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ABSTRACT To reduce memory usage, edge devices such as TVs use Super-resolution(SR) with dedicated
hardware networks. Dedicated hardware has the disadvantage of being difficult to change and difficult to
improve performance. We propose a dual-structured SR system that can extend this dedicated hardware,
suggesting a way to improve the restoration performance for compression with minimal change in hardware.
Edge devices such as general TVs deal with moving videos rather than still images. In this case, the video
includes video compression, and a preprocessing step of restoring deterioration is useful. We propose as the
main idea that these steps can be handled while removing only pixel shuffle layers from existing networks.
Our proposed SR method consists of two stages: 1) restoring from the video compression without changing
the size of LR images and 2) increasing the resolution. The first stage can be learned by reducing the
difference between video-LR (Low-Resolution video images with codec degradation) and downscaled-HR
(video images made without codec degradation by simply reducing the size of High-Resolution video). The
second stage, resolution enhancement, performs the same task as the traditional SISR task, except that it
focuses on restoring the output of the first stage rather than a downscaled-HR. Our new dataset for this
processing, HD2UHD, consists of (video-LR, downscaled-HR, and HR) tuples. We also propose a new
scheme of input distillation that utilizes video-LR and downscaled-HR at the same time.

INDEX TERMS Super-resolution, removal of video degradation, hardware reuse.

I. INTRODUCTION
Edge devices such as TV mainly deal with videos as input
rather than still images. We want to find a direction to utilize
the dedicated SR network due to the characteristics of the
video. Therefore, in the introduction, the characteristics of the
video and the dedicated SR will be described.

A. NECESSITY OF DEDICATED SR HARDWARE
In general, GPUs or NPUs are used to process deep learning.
In this case, the results and weight parameters of each layer
are stored in memory each time and are repeatedly called
when necessary. In tasks that analyze the entire image, such
as classification or segmentation, which can be processed
by reducing the input size, it is efficient to use GPUs or
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NPUs like this. However, in the Super-resolution task, which
improves the detail of the image, the size of the input
cannot be reduced, and the image must be processed on
the fly without frame delay. Due to this constraint, SRs on
edge devices use dedicated CNN hardware rather than NPU
or GPU. Nowadays, most broadcasts are composed of FHD
or lower, and UHDTVs are popular, SR is one of the essential
elements of TV, and the development of a dedicated SR
network is necessary. The SR network developed once in this
way has a disadvantage in that it is difficult to expand further,
resulting in a problem to improve additional performance.

B. SINGLE IMAGE SUPER RESOLUTION (SISR)
In the conventional deep learning-based Super-resolution
(SR) task, training datasets consist only of target images
in a high resolution (HR), which are downscaled to low
resolution (LR) images by a scaler method such as bicubic
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FIGURE 1. Definition of HR, downscaled-HR, and video-LR In this paper,
we set a UHD (2160P) video as an HR, the target of learning.
downscaled-HR is a video that is obtained by scaling downing HR on a
frame-by-frame basis, which experiences only image-level degradation.
Finally, video-LR refers to an actual HD (720P) video converted by a video
codec encoding.

interpolation, and SR algorithms learn how to restore the
target HR image from the LR image. Since SRCNN [1]
successfully tackled this single-image-based SR (SISR) task
using a deep neural network (DNN), a lot of algorithms have
been developed with the growth of both network size and
performance [2], [3], [4]. Although the conventional SISR
algorithms restore the resolution degradation factor between
an HR image and the corresponding LR image, which is a
downscaled-HR, very well, they do not cover the gap between
the downscaled-HR and the low-resolution video (video-LR)
encoded by a video encoder such as MPEG4 or H.264 in the
real world. We would like to add a one-step process to the
SR developed in the form of SISR mentioned above and to
explain this, we would like to separate degradation caused by
simple resize from degradation caused by video compression.

C. DEFINITION OF HR, DOWNSCALED-HR, AND VIDEO-LR
To clarify a further discussion, as shown in Fig. 1, we define
three types of images: HR, downscaled-HR, and video-LR.
1. HR is the target of SR which corresponds to the

conventional dataset for SISR. In previous works, rel-
atively low-resolution image datasets such as SET-5 [5],
SET-14 [6], and Urban100 [7] were used as restoration
goals. However, since we are aiming to develop an
effective SR for real applications, we set to use
UHD (2160P) video frames asHR images, the resolution
of which is mainly supported in mainstream displays
nowadays.

2. Downscaled-HR refers to images in which the resolution
of HR is reduced using a downscaling such as bicubic
interpolation. The conventional SISR algorithms use
DNNs to learn to recover downscaled-HR to HR.
downscaled-HR involves only image-level degradation
from HR, in which high-frequency components that
cannot be expressed at small resolutions are lost and
aliasing is formed. Currently, what’s commonly referred
to as high-resolution images are FHD (1080P) or
higher-resolution images, and we wanted to set up
a task to restore the low-resolution video to a UHD
level. Therefore, downsizing is processed by reducing a

FIGURE 2. Cropped sample of video-LR and downscaled-HR. The
video-LR in (a) and the downscaled-HR in (b) show significant quality
differences despite having the same resolution. This can be confirmed
more easily by looking at the difference between video-LR and HR
in (c) and that between downscaled-HR and HR in (d). Although the
difference in (c) is much larger than the difference in (d), conventional SR
only learns the difference in (d).

UHD (2160P) video by 1/3 to the HD (720P) level with
the bicubic downsampler.

3. Video-LR refers to an original HD (720P) video that is
encoded in small size and can be directly downloaded or
played back. This includes codec compression, so video-
LR has much worse image quality than downscaled-HR.
Learning a network to convert a video-LR (720P) into an
HR (2160P) is very important and is the key to making
SR a more meaningful technique. Therefore, in this
paper, we tackle this SVISR problem and try to find a
way to restore this video-level degradation. The quality
of video-LR is much worse than the downscaled-HR
as confirmed in Fig. 2, where (c) and (d) show the
difference between the HR and the upscaled version of
video-LR and downscaled-HR, respectively.

Rather than relying on conventional SISR settings
(downscaled-HR → HR), we should tackle the new problem
of Single Video Image SR(SVISR) (video-LR → HR) for
more useful applications of SR techniques. We would like
to propose a dual-stage SR with a step of reducing video
degradation to improve the performance of the existing
developed SR. At this time, it is intended to help develop
edge devices by making it possible to use the previously
developed SR network without change. In addition, adopting
the scheme of knowledge distillation [8], we propose input
distillation to restore lost texture components between
video-LR and downscaled-HR by improving the existing
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SISR which focuses only on the restoration of edge
transitions (see Fig. 2(d)).

D. CONTRIBUTION
Our contributions can be summarized as follows:

1) We propose a system that can extend the capabilities of
existing developed deep learning SRs while minimizing
changes to the hardware. The added pre-stage is
designed to be effective in reducing degradation due to
video compression.

2) We propose a new input distillation method. This is
a method of putting different inputs into the same
network, the better of which is the teacher and the other
is the student. When performing distillation with the
result of stage 1 as the student and downscaled-HR as
the teacher, it can achieve better results than training just
with loss functions based only on the difference between
the input LR-video and target HR images.

II. RELATED WORKS
A. BLIND SUPER-RESOLUTION
In contrast to the SISR, where degradations for inputs are
specified and the inversion of bicubic interpolation is learned,
there is a concept of blind Super-resolution or real-world
Super-resolution to make SR effective in situations where
degradations cannot be specified [9], [10], [11], [12]. Among
them, Real-ESRGAN [13], which added the concept of blind
SR to ESRGAN [14], is a representative work.

Real-ESRGAN raised the problem of the conventional
ESR-GAN that generates an LR image by bicubic interpo-
lation and suggested that LR images should be reconstructed
by considering degradation such as jpeg compression. It can
be seen as a work dealing with a similar problem to our paper.
However, even the Real-ESRGAN relies on still image-based
degradation of an HR image, so only image-level degradation
is learned, and the actual video-level degradation, which
is much more serious, is not considered, resulting in low-
quality outputs for compressed videos. Unlike the Real-
ESRGAN which learns about arbitrary virtual degradation,
converting various degradations by a single model and
changing the input image into an animation-like image with
sharp boundaries, we have obtained more natural results
through real video-based learning.

B. VIDEO SUPER-RESOLUTION
Unlike SISR which receives only a still image as input,
video SR is a task aimed at improving the quality of videos.
Video SRs that use multi-frame methods are specialized
for sequential video and are trained to receive multiple
consecutive frames as inputs and produce a single image [15],
[16], [17]. There are other video SRs such as VideoSR-
CNN [16], Deep VideoSR [18], basicVSR [19]. And
video-based data such as VID4 [20], REDS [21] and
VIMEO90K [22] have been proposed for video learn-
ing. Although these algorithms are designed to receive

consecutive video frames as inputs and produce better results
from increased input channels, the increased network costs
and memory buffers are the weaknesses. In addition, contin-
uous video is required, which requires additional heuristics,
such as scene switching or initial reset. Thus, we intend to
create a solution suitable for video processing without using
such a multi-frame approach, while maintaining a typical
single-input single-output SR system simply by dual-stage
training of the SR network on a dataset with improved quality.
And most importantly, the task of video SR is based on
single-video impaired by a scaler, just like single-image-
based SR, not a concept to learn degradation due to a video
codec.

III. METHOD
A. DUAL-STAGE SR SYSTEM
As mentioned in the introduction, we note that conventional
SRs can only learn image-level degradation due to self-image
transformation, which has a very large gap from videos in the
real world. So, reducing this gap is very important especially
when real-time SR processing of the video is needed so that
we cannot apply multi-frame SR for videos. In Edge devices,
multi-frames are difficult to use for SRs due to the increased
use of frame-storing memory buffers and the occurrence of
side effects on scene transitions, as previously mentioned in
the introduction. Since conventionalmethods did not consider
video-level degradation, we added an additional network
to the existing SR network for restoration of video-level
degradation and applied it to reduce the difference between
real low-quality videos and high-quality videos with only
simple down-scaling. Fig 3 shows the conceptual diagram of
our proposal. We propose a dual-stage SR, responsible for
restoring video compression in the first stage and enhancing
the resolution in the second stage.

This dual-stage SR can be represented as follows:

ÎHR = Net2(ÎdHR|θ2),

where ÎdHR = Net1(ILR|θ1). (1)

Each stage uses its respective L1 loss as follows:

L1 = ∥Net1(ILR|θ1) − IdHR∥1

L2 = ∥Net2(ÎdHR|θ2) − IHR∥1. (2)

Here, ILR, IdHR, and IHR represent a video-LR, a downscaled-
HR, and an HR image respectively. Net1(θ1) and Net2(θ2)
are the SR network (parameter) for the first and the second
stages. The hat notation (ÎdHR, ÎHR) is used for indicating the
estimated image. Then, the parameters for the two networks
are trained in an end-to-end manner by

(θ∗

1 , θ∗

2 ) = argmin
(θ1,θ2)

λ1L1 + λ2L2, (3)

where we use λ1 = λ2 for simplicity.
From the network point of view, the difference between

the first stage and the second stage can be seen as the
presence or absence of the final pixel-shuffle layer. In the
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FIGURE 3. The concept of our Dual-stage SR. The key idea is to put the conventional SISR, which focuses on the restoration of the image-level
degradation (e.g.by bicubic interpolation), as stage 2 and to have an additional convolution for restoring the video-level degradation (e.g.by video
codec) at stage 1 by inputting a real video-LR image. The difference between the first and the second stages lies in the presence or absence of the pixel
shuffling operation to change the size of the output. The proposed dual-SR system trained by the proposed data set, HD2UHD, made of real videos
provides substantial improvement in the low-quality videos.

FIGURE 4. Overview of the proposed dual-stage SR system including input distillation. This figure shows the concept of ‘input
distillation’ and how it works. For our dual-SR system, distillation loss is added to the end-to-end loss of each stage and affects
the entire learning procedure.

first stage, the network learns to map video-LR inputs of
the same size to downscaled-HR without a pixel-shuffle
layer, and in the second stage, it learns to map to a
larger-sized HR through a pixel-shuffle. As a result, SR for
the first stage can be used without requiring indepen-
dent development, removing only the last layer from the
existing HW.

For these two stages of learning, we publish a new training
dataset, HD2UHD, presented in Sec. III-B each tuple of
which consists of separately downloaded LR and HR and an
additional intermediate downscaled-HR image.

B. HD2UHD DATASET
Recently, many applications have emerged that transmit the
same content at various bit rates according to the network
and viewing situations. Typical examples include Netflix and
YouTube, where content providers offer the same original
video in various formats, including SD, HD, FHD, UHD,
and 8K videos.

By using this, the following three versions of the same
content can be obtained. 1) Receive a UHD version and set
it as HR, the target image. 2) Create a downscaled-HR that
acts as an intermediate target by scaling down the HR image
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frame-by-frame. 3) Download the HD version and use it as a
video-LR input.

We collected various genres of Internet videos such as
natural scenery, cityscape, music video, sports, animation,
games, and CG, and extracted 10 random patches from each
frame to create a total of more than 660,000 patches. For
the flexibility of future learning, each patch of video-LR
was cropped into 128×128, which is spatially larger than
other datasets typically in 64× 64, and HR was cropped into
384×384, whose both horizontal and vertical sizes are three
times of LR. The downscaled-HR reduced the resolution of
HR to 128 × 128 using a bicubic scaler for the HR data
set stored in a still-image state. In this paper, we analyze
and learn based on this dataset, and also try to verify the
results by creating 400 test sets with new videos that are not
used for training in the same way. Our new dataset is named
HD2UHD, which will be publicly available with this paper.

C. INPUT DISTILLATION
An interesting point of our proposed system is that the
internal target and the intermediate processing result have the
same size. In other words, the second stage can operate with
both the result of the first stage and the downscaled-HR as
an input. In general, knowledge distillation [8] is aimed at
obtaining better performance by using features made from
better networks as teachers. Downscaled-HR is not used in
the case of inference but only affects learning.

We focused on the fact that we could apply distillation
to something that works better based on the input rather
than a network. Since downscaled-HR is a more correct
answer that is much more similar to the HR image than the
processed video-LR result, even if the two networks have
identical parameters, it can be seen that when downscaled-HR
is processed as an input, it produces better features than when
video-LR is used.

In each iteration, the second stage updated with the latest
weight is operated twice 1) with the normal case (using
stage 1’s output as input) and 2) downscaled-HR as input:

ÎHR,s = Net2(ÎdHR|θ2)

ÎHR,t = Net2(IdHR|θ2)

where ÎdHR = Net1(ILR|θ1). (4)
Then, the case where downscaled-HR is used is taken as a

teacher and the remaining normal case is taken as a student
for feature map-level knowledge distillation [23]. It assumes
that a student who solves a problem by watching the internal
answer can teach a better solution to a student who solves
the problem from the beginning. This is a novel method
of applying distillation using different inputs on the same
network, unlike the usual method of applying distillation
between different networks. We refer to this technique as
‘input distillation’, which distills features of a better input on
a network to features of a worse input on the same network.
The input distillation loss can be defined as follows:

Lid =

∑
l∈[L]

∥F lNet2 (ÎdHR|θ2) − F lNet2 (IdHR|θ2)∥1, (5)

where L denotes the total number of layers in the second
network (Net2) and F l denotes the feature map of the
l-th layer.
As in Eq. (5), the distillation loss consists of the sum of L1

differences between each feature map of internal layers. This
concept of input distillation can be easily understood in Fig. 4.
It includes all of our proposed dual-stage SR setup, including
input distillation. The second stage in our dual-stage SR is
performed once more with the downscaled-HR in addition
to the basic operation, and input distillation is applied. Note
that the distillation loss is only propagated to the student
(F lNet2 (ÎdHR|θ2)) and the network parameters (θ2) are copied
from the student to the teacher at each iteration as shown
in Fig. 4.
End-to-end losses of each step, L1 and L2 in (2), are

combined with input distillation loss and backpropagated:

Ltotal = λ1L1 + λ2L2 + λidLid . (6)

The distillation in the feature domain has the advantage
of being capable of non-linear conversion on both sides of
several tens of channels [24], while the information on the
final output image is only 3 channels and one side is fixed.
Moreover, the output end of the feature is fixed to converge
to the HR image, resulting in stable information without
divergence. More information can be extracted through this
expanded channel, resulting in better results when applying
input distillation. Distilling the feature maps instead of the
final output images is well-verified in several previous works
on Super-resolution [25], [26], [27].
The great advantage of the application of the proposed

distillation is that the performance can be improved with
the same HW by changing only the loss to learning.
As mentioned in the introduction, we tried to explore ways
to improve performance using the previously developed
dedicated SR network for edge devices. As a solution to this,
we present a dual-stage SR system that can further remove
video degradation, and propose distillation loss that can learn
this degradation more effectively.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENT SETTINGS
Within each of the two stages, it is possible to utilize a
latest SR network and loss settings as they are, so we would
like to apply the proposal to various existing SR methods to
confirm the effectiveness of our proposal. We tried to apply
our proposals on top of existing SRs ranging from SRCNN,
which is the most similar to the dedicated HW, to recent
RCAN. The basic learning system of each SR was set up as
the second stage of the proposed dual-stage SR, while for
the first stage, the scaling factor was changed to 1 or only
the pixel-shuffle was removed. Since there are no restrictions
at each stage and each of our proposals (HD2UHD dataset,
Dual-SR, input distillation) can be dealt with separately,
we checked the effect of our algorithms using various SRs.
For the experiments, we set up a simple environment based

on the baseline architecture of RCAN [28] using L1 loss only.
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FIGURE 5. Experimental results. These images show what changes occur as the proposed methods are applied one by one to the RCAN
baseline. Each column (excluding HR) is a result of applying an additional proposed solution to its left column. While the baseline incorrectly
boosts the grid pattern due to the video compression, the result of learning with our proposed HD2UHD dataset does not generate such
artifacts. Dual SR shows better results even though both stages of which use a half-sized network compared to the baseline to make the total
number of parameters unchanged. Additionally, when input distillation is applied, it can be seen that the shape of the texture becomes closer
to that of HR.

When applying GAN loss [29] or perceptual loss [30], the
problem of reproduction arises and the effectiveness of the
proposed concept faded, so we set up without these losses
to confirm the effectiveness of the proposed method clearly.

The RCAN network uses 10 residual groups each consisting
of 6 residual blocks, and in the case of Dual-SR, the number
of residual groups was reduced by half to limit the total
number of parameters. In our setup, each network is only a
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TABLE 1. Quantitative evaluation. In the real HD videos, all three of our
proposed methods have improved scores.

small SR with 5M parameters, and Dual-SR with two stages
is designed to have a total of 10M parameters. This is a lighter
SR than the 15M RCAN baseline.

B. QUALITATIVE RESULTS
The qualitative experiment shows the change in the image by
gradually adding each component of our proposed method
to the RCAN baseline trained on bicubic degradation.
As introduced in Sec. III, there are three major proposals
in this paper: 1. HD2UHD dataset, 2. Dual-SR architecture
and 3. input distillation.

The main qualitative results are shown on Fig. 5. The first
column magnifies video-LRs encoded with HD (720P) as
the input data, and the last column is original UHD (2160P)
video images used as the learning target. The second column
is the result of RCAN-baseline for video-LR inputs. When
video-LR is used as input, the results clearly exhibit flaws,
especially at the edges. It can be seen that lattices are
forming around the chroma components as well as near strong
edges. The third column is the result of changing only the
training dataset to our HD2UHD dataset while maintaining
the baselinemethod of RCAN’s network and trainingmethod.
In this case, it can be seen that the wrong grid disappears
and the image as a whole becomes smoother at the cost of
generating more blurry images. The fourth column is the
result of applying the proposed Dual-SR learning system
together with the change of the training dataset. Although the
network was divided into two stages and maintained the same
level of parameters, the results show clearer and smoother
improvements. Similar tendencies additionally occur when
input distillation is applied. In the first image, it can be
seen that parts such as the texture of the brick resemble HR
more stably, and the softness and sharpness of the edge are
also improved. We showed that each of our three proposals
has effects on improving image quality towards that of the
original HR.

C. RESULTS IN THE ACTUAL EDGE DEVICE
We checked the performance of these dual SR systems
based on the actual dedicated HW. This dual video quality
improvement processing is mounted on LG α9 Gen-6,
contributing to image quality improvement. We constructed
the same learning system using a quantized, small dedicated
SR network at a level where real-time processing can be

FIGURE 6. Results in the actual edge device. These images are the result
of storing the actual HW output using Alpha 9 Gen-6 DTV SoC. The noise
caused by compression was removed in the first stage, and the
Super-resolution was well performed in the second stage.

FIGURE 7. Comparison with VSR++ and RealBasicVSR. The result of an
HD video input for comparison with VSR++ and RealBasicVSR. Unlike
basicVSR, which over-boosts certain textures or creates artifacts, the
proposed dual-SR shows stable results across all videos.

implemented and we want to show the learning results
using it. Fig 6 is this result. Although we cannot disclose this
network and quantitative evaluation results due to technology
security, we would like to show that the proposed dual-SR
system and input distortion as a result of image improvement
helped develop HW for actual edge devices. We have actually
applied the proposed system to the Super-resolution algo-
rithm in TV SoC to improve performance without requiring
additional development time by reusing the existing HW.

To ensure that Dual-SR algorithm is competitive with state-
of-the-art video SRs, we also compared it to VSR++ and
RealBasicVSR in Fig 7. Applying basicVSR to edge devices
is very challenging because it adds a huge computation of
extracting separate optical flows and synthesizing the latent
vectors of several frames at the same location. Nevertheless,
VSR++, trained to remove only certain artifacts well,
produced unusable results on random HD video inputs
with severe image jaggies like RCAN’s baseline model.
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TABLE 2. Quantitative analysis of the effect of distillation loss. When
the second network receives a downscaled-HR image as an input rather
than the output of the first stage, the effect of input distillation is
prominent, improving both PSNR&SSIM.

While RealBasicVSR, which is trained to restore arbitrary
degradation well, is relatively stable and has a good level of
cleanliness and enhancement, it has been shown to over-boost
certain textures unevenly. The proposed Dual-SR has the
advantage of a cheap network and easy computation, so the
total amount of enhancement is smaller than basicVSR, but it
works stably in all situations.

D. QUANTITATIVE EVALUATION
For quantitative evaluation, we used a total of 400 patches
extracted from additional new videos to measure PSNR and
SSIM [31]. The validation set includes dozens of videos
from various genres, including animation, natural scenery,
urban scenery, CG, movies, and music videos. Following
the convention, PSNR and SSIM were measured using the
difference in luma (Y) after YCbCr conversion.

The experimental results are shown in Table 1. The
tendency seen in the qualitative results could be objectively
confirmed. The proposed HD2UHD validation set, which
mainly deals with HD (720P) resolution videos, showed
additional improvement effects compared to the baseline, and
particularly, a large difference could be confirmedwhen using
SRCNN. In the case of RCAN, the score difference was not as
dramatic as the difference in Fig. 5, but the overall direction
of improvement could be confirmed.We can see that Dual-SR
and input distillation have an additional improvement effect
when applied one by one.

To confirm the effectiveness of the input distillation more
objectively, we checked how closer becomes the resultant
output to the target HR with the application of input distil-
lation when the second network receives a downscaled-HR
image as an input. Table 2 confirms that Net2’s teacher
output has become similar to HRwith input distillation, so we
can argue that the distribution of Net1(video-LR) has become
similar to downscaled-HR.

V. CONCLUSION
We propose dual-SR, which learns existing SRs in two stages
for learning, and an input distillation method that can more
actively utilize downscaled-HR as an intermediate answer.
We confirmed the effect by applying each of the proposed
HD2UHD databases, dual-SR, and input distillation to the
existing RCAN and SRCNN baselines. The effectiveness of
the proposed method is demonstrated by using quantitative
and quantitative evaluation and it is shown to eliminate side
effects of conventional methods in low-quality videos and
obtain more suitable final SR results.

For future works, we want to do ablation studies with other
SRs that use heavier networks and various losses than RCAN.
We believe that dual-SR will be beneficial for SoTA-class
SRs as well, and expect to see good results in various videos.
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