under certain conditions.
If the data is not scaled appropriately, the extracted
principal components may not accurately represent
the inherent patterns within the data. This potential
misrepresentation of data can be a notable limitation of
PCA.

• Anomaly detection [152]: PCA can be employed to learn
the normal patterns in a scene by capturing the principal
components of the training data. By comparing the
projections of new data onto the principal components,
the surveillance system can identify deviations from
normal patterns, which may indicate an anomaly or
suspicious activity.
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• Data compression: Video surveillance systems generate
large amounts of data that need to be stored and
transmitted. PCA can be used to reduce the dimension-
ality of the data while preserving the most important
information. This compression can significantly reduce
storage and transmission requirements, making the
surveillance system more efficient.

• VisualizeMultimedia data [27]: In the context of surveil-
lance, PCA is employed to visualize multidimensional
data, which can facilitate the analysis and interpretation
of complex patterns within the collected information.
This technique helps in reducing the dimensionality
of the dataset while preserving the essential features,
making it easier to identify potential security threats,
anomalies, and trends in the surveillance data.

• Face recognition [131]: PCA, often referred to as Eigen-
faces in this context, can be used for face recognition in
surveillance systems. By extracting the most significant
features of a face, PCA creates a lower-dimensional
representation that can be used for comparison and
identification. This technique is particularly useful for
recognizing individuals in real time and can be applied
to access control or monitoring of restricted areas.

2) DRAWBACKS
Although PCA does offer many advantages for dimensional-
ity reduction, there are some potential drawbacks to consider
when employed for anomaly detection. These are:

• Loss of Interpretability in independent variables [86]:
After applying PCA, the original independent variables
are transformed into Principal Components, which are
linear combinations of the original variables. These
Principal Components may be less interpretable and
understandable compared to the original variables. This
is because they do not directly correspond to the initial
features, making it more challenging to relate them to
real-world surveillance attributes or events.

• Standardization of data [86]: In the context of anomaly
detection for surveillance, standardizing the data before
implementing PCA is crucial to ensure optimal results.
For instance, when analyzing surveillance data, the
feature set may include measurements in various units,
such as kilograms, light years, or millions. The variance
scale in such a dataset can be quite large, which can
affect the PCA results. If the data is not standardized
before applying PCA, the principal components may be
biased towards features with high variance, leading to
inaccurate conclusions and potentially missing impor-
tant anomalies in the surveillance data.

• Information Loss [105]: In the context of anomaly
detection for surveillance, it is important to carefully
select the number of Principal Components to retain
after applying PCA. While Principal Components aim
to capture the maximum variance among the features in
a dataset, choosing an insufficient number of Principal
Components can lead to information loss compared to

the original set of features. Information loss can impact
the effectiveness of anomaly detection in surveillance,
as it may cause the model to miss important patterns or
trends that could be indicative of unusual or suspicious
activities. To minimize this risk, it is essential to
balance the need for dimensionality reduction with
the preservation of key information from the original
features.

• Dependence on parameter tuning [105]: A key require-
ment of PCA is deciding the number of principal
components to utilize for reducing dimensions. Deter-
mining the ideal count can be tricky, and varying
selections may lead to differing outcomes when it comes
to tasks like anomaly detection. This variability poses a
challenge in the effective application of PCA.

B. AUTO-ENCODERS (AES)
Autoencoders (AEs) [48], [57] are a specific type of neural
network used primarily for learning efficient codings of
input data, often with the intent of dimensionality reduction.
Structurally, an AE is composed of an encoder and a decoder.
The encoder maps the input data to a lower-dimensional
representation, also known as a latent space or bottleneck
layer, while the decoder aims to reconstruct the original input
data from this encoded representation. The primary goal of
an AE is to minimize the reconstruction error, thereby forcing
themodel to retain as much of themeaningful data as possible
in the encoded representation. AEs have been widely used
for various tasks such as anomaly detection, denoising, and
feature extraction, particularly in the fields of image and text
analysis. The sub-types of AE are listed below and a list of
popular AE methods we surveyed are summarized in Table 8.

• Contractive AE (CAE): As discussed in [2], [201],
and [218], a variant of AE known as the Contractive
Autoencoder (CAE) introduces a regularization term
within the loss function. This addition encourages
the model to learn smooth and resilient feature rep-
resentations. By making the encoding less sensitive
to minor fluctuations in the training dataset, CAE
achieves improved stability. This is accomplished by
incorporating a regularizer or penalty term that is derived
from a specific cost or objective function.

• Convolutional AE (CNN-AE): The Convolutional AE
(CNN-AE) [87], [119], [134] represents an advancement
of convolutional neural networks, primarily used in the
field of image reconstruction. These networks leverage
optimal filters to minimize reconstruction errors. Once
trained, CNN-AEs can be employed on various input
types for effective feature extraction.

• Variational AE (VAE): Variational AE (VAE) The Vari-
ational AE (VAE) [213] constitutes a generative model
that learns a continuous latent space representation of
data via encoding and decoding processes. In a VAE, the
encoder outputs parameters of a probability distribution,
typically a mean and variance of a Gaussian distribution.
Then, a sample from this distribution is taken and
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passed through the decoder to generate outputs. This
probabilistic approach allows for more flexibility and
enables VAEs to generate new data that’s similar to
the training data - a property that has made VAEs
particularly popular for tasks like image generation,
anomaly detection, and other applications where not
just learning but also generation of new data is desired.
Unlike AEs, which produce a single value for each
encoding dimension, VAEs generate outputs in the form
of probability distributions.

Chang et al. [39] suggest a method that employs a con-
volutional AE to individually encapsulate the spatiotemporal
reconstruction data. This method divides the reconstruction
process into spatial and temporal components. The spatial
part rebuilds the most recent single frame, while the temporal
segment accepts a series of frames as input. This process
results in an optical flow, generated by the RGB disparity
between the input and output. Consequently, unusual activ-
ities, characterized by irregular appearance and movement,
trigger significant reconstruction errors. To ensure a more
concise data representation, the gap between the data
depiction and the cluster centers is minimized using two deep
k-means clusters.

Tien and Huang [186] present a method based on
supervised learning and AE for device type identification
and detect anomalies in Internet of Things (IoT) devices.
Anomalies are spotted within the packets emitted by the
devices, and the identification of the devices is achieved via
supervised learning on the collected packets. Following this,
unsupervised learning techniques, including SVM, isolation
forest, and AEs, are employed for reducing dimensionality.
Nevertheless, the suggested method is specifically tailored
for particular device types, indicating that additional studies
are required to assess its efficiency across different device
types and malicious behaviors in various IoT-oriented
scenarios.

Aamir et al. [2] present an image classification approach
that relies on feature and abstract representation. They
build an enhanced feed-forward layered structure grounded
on Convolutional Autoencoders (CAEs). These CAEs are
arranged in layers, wherein encoding and decoding opera-
tions are conducted. The reconstruction error is progressively
reduced by each CAE layer, ultimately leading to the
identification of informative features. However, the proposed
scheme heavily relies on features; feeding the system
with irrelevant features could impact classification results.
Additionally, memory consumption in their scheme is tied
to representation learning, which may pose a challenge if
applied to big data-based applications.

Liu et al. [125] propose a two-phase learning framework
based on stacked AEs (SCAE) for video classification. They
establish separate stacked convolutional AEs for image,
audio, and text, which are the fundamental modalities in any
video. The results from these AEs are then merged and input
into anotherMultimodal Stacked Convolutional Autoencoder
(MSCAE). In this two-step model, the initial phase prioritizes

maintaining semantic relationships within each modality,
whereas the subsequent phase targets revealing connections
between semantics across different modalities.

In their work, the authors Santos et al. [168] present a
semi-supervised trainingmethodology for deep networks that
fuses the capabilities of CNNs and AEs. The essence of
their model is to learn image features while concurrently har-
nessing both supervised and unsupervised learning methods.
It proves effective in circumstances where data is partially
labeled. They test the effectiveness of 2D CNNs using
different surveillance videos as their case study. Nevertheless,
the model’s analysis is confined to immediate appearances
of features obtained from separate frames, omitting any
form of temporal tracking. Furthermore, the approach is
resource-intensive; it might not be the best fit in scenarios
with restricted processing capabilities, even though it offers
potential for anomaly detection.

Pawar and Attar [147] propose a deep learning model that
combines CNN-AE, LSTM, and RBF networks, called CNN-
SEQ2SEQ-RBF. This approach employs a 2-dimensional
CNN-AE model for feature learning, while a sequence-to-
sequence LSTM-based network identifies temporal statistical
correlations. Lastly, an RBF network is utilized for one-class
classification. However, their training process only involves
normal data, with both normal and anomalous data used
during the testing phase, which raises questions about the
validity of their results.

1) APPLICATIONS
AEs [49], [76], [110] have a wide range of applications,
including image generation, data compression, denoising,
anomaly detection, image inpainting, recommender systems,
drug discovery, and text generation. Their ability to learn
a lower-dimensional latent representation of complex data
makes them versatile tools for various tasks across different
domains.

• Anomaly detection [110]: AEs are adept at learning
normal behavior patterns and highlighting anything that
deviates from this as an irregularity. This ability makes
them an excellent tool in surveillance systems where
the goal is to detect unusual actions, such as identifying
suspicious activities or tracking the health status of IT
infrastructures.

• Video compression [73]: AEs can be utilized to effec-
tively reduce the size of video data in real-time while
maintaining high quality. This technology is beneficial
for optimizing storage and transmission of surveillance
data, especially in systems with limited bandwidth or
storage capacity.

• Background subtraction [170]: Background subtraction
using AEs is a technique that leverages the power of AE
neural networks to separate the static background from
the dynamic foreground in surveillance videos. By train-
ing the AE on a dataset of video frames containing both
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TABLE 8. Popular AE methods surveyed.

background and foreground information, the network
learns to encode and decode the input frames accurately.
During inference, the trained AE is used to reconstruct
the input frames. By comparing the reconstructed
frames with the original frames, the differences can be
measured. The areas where significant differences occur
are considered as the foreground, while the regions with
minimal changes represent the background.

• Object tracking [88]: y learning the specific features
and patterns present in images or videos, AEs can help
identify objects or human actions. For example, they
could detect the presence of a particular individual
entering a facility or pick up certain movements like a
person collapsing, engaging in a fight, or leaving behind
an unattended item.

• Activity recognition [49]: AEs can be used to learn
features from video data for recognizing and classifying
human activities or gestures. This can aid in detecting
unusual behavior or identifying specific actions that may
be relevant to security issues.

• Image restoration [203]: In instances where parts of an
image aremissing or obscured, AEs can be employed for
image inpainting, which involves completing the image
based on learned patterns.

• Data compression [56]: VAEs can be employed for lossy
data compression. By learning a lower-dimensional
latent representation of the data, VAEs effectively com-
press the data while preserving most of the important
information. This can be particularly useful for image,
audio, or video compression.

• Denoising [40]: VAEs can be used to denoise images,
audio, or other types of data. By learning the underlying
structure of the data, VAEs can reconstruct the original,
clean data from the noisy observations, effectively
filtering out the noise.

• Recommender systems [181]: VAEs can be employed
in collaborative filtering for recommender systems.
VAEs can predict users’ preferences for items they
have not interacted with, allowing for personalized
recommendations.

2) DRAWBACKS

Despite their numerous benefits, several drawbacks are
associated with using AEs in surveillance, including:

• One of themain limitations of AEs is their limited capac-
ity to handle high-dimensional [133] and intricate data.
AEs consist of an encoder network that compresses the
input data into a lower-dimensional representation, fol-
lowed by a decoder network that attempts to reconstruct
the original input from this compressed representation.
This compression-decompression process works well
for simple patterns and regularities, but it struggles to
capture and represent the intricate relationships present
in complex data.

• One substantial worry revolves around the possibility of
achieving less-than-ideal reconstruction quality, as high-
lighted in [118] study. Variational Autoencoders (VAEs)
are designed to optimize the log-likelihood data’s lower
limit, which could possibly lead to unclear or fuzzy
outcomes.

• Another potential downside pertains to the difficulties
encountered when trying to understand the learned
representations. VAEs are capable of extracting intricate
and abstract features from the input data, which might
pose a challenge for humans to comprehend. This
could limit the model’s practical utility, especially in
surveillance applications, where human interpretation
plays a crucial role.

• Privacy is indeed a significant concern when using VAEs
in surveillance applications [228]. The requirement for
large volumes of data to train these models effectively
can lead to the handling of sensitive information about
individuals. If such data is not managed with the utmost
care, it can result in privacy breaches and various
security risks.

• False alarms are another considerable issue associated
with AEs in surveillance systems [193]. In a surveil-
lance context, this can cause operators to become
overwhelmed by the volume of false alarms, potentially
causing them to miss genuine threats.
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• The vulnerability of AEs to adversarial attacks is
an additional concern [226]. Malicious actors can
take advantage of AE weaknesses by modifying input
data to evade detection, which may lead to serious
security breaches in surveillance systems. Ensuring
the robustness of these models against such attacks is
crucial for maintaining the integrity of the surveillance
applications they support.

• Overfitting [180] is a common problem when using
AEs. This issue arises when the model learns the
training data too well, to the point where it captures
not just the underlying patterns, but also the noise or
random fluctuations in the data. This makes the model
highly specialized to the training data, leading to high
accuracy on the training set but poor performance on
new, unseen data. In essence, an overfitted AE fails
to generalize well, which is crucial for the model’s
effectiveness in real-world applications. This overfitting
can be exacerbated if the model is overly complex
or if there’s not enough training data. Regularization
techniques are often used to mitigate this issue.

• Reconstruction Error [2]: The primary disadvantage
linked to traditional CAE is the increased reconstruction
error encountered when encoding and decoding input
features within the network. This limitation in the
CAE’s functioning results in its inability to delve into
the finer details within the input features, causing
it to overlook valuable information. Consequently,
the features extracted by the CAE do not accurately
represent all input features, leading to the classifier’s
ineffectiveness in addressing classification challenges
efficiently.

• Sensitivity to Hyper-parameters [142]: AEs, like many
machine learning models, have a known issue of being
highly sensitive to hyperparameters. This sensitivity
means that the model’s performance is heavily depen-
dent on the initial settings for various parameters,
such as the learning rate, the number of hidden layers
and units, and regularization parameters. Choosing
inappropriate values for these hyperparameters can
lead to suboptimal results, including slow or unstable
training, and poor model performance. This necessitates
a thorough hyperparameter tuning process, which can
be computationally expensive and time-consuming.
Consequently, the challenge of finding the right set of
hyperparameters can make the implementation of AEs
somewhat complex and resource-intensive.

C. GENERATIVE ADVERSARIAL NETWORKS (GANS)
A Generative Model [14], [21], [207], [227] is designed to
learn the joint probability distribution and utilizes Bayes
Theorem to predict conditional probabilities. Generative
classifiers, such as Naive Bayes, Bayesian Networks, Markov
Random Fields, and Hidden Markov Models (HMM),
exemplify this approach.

Generative Adversarial Networks (GANs) represent a class
of neural networks capable of generating new data samples
resembling a provided training dataset. GANs comprise
two interacting neural networks: the generator (G) and the
discriminator (D), engaged in a competitive game-theoretic
setting. The generator’s role is to produce counterfeit data
samples, while the discriminator’s goal is to differentiate
between genuine and fabricated samples. A list of popular
GAN techniques explored in this paper can be found
in Table 9.
Liu and Li [126] present an innovative approach called

Single-Objective Generative Adversarial Active Learning
(SO-GAAL) for anomaly detection, based on a competitive
interaction between a generator and a discriminator. The
generator leverages random noise as its input, which, under
the guidance of the discriminator, generates meaningful
outliers that mimic actual data. Consequently, the SO-GAAL
discriminator can pinpoint these outliers and create a
boundary to distinguish potential anomalies from genuine
data. Moreover, the GAAL framework is extended from one
generator (SO-GAAL) to multiple generators with unique
objectives (MO-GAAL), assisting the generator in avoiding
problems related to mode-collapse. However, this method
does not provide a time-saving advantage for smaller datasets
and can be quite demanding in terms of resources. The
resource requirements of MO-GAAL scale linearly with the
data size, making it less suitable for large-scale datasets due
to its significant resource demands.

Shin and Cho [175] propose a Voice Activity Detection
(VAD) classifier modeling method that employs a Generative
Adversarial Network (GAN) in a supervised learningmanner.
Their primary goal is to address the issue of insufficient
labeled data through transfer learning. Given GAN’s ability
to generate data absent from the dataset, the model can learn
from data that is not real but closely resembles actual data.
This approach helps mitigate the problem of limited labeled
data.

Nevertheless, the significance of labeled data, which is
crucial for the VAD classifier’s learning process, cannot
be overlooked. Even a small amount of labeled abnormal
data can greatly impact the system’s overall performance.
In their suggested method, the GAN discriminator must
extract features from both real and fake data, which might
impede effective feature extraction.

Gui and Sun [70] attempt to offer a comprehensive review
of various GANs, focusing on algorithms, theory, and soft-
ware packages. They provide an in-depth introduction to the
motivation, mathematical formulations, and architecture of
commonly used GAN algorithms. Additionally, they discuss
GANs in conjunction with other machine learning algo-
rithms, such as semi-supervised learning, transfer learning,
and reinforcement learning. They compare the similarities
and differences among various techniques employing GANs.
The authors have also tak about various application domians
of GANs along with research challenges.
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TABLE 9. Popular GAN learning methods surveyed.

1) APPLICATIONS
GANs have found extensive applications across various
domains, with emerging uses in surveillance systems as well.
Some specific applications of GANs in surveillance include:

• Data augmentation: GANs can generate realistic syn-
thetic data for training surveillance systems. By creating
additional training samples that mimic real-world situ-
ations, GANs can enhance the resilience and general-
izability of models, especially when there is limited or
imbalanced labeled data.

• Anomaly detection [33]:GANs can be utilized to learn
the distribution of regular patterns within a scene. The
generator is trained to produce lifelike samples, while
the discriminator is trained to distinguish between real
and generated samples. If the discriminator can easily
classify a new input as real or generated, it is likely to
represent normal behavior; otherwise, it may suggest an
anomaly or unusual activity.

• Image inpainting [35]: Surveillance footage often con-
tains missing or corrupted data due to occlusions,
camera malfunctions, or transmission errors. GANs can
be employed to fill in the missing or corrupted parts
of the images, thereby providing more complete and
accurate visual information for analysis.

• Object detection and tracking [219]: GANs can be
employed to generate realistic object samples to sup-
plement training data for object detection and tracking
models. By offering more diverse and representative
samples, GANs can enhance the performance of object
detection and tracking algorithms in intricate and
dynamic settings.

• Crowd simulation and analysis [10]: GANs can
create lifelike synthetic crowd scenes for studying
crowd behavior and dynamics. This can be useful
for developing and evaluating surveillance algorithms
within crowded environments, such as public trans-
portation hubs, shopping centers, or sporting venues.

Privacy preservation [33]: GANs can be employed
to anonymize sensitive information in surveillance
footage, like faces or license plates, while maintaining
the overall scene structure. This allows for the protection
of individual privacy while still enabling effective
monitoring and analysis of video data.

2) DRAWBACKS
GANs have become popular in recent years due to their
capability to create realistic synthetic data. However, they
also exhibit some drawbacks and limitations, such as:

• Training Difficulty: GANs are often challenging to
train due to the intricate balance required between the
generator and the discriminator. Discrepancies between
the two networks can lead to issues such as mode
collapse, wherein the generator outputs a limited range
of variants.

• Mode Collapse: This situation arises when the generator
starts yielding a restricted set of outputs, neglecting the
broader diversity of the data. Essentially, the generator
collapses to generate only a few modes of the data.

• Lack of Explicit Control: GANs generally do not offer
an explicit control mechanism over the types of outputs
they produce. Despite certain possibilities to influence
the generation process, there’s no direct way to dictate
the specifics of the desired network output.

• Evaluation Difficulty: Evaluating the performance of
GANs is not straightforward. Conventional metrics used
for other machine learning models often fail to apply to
GANs, and the subjective nature of assessing generated
content (like images or music) further complicates the
evaluation.

• Resource-Intensive: GANs demand substantial compu-
tational resources for their training, and they typically
need to process vast volumes of data to deliver high-
quality outputs. This can render them less efficient for
certain applications.
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• Instability: The training procedure of GANs can exhibit
instability due to the adversarial relationship between
the two networks. Without careful supervision, this
could lead to subpar performance and outcomes.

D. CONVOLUTIONAL NEURAL NETWORK (CNN)
A Convolutional Neural Network (CNN or ConvNet) [127],
[177] are a category of artificial neural networks specifically
engineered to process grid-structured data, making them
especially suitable for image data interpretation. CNNs
excel in identifying hierarchical patterns of spatial features
within images due to their automatic and adaptive learning
capabilities. These networks are characterized by three
distinctive layers: convolutional, pooling, and fully connected
layers. The convolutional layer applies different filters to
the input, the pooling layer decreases the data’s spatial
dimensions to simplify processing, and the fully connected
layers use the previously extracted features for classification
tasks. The inception and advancement of CNNs have
significantly boosted the growth of deep learning algorithms,
leading to substantial progress in fields like image and video
recognition, recommendation systems, and natural language
processing.

A defining characteristic of CNNs is their resistance to
shifts or changes in the position of features in the input data,
an aspect often referred to as Shift Invariant/Area Invariant
Artificial Neural Networks (SIANNs). This attribute pri-
marily stems from the use of shared-weight convolution
kernels, or filters, which move across the input data,
generating feature maps that are equivariant to translation.
The application of CNNs spans a broad range of domains,
encompassing image and video recognition systems, recom-
mendation systems, classification tasks, image segmentation
and analysis, natural language processing, and financial time
series analysis. The specific CNN approaches discussed in
this document are itemized in Table 10.
In their work, the authors referred to as Wu and

Wang [205], proposed the utilization of CNN features to
identify distinct visual objects and components for scene
categorization. The methodology involved a region-focused
technique to generate potentially significant patches con-
taining objects of interest. They subsequently implemented
unsupervised and semi-supervised learning methodologies
on a pre-trained CNN. As a final step, they used a
clustering approach and a localized CNN-oriented method
to assemble alike objects into collections, termed as meta-
groups. However, the authors overlooked the possibility that
a CNN may not be the best tool for feature extraction.
Furthermore, applying a fixed CNN to a consistent data scale
could introduce data bias, given the dynamic nature of data
in scale and features, while the feature extractor remains
unaltered.

The authors referenced as Lan et al. [108] introduced a
CNN-based procedure for visual surveillance, which is
particularly effective in resource-constrained scenarios. The
approach comprises three steps. Initially, shot segmentation

takes place via deep feature memorability and entropy
score prediction, paired with the creation of a summary.
This process smartly splits the video into meaningful
shots, a critical task in video summarization. Next, each
frame’s memorability within the shot is determined using
a refined image prediction system that leverages entropy
measures. Ultimately, the frame with the top memorability
and entropy score in each shot is selected for the final
determination. Despite the promise, a notable shortcoming
of this proposed method is the selection of keyframes based
on memorability score, which may result in a summary
that inadequately encapsulates the entire video’s content.
Furthermore, memorability doesn’t ensure a diverse range
of keyframes. Yet, in spite of these restrictions, CNNs have
demonstrated remarkable performance in various computer
vision undertakings, rendering them apt for surveillance
applications.

1) APPLICATIONS
CNNs have a wide range of applications in enhanc-
ing security, safeguarding, and monitoring efficacy within
surveillance systems. Given their proficiency in managing
diverse computer vision responsibilities, they offer consid-
erable potential in amplifying surveillance capabilities. The
following are a few instances demonstrating the application
of CNNs in surveillance systems specifically for detecting
irregularities:

• Motion detection [102]: Motion detection using CNNs
has become increasingly effective and prevalent in the
field of surveillance. CNNs excel in detecting and iden-
tifying motion patterns by analyzing sequential frames
within a video. By training on a multitude of diverse
movement scenarios, these networks learn to distinguish
between regular and irregular motion, allowing for more
accurate anomaly detection. Furthermore, the spatial
and temporal features extracted by CNNs contribute
to a more comprehensive understanding of the scene
dynamics, thus improving the system’s capacity to
detect motion and changes in real-time surveillance
footage.

• Object recognition: CNNs have become a pivotal tool
in the field of object recognition. By automatically
learning hierarchical patterns of spatial features from
input images, CNNs excel at recognizing a wide array
of objects in varying contexts and viewpoints. They do
this by processing an image through multiple layers of
filters or ‘convolutions’, which identify different aspects
of the object, such as edges, textures, colors, and shapes.

• Crowd analysis [217]: CNNs have demonstrated
remarkable capabilities in understanding and analyzing
crowd behavior. By processing visual data from scenes
with dense crowds, CNNs can learn to identify specific
patterns and trends that characterize various behaviors.
They can be used to estimate crowd density, providing
valuable data for crowd management in public events
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TABLE 10. Popular of CNN learning methods surveyed.

or places. Furthermore, by studying the flow and
direction of crowd movement, CNNs can predict future
behavior, which can be particularly useful for planning
and control in urban environments.

• Anomaly Identification [74]: CNNs have the capability
to spot irregular or dubious actions by studying and
contrasting typical behavior patterns captured in surveil-
lance videos. This can serve as an effective tool in
averting potential security intrusions, acts of vandalism,
or any unwanted activities.

• Object Tracking [74]: With the power to identify and
monitor objects or individuals’ movements in real-time,
CNNs can be employed to maintain surveillance across
different camera perspectives or over a period of time.
This proves beneficial for maintaining security, aiding
law enforcement, or for general monitoring objectives.

• Activity Recognition [94]: CNNs can pinpoint certain
actions or activities executed by individuals in surveil-
lance videos, such as sprinting, engaging in a conflict,
or transporting objects. This lends additional insight
for security surveillance and aids informed decision-
making.

2) DRAWBACKS
CNNs are a valuable technique for various tasks, but it
is crucial to consider the following potential drawbacks
when determining their suitability for anomaly detection in
surveillance applications:

• Data reliance: CNNs need a substantial quantity of
annotated data to discern valuable characteristics. With
unsupervised learning, data is often unlabelled, which
could reduce the efficiency of CNNs for these tasks
compared to supervised learning assignments.

• Restricted understandability: While CNNs are capable
of extracting intricate attributes from data, the com-
prehending of these features can be complex. This
lack of transparency can hinder understanding of how
the network reaches decisions or troubleshooting when
performance falls short.

• High computational requirements: Training CNNs can
be resource-intensive, particularly with large datasets.
This can pose challenges when trying to upscale
unsupervised learning tasks that involve vast datasets.

• Risk of overfitting: CNNs, like all machine learning
models, can overfit if the model’s complexity exceeds
the scope of the training data. Overfitting can be a major
issue in unsupervised learning, where the training data
is usually limited or contains noise.

• Limited extrapolation: CNNs are adept at identifying
specific patterns or features in data but might fall short
in applying these patterns to novel or unseen data.
This could limit their value in unsupervised learning
assignments aiming to unearth general patterns or
structure in the data.

E. SUMMARY OF UNSUPERVISED LEARNING METHODS
The limitations and strengths of unsupervised learning
methods are listed in Table 11. The table presents a
summary of several unsupervised methods, detailing their
applications and potential drawbacks. PCA focuses on
reducing data dimensionality by projecting it onto a subspace
that highlights the primary variations. Notably, it’s utilized
to detect anomalies based on reconstruction error. However,
challenges with PCA include loss of interpretability, the
necessity for data standardization, potential information loss,
dependence on precise parameter tuning, and a limited
capacity for interpretation in surveillance contexts. AEs
stand out in detecting anomalies by training on typical,
non-anomalous data to discern underlying structures. But
they face hurdles, notably in reconstructing complex or
noisy input signals, which could result in inaccuracies in
anomaly detection. Furthermore, AEs demand vast training
data and computational resources. GANs, though not detailed
in the findings, are marred by several issues, such as
training difficulties, the well-documented mode collapse,
a lack of direct control, challenges in evaluation, their
resource-intensive nature, and instability stemming from the
adversarial interplay of their dual networks. CNNs, employed
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TABLE 11. Summary of un-supervised methods surveyed.

primarily for anomaly detection in surveillance, are adept
at discerning intricate patterns in images or videos, making
them apt for tasks like object recognition. Nevertheless, their
efficiency is tempered by a heavy reliance on data, limited
understandability, a propensity for overfitting, and constraints
in extrapolation.

V. CHALLENGES, FUTURE DIRECTIONS,
AND CONCLUSION
This survey paper offers a comprehensive and critical analysis
of various learning methods for anomaly detection, covering
supervised, semi-supervised, and unsupervised approaches.
We review a wide range of techniques, such as discriminative
modeling, linear and logistic regression, SVM, RNN, LSTM,
MIL, one-class learning, transfer learning, deep neural
networks, CNN, GANs, AEs, CAE, CNN-AE, and VAE.
We examine their strengths, weaknesses, and applicability
in different domains and scenarios of anomaly detection.
Finally, we identify the challenges and opportunities for

future research in this field, such as improving the accuracy,
robustness, and efficiency of anomaly detection methods,
handling complex and dynamic situations, such as crowded
scenes, occlusions, and varying illumination, and evaluating
and comparing the performance of different methods on
diverse datasets and domains.

A. CHALLENGES
During our research, we observed following key points
which makes detection of anomalies in surveillance videos
challenging:

• Shortage of real-world data: There is a significant
demand for collecting real-world data to develop effi-
cient algorithms and create computer vision applications
that excel in real-life scenarios.

• Lighting conditions: Handling varying lighting condi-
tions is challenging, as extracting trained features from
videos becomes difficult.

• Camera angles and perspective: The camera angles
defining the surveillance area greatly influence the
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performance of deep learning algorithms, as the appear-
ance of objects or people may change based on their
distance from the camera.

• Diverse objects: Learning the movements of various
objects and entities within a scene can sometimes
be problematic, leading to reduced application perfor-
mance due to differences in appearance.

• Sparse versus Dense environments: The techniques
employed to detect anomalies in sparse and dense
settings differ. Somemethods work well for event recog-
nition in sparse contexts but may produce numerous
false negatives in densely populated scenes, such as large
crowds.

• Occlusions: Detecting and tracking occluded instances
(people or objects) that are partially or fully obscured
is a complex task, even though humans can handle it
relatively easily.

• One significant limitation of linear regression in surveil-
lance applications is the assumption that predictor
variables and the outcome variable have a linear relation-
ship. Secondly, high-dimensional data, characterized by
a large number of features, presents challenges for linear
regression models in surveillance. Problems include
overfitting, where the model becomes too complex and
fails to generalize to unseen data; multicollinearity,
leading to unstable parameter estimates and poor
predictive performance; the curse of dimensionality,
causing data sparsity and reduced learning efficiency;
and increased computational complexity. To mitigate
these issues, various techniques can be utilized. Feature
selection methods, like LASSO or Ridge regression, can
reduce the number of features.

• A notable disadvantage of using logistic regression in
surveillance applications is its design specifically for
binary classification problems, meaning it can only
predict the probability of an event belonging to one of
two classes. In many surveillance scenarios, predicting
multiple classes or events is necessary, making logistic
regression less suitable.

• A major drawback of using SVM)in surveillance appli-
cations is their computational complexity, particularly
for large datasets. Training an SVM involves solving
a quadratic optimization problem, which can be com-
putationally demanding and time-consuming, especially
when dealing with high-dimensional data or numerous
instances. This may limit the applicability of SVMs in
real-time or near-real-time surveillance systems.

• One significant limitation of MIL is the assumption that
if a bag is labeled as positive, there’s at least one positive
instance within it. In real-world scenarios, particularly
in anomaly detection, this may not always hold true.
For instance, an anomaly might be manifested only
when considering the combination of multiple instances
within the bag, rather than a single instance. Addi-
tionally, the performance of MIL can be significantly
affected by the choice of bag representation and instance

classifier, which may not always be straightforward to
select. The model could also struggle with the concept
drift, which is a common issue in anomaly detection
where the nature of normal and anomalous instances
changes over time. Lastly, the training process for MIL
can be more complex and computationally intensive
compared to standard supervised learning approaches,
potentially limiting its applicability in scenarios where
computational resources or time are constrained.

• AEs in surveillance face significant challenges, such
as susceptibility to environmental changes leading to
inconsistent performance. They also demand substantial
computational resources and time, making them less
suitable for real-time scenarios. The requirement for
large datasets for training and their inherent design of
reconstructing input data, potentially carrying forward
irrelevant information, further hinder their effective
utilization in surveillance contexts.

• Data dependencies in CNNs can lead to challenges
such as lengthy training times, issues of vanishing and
exploding gradients, increased memory usage, limited
parallelization during training, and risk of overfitting.
They may also necessitate high-performance computing
infrastructure, potentially limiting accessibility for some
users. However, these issues can be mitigated through
various techniques, and ongoing research continues to
improve CNN performance and scalability.

• A major limitation of using Principal Component Anal-
ysis (PCA) in surveillance applications is its linearity as
a dimensionality reduction technique. This means PCA
assumes the data’s underlying structure is linear, which
may not be accurate for many complex surveillance
scenarios where relationships between variables are
nonlinear. In such cases, PCA may not effectively
capture the underlying structure and patterns, leading
to decreased performance in subsequent analysis or
classification tasks.

• It’s important to note that while one-class classification
can be a powerful tool in surveillance, it is not without
its challenges. The success of this approach relies
heavily on the representativeness and quality of the
‘normal’ training data. If this data doesn’t adequately
capture the range of normal behaviors, the classifier
may either miss genuine anomalies (false negatives) or
incorrectly flag normal behavior as anomalous (false
positives). Therefore, careful data collection and model
validation are essential steps in implementing a one-
class classification system for surveillance.

• Surveillance data is often unbalanced, consisting of a
large number of regular events and a small number of
unusual events. This imbalance can make it challenging
for machine learning algorithms to effectively detect
anomalies.

• Supervised machine learning models require labeled
data for training. However, annotating surveillance data
can be labor-intensive and costly. This limitation can
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restrict the availability of labeled data, making it difficult
to efficiently train machine learning models.

• Surveillance data can be affected by noise, incom-
pleteness, or corruption. These issues can impact the
performance of machine learning algorithms, as they
might learn from inaccurate data.

• Deep learning models can be difficult to interpret, and
explaining their specific decisions can be challeng-
ing. This lack of interpretability can be problematic
in surveillance systems, where understanding why a
particular event was identified as anomalous may be
necessary.

• Deep learning models can require considerable com-
putational resources for training and deployment. This
requirement can pose a challenge in real-time surveil-
lance systems, where prompt detection and response are
crucial.

• Surveillance data may evolve over time due to changes
in the environment, individuals, and objects within the
scene. These changes can cause the data distribution
to shift over time, resulting in concept drift. Machine
learning algorithms trained on historical data might
struggle to adapt to such changes.

• Surveillance data can be extensive and complex, with
high-dimensional features. This complexity can lead to
increased computational costs for training and deploying
machine learning models, particularly in real-time
situations.

• Anomaly detection in surveillance raises ethical issues
surrounding privacy, monitoring, and bias. Machine
learning algorithms trained on biased or prejudiced data
can reinforce and even magnify these biases, potentially
resulting in unfair or discriminatory consequences.

B. FUTURE DIRECTIONS
In future this survey can be enhanced by surveying crit-
ical analysis of hybrid methods that combine different
learning techniques, such as supervised and unsupervised,
or sem-supervised methods to leverage their advantages and
overcome their drawbacks. Furthermore, it is worthwhile
to explore the use of multimodal data, such as audio,
video, and text, to capture more information and context
for anomaly detection. For example, such methods could
use audio data to detect abnormal sounds or events, video
data to detect abnormal motions or behaviors, and text
data to detect abnormal sentiments or topics. Finally, there
is a pressing need of a detailed and in depth survey and
analysis of available surveillance datasets highlighting their
strengths and limitations for both commercial and academic
research.
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