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ABSTRACT The malignant neoplastic malady known as cancer appears to exhibit a significantly elevated
rate of mortality owing to its virulence and pronounced propensity for metastasis. To augment the diagnostic
efficacy, research endeavors have been undertaken utilizing complex deep learning architectures. However,
the performance of these efforts remains circumscribed by smaller dataset size, quality of the data, the
interclass variations present between lung adenocarcinoma and lung squamous cell carcinoma, and the
complexity of deploying to mobile devices and failure to address both image and patient level accuracy
measurements. To surmount these obstacles, the present study proposes a stage-based method for enhancing
the images, in conjunction with utilizing a global context attention-guided convolutional neural network
that effectively captures both channel and spatial information and semantic information extracted from
the input image. Implementing the proposed methodology increased total image level accuracy to 99.76%
and a patient level accuracy of 96.5%, a metric that has yet to be previously quantified. The addition of
the global context attention module decreases the model’s parameter count by 0.47 million, reduces the
computational costs by saving 10.54 million floating point operations per second (FLOPs) and 10.72 million
multiply-accumulate operations (MACs), and results in a 0.03s improvement in inference time. Furthermore,
this module enhances both image level and patient level accuracy, boosting them by 2.84% and 3.17%,
respectively, compared to using only the convolutional block attention module in the baseline convolutional
neural network. Consequently, this modification renders the model highly suitable for deployment on mobile
devices due to its adaptability. Our findings provide supporting evidence for the potential of this method to
serve as a noninvasive screening tool capable of reliably classifying lung and colon cancer subtypes.

INDEX TERMS Stage-based method, global context attention module, convolutional neural networks,
noninvasive screening tool, lung and colon cancer.

I. INTRODUCTION
Cancer encompasses a heterogeneous array of maladies,
defined by the aberrant proliferation of malignant cells
that can infiltrate and disseminate to other parts of the
organism. The International Agency for Research on Cancer
(IARC) reports that cancer remains a leading cause of death
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worldwide, with a staggering 19 million new cases and
10 million deaths recorded in the year 2020 [1]. The phe-
nomenon of metastasis, whereby cancer cells transmigrate
from the primary site to an additional organ. In the year 2020,
cancer in the lung and colorectal cancer emerged as the most
widespread forms of cancer that caused death among both
male and female individuals globally, with the appearance of
2.21 million fresh incidences of lung cancer and 1.93 million
instances of colorectal cancer reported around the world,
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ultimately leading to 1.80 million fatalities due to lung cancer
and roughly 1 million deaths resulting from colorectal cancer
[2]. Cancer formation can be attributed to various causes,
including behavioral traits like a high body mass index,
a habit of consuming alcohol excessively, and smoking.
Furthermore, physical toxins such as radiation, UV rays,
and genetic factors can also contribute to the formation of
cancer [2]. Although weight loss, fatigue, nausea, persistent
coughing, shortness of breath, muscle pain, bleeding, and
bruising are symptoms commonly associated with cancer
[3], they are not universal among all patients. They are
not specific to cancer, making early detection difficult
without a comprehensive set of diagnostic procedures. With
90% of cancer deaths resulting from metastatic disease,
understanding and studying metastasis is a critical aspect of
cancer research [4]. Metastasis of colon and lung cancers
commonly occurs in the liver, lungs, peritoneum, brain, liver,
bones, and lungs for lung cancer, respectively [5]. At the
microscopic level, metastatic cells appear to be diseased
primary cells, although symptoms are often associated with
cancer cells in the affected organ [5]. The most effective
method for reducing cancer mortality rate is through early
detection and proper treatment [6]. For example, if colon
cancer is detected at Stage 0, 92% of patients between
18 and 73 can survive with appropriate therapy [7]. The
survival rates for lung cancer from Stage 1 to Stage 4 are
69%, 50%, 29%, and 8%, respectively. The unavailability of
affordable screening systems is a hindrance to early detection
of cancer, particularly in nations where approximately 70%
of cancer-related deaths occur, according to the World Health
Organization [2].

Deep learning (DL) offers a plausible remedy as a
possible answer to this predicament. Pathology has utilized
machine learning (ML) in various applications, such as
disease diagnosis [8]. Automating the classification of
histopathological images usingML algorithms can accurately
diagnose disorders while reducing the workload of human
experts and meeting the requirements of high accuracy, large
datasets, and other criteria [9]. Additionally, transfer learning
can be employed in the implementation of a different method
to tackle cross-disciplinary knowledge acquisition challenges
by leveraging information from existing datasets [9]. The
application of scratch convolutional neural networks (CNN)
presents certain advantages in comparison to transfer learning
techniques.

Diagnostic techniques employed for the detection of lung
cancer and colon cancer may include computed tomography
(CT), X-rays, and biopsies, among other approaches. Biop-
sies are commonly utilized in the diagnosis of lung and colon
cancer due to their high accuracy in identifying cancerous
cells or tissues. Pathologists examine histology slides under
a microscope to make their diagnoses. However, traditional
manual diagnosis poses a significant burden on qualified
experts, and pathologists who lack diagnostic experience
are prone to errors in diagnosis. For those reasons, the

classification of pathological images of lung and colon cancer
necessitates a more intricate representation of features.

The histopathology image classification for lung and colon
cancer faces several persistent challenges that have yet to be
resolved. Initially, one of the major obstacles is the potential
for misclassification due to the overlapping histopathological
characteristics of different lung cancer subtypes (lung
adenocarcinoma, lung squamous cell carcinoma), which can
make it challenging even for experienced pathologists to
differentiate between them. Accordingly, CNN, which can
accurately distinguish between such subtypes, is critical
for reliable diagnosis. Secondly, the scarcity of accessible
datasets presents a formidable challenge in developing CNN
models for histopathological image analysis, as the model
may not accurately learn the differentiating features of
various lung and colon cancer images. Moreover, focusing
solely on lung cancer excludes benign nodules. Excluding
the benign nodules can also lead to a bias in the model,
as the model is not exposed to benign nodules, which
may differ in shape, size, and texture from malignant
nodules. The exclusion of benign can lead to overfitting the
model by making it less accurate. Furthermore, focusing
on the shape-based diversity of colon cancer images is the
lack of standardization in defining and measuring shape-
based features. Thirdly, the absence of sharpness within
the image impairs its ability to discern intricate details,
primarily attributed to the inherent blurriness present in the
images. Fourthly, other authors have emphasized the holistic
examination of the entire image, neglecting to allocate due
consideration to localized regions. This oversight engenders
heightened computational intricacies within the analysis
framework. Fifthly, network interpretability falls short in
elucidating the specific regions of interest that the model
prioritizes, thus obscuring the precise focal areas within
the analyzed images. Finally, incorporating patient-level
value into the analysis can provide a more comprehensive
understanding of the relationship between clinical factors
and imaging features and ultimately lead to more accurate
classification methods.

To overcome these issues, we develop a CNN model
from scratch, with the ultimate aim of achieving higher
accuracy in histopathological image classification. Specifi-
cally, we have incorporated the convolutional block attention
module (CBAM) [10] into the network, which enables it
to selectively focus on crucial features while disregarding
irrelevant ones, thus improving the adaptive refinement of
tissue feature extraction from each layer of the network.
The integration of the global context (GC) module with the
CBAM can enhance the CBAM’s ability to capture semantic
information from input images. The concatenatedmodule can
capture fine-grained details, attend to relevant image regions,
and consider global contextual information. In addition,
we have proposed a generative adversarial network (GAN)
architecture and also labeled the CRAG dataset by expert
histopathologists to generate supplementary images that can
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be used in conjunction with the original dataset to mitigate
the issue of image scarcity. We further extended our scope
to encompass benign nodules, employing advanced image
enhancement techniques to enhance the visual clarity of
our dataset. Additionally, we integrated GradCAM visual-
ization for its capacity to illuminate and accentuate areas
indicative of malignancy within the images and significantly
enhanced the precision and interpretative depth of our
method.

This work describes a scratch CNN model developed
by incorporating the global context attention block. Our
contributions are as follows:

1) The proposed scratch CNNmodel is combined with the
global context attention block, which enables themodel
to focus on the most relevant features for classifica-
tion that help disambiguate between similar-looking
classes. The proposed module reduces 0.47 million
parameters and 10.54 million FLOPs,10.72 million
MACs, and 0.03s inference time, and also increases the
image level and patient level accuracy by 2.84% and
3.17%, respectively, than integrating CBAM [10] alone
to CNN baseline.

2) We created a dataset, GGLCI, using the proposed
GAN architecture and also labeled the CRAG dataset
by expert histopathologists to increase samples. These
additional images were able to address similar cancer
subtypes and benign nodules incorporated in lung
cancer to remove bias and improve the model’s
accuracy [11].

3) We developed a stage-based image enhancement
method to enhance the quality of histopathological
images.

4) To the best of our knowledge, this is the first work that
addresses both patient and image levels in classifying
lung and colon cancer. We also evaluate the proposed
model on amore challengingKatherMulticlass Dataset
that allows us to validate the robustness of our approach
on a different dataset.

The remaining parts of this study are organized as follows:
Section II will provide a brief yet comprehensive review of
the current state-of-the-art techniques. The finer points of
our proposed methodology shall be explicated in detail in
Section III. The results of our empirical investigations shall be
presented in Section IV, and the conclusion will be provided
in Section V.

II. RELATED WORK
For over four decades, researchers in the field of medical
imaging have been actively investigating the viability of
automating the diagnosis of cancer through the classification
of histopathological images into either benign or malig-
nant patterns, with the primary objective of facilitating a
more efficient and reliable image analysis system. Despite
these efforts, the intricate nature of histological images
has presented significant challenges in the image analysis

process, impeding the full realization of a comprehensive
and sophisticated diagnostic tool. The study [8] delves
into the evolution, present-day implementation, and future
prospects of the application of computer-aided diagnosis
(CAD) in medical imaging. The paper [9] introduces a
sophisticated technique for the automated identification of
malignancies within mammograms. The efficacy of the
method was evaluated on a dataset of 200 mammograms,
resulting in a classification accuracy of 85%. The paper [10]
proposes a sophisticated method for the categorization of
lung needle biopsy images utilizing sparse representation
and a combination of multiple modalities, including texture,
shape, and intensity, in order to enhance the accuracy of
classification.

In [12], the method was put to the test using a dataset
consisting of 38 tissue samples. It achieved a classification
accuracy of 95% for normal and cancerous tissue, as well as
an accuracy of 80% for grading the cancer tissue. The paper
[13] presented an algorithmic approach to identifying polyps
within colonoscopy footage. The efficacy of the method was
gauged using a dataset of 400 colonoscopy videos, resulting
in 92% sensitivity. The authors of the paper [14] present
a computational method for identifying and categorizing
instances of pulmonary cancer within CT scans. The efficacy
of the method was tested on a set of 100 CT scans, yielding
a 95% accuracy rate for cancer detection and 85% for stage
classification. The study in [15], which tested a dataset of
1115 patients, exhibited a remarkable accuracy of 97.64%.
The method proposed in the study [16] was experimentally
validated on a dataset, yielding a diagnostic accuracy of
95.44% for lung cancer and 94.44% for colon cancer. The
findings in [17] showed a high level of accuracy, with a
97.20% success rate in identifying lung cancer. A recent
investigation [11] introduced a novel and tailored deep
convolutional neural network (DNN) architecture derived
from the VGG16 model, specifically devised to enable the
noninvasive detection and differentiation of lung cancer and
latent tuberculosis (LTB). Through extensive training and
testing on sizable CT image datasets, the DNN exhibited
an impressive accuracy rate of 90.4%. However, the study
acknowledged certain shortcomings, notably the limited
number of representative examples in relation to the vast
number of adjustable parameters present within the DNN
architecture. Additionally, the exclusion of benign nodules
from the dataset gave rise to inquiries regarding their potential
influence on classification accuracy as well as the DNN’s
inherent capability to segment such nodules autonomously.
Despite the DNN’s noteworthy performance, occasional
misclassification of nodules occurred due to overlapping
features between LTB and malignant nodules, underscoring
the innate complexities associated with this classification
predicament.

The study [18] endeavored to devise an artificial
intelligence-based diagnostic tool for the autonomous
discernment of normal, unclear, and tumor images from
colonoscopy videos. The methodology encompassed the
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acquisition of 47,555 jpg images from colonoscopy videos
of 24 patients, which were subsequently partitioned into
three distinct classes by an accomplished gastroenterologist.
Subsequently, a singular shot detector, a deep learning frame-
work specifically tailored for object detection, underwent
training utilizing 47,255 images and underwent validation
employing two sets of 300 images. The obtained outcomes
exhibited an average accuracy of 0.9067, precision of 0.9744,
recall of 0.9067, and F1 score of 0.9393. Nonetheless,
the investigation identified constraints in identifying certain
tumors within the validation set, thereby proposing the
necessity for expanding the training set and greater diversi-
fication of colonoscopy image classes, encompassing tumor
morphology, color characteristics, and severity, to heighten
the model’s efficacy.

Furthermore, the integration of [19] has facilitated the
generation of artificial images and stimulated extensive
explorations aimed at refining the foundational elements.
The integration of CBAM [20], which employs a bifocal
attention strategy to optimize the features garnered by
CNN, represents a remarkable effort to elevate its efficacy.
Therefore, it can be deduced that the categorization of lung
and colonic neoplasms has been of paramount importance
for a considerable interim and the fusion of profound neural
networks.

In paper [35], the proposed CVCnet uses a cross-view
block to capture diverse feature embeddings from the
views in stereo vision, and a cascaded spatial perception
module is proposed to redistribute each location in feature
maps according to the weight it occupies, which makes
the extraction of features more effective and achieves the
best performance for stereo image super-resolution tasks.
Moreover, in [36], a lightweight image super-resolution
network was developed that uses an expectation maxi-
mization attention mechanism to capture the long-range
dependencies of HR-size feature maps. The EMASRN
achieves state-of-the-art performance on several image
super-resolution benchmarkswhile being significantly lighter
than the existing methods. Besides that, in [37], a novel
SISR method was used, an interactive memory to store the
intermediate results of the SISR process, and a semantic
similarity learning module to implicitly capture the semantic
similarity between different views. The IML SISR method
achieves better performance on several SISR benchmarks
by effectively exploiting the complementary information of
different views and refining the features of the intermediate
results.

Therefore, it can be deduced that the categorization
of lung and colonic neoplasms has been a matter of
paramount import for a considerable interim. The fusion
of profundal neural nettles and a plenitude of configu-
rations has surpassed the current apogee of art methods.
This fledgling discipline of inquiry presents a wealth
of potential for growth and progress to confront these
difficulties.

TABLE 1. Enhancement result of our method.

A. PREPROCESSING
Preprocessing is crucial for enhancing the accuracy of
cancer histopathological image classification techniques.
The preprocessing phase involves several components,
including image enhancement, resizing and scaling, and
normalization.
Stage Based Image Enhancement Method: The selection of

a distribution for the contrast transform function in enhance-
ment methods depends on the type of input image. For
histopathology images, a uniform distribution is often used
to create a flat histogram. On the other hand, a bell-shaped
histogram can be achieved using a rayleigh distribution in
Fig. 1. In the first stage, a flat-shaped histogram is used to
enhance the overall brightness and contrast of the image, and
the formula for this is in Equation 1:

g(r) = 255×
f (r) − min(f )
max(f ) − min(f )

(1)

where, g(r) is the equalized intensity value, f (r) is the original
intensity value, min(f ) and max(f ) are the minimum and
maximum intensities in the image.

In the second stage, a bell-shaped histogram is used
to further refine the enhancement. This can be achieved
through Gaussian filtering, which results in a bell-shaped
histogram, and the formula for Gaussian filtering is in
Equation 2:

g(x, y) =
1
2
πσ 2e−

(x2+y2)
2σ2 (2)

where, g(x, y) is the filtered intensity value, x and y are the
coordinates of the pixel, and σ is the standard deviation of
the gaussian distribution.

The uniform distribution indicates a repetition of similar
intensities, while the Rayleigh distribution usually represents
a normal distribution with a cluster of high-density data.
In the proposed approach, there are two stages involved in
achieving the desired outcomes (Fig. 2).
The entropy of the input image is 6.80, whereas ours is

7.78. Table 1 enumerates the results of various metrics for
evaluating the efficacy of histopathological slides. It can
be deduced from Table 1 that the stage-based image
enhancement method yields commendable results in terms of
the quality assessment metrics of the images.

In order to minimize computational expenses and optimize
model performance, the images are resized to a compact size
of 64×64 pixels. This resizing operation significantly reduces
the computational burden and processing time, resulting
in improved model performance. Furthermore, the original
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FIGURE 1. Stage-based image enhancement method.

FIGURE 2. Image enhancement examples. (a) : Input image. (b): Enhanced image.

images contain RGB coefficients ranging from 0 to 255,
which are excessively high for efficient processing. As a
solution, we have transformed the pixel values by scaling
them with a factor of 1/255.0, which effectively maps
the pixel values to the normalized range of [0, 1]. This
step ensures that all pixel values are brought within a
standardized interval, facilitating faster convergence during
network training.

The addition of normalization aims to standardize the raw
input pixels, resulting in their transformation to have a mean
of 0 and a standard deviation of 1. Without normalization,
the dataset may contain numerical data points that vary
significantly in magnitude, with some being very high and
others very low. Consequently, during training, unnormalized
data can lead to the dominance of large values over smaller
ones for unevenly distributed input importance. However,
normalizing the training data brings all data points to a
uniform scale, enabling faster convergence during network
training.

B. FEATURE EXTRACTION
CNNs are powerful tools for feature extraction in lung and
colon cancer classification. They enable accurate and auto-
mated analysis of medical images, utilizing their hierarchical
architecture, adaptive filtering, and ability to capture com-
plex patterns. CNNs have significantly transformed cancer
classification, specifically lung and colon cancer, by serv-
ing as advanced tools for extracting important features.

These models automatically learn and extract meaningful
characteristics from raw histopathological images, capturing
intricate patterns and structures that indicate different types
of cancer. CNNs use convolutional layers that apply filters
to the input image, analyzing it to produce maps of features
that represent local patterns. These filters act as detectors
for edges, textures, and other visual elements relevant to
cancer classification. Pooling layers are then used to con-
dense the feature maps while retaining the most significant
information. The hierarchical arrangement of convolutional
and pooling layers allows the CNN to progressively capture
and understand complex features present in the input images.
Moreover, the learned features in CNNs go beyond simple
visual attributes and can represent more abstract concepts.
As the network learns from large sets of labeled data,
it automatically discovers distinctive features that are crucial
for distinguishing between different types of cancer. This
innate ability of CNNs to identify informative features is
essential for developing highly accurate cancer classification
models.

C. CLASSIFICATION USING SOFTMAX
The utilization of the softmax activation function in the
intricate histopathological image classification task for five
classes of lung and colon cancer enables the conversion of
raw model outputs into a probability distribution, thereby
facilitating precise inference and decision making and
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expressed by the provided Equation 3:

S(i)k =
eik∑5
t=1 e

it
(3)

where i and k denote the input vector and index of the current
element, respectively.

D. GLOBAL CONTEXT ATTENTION BLOCK
INCORPORATION WITH SCRATCH CNN MODEL
The methodology employed in Fig. 3 for the CNN initiates
with an input image of size 64 × 64 × 3, which undergoes
two sequential convolutional blocks, kernel of size 3, and 32
output channels in each, designed to extract features through
the use of filters and GeLU activation function, with the
filters traversing across the input image to generate feature
maps that emphasize specific traits of the image and the
activation functions introducing non-linearity to the model,
thus enabling it to comprehend intricate relationships within
the data. The max pooling layer is of pool size 2 × 2 with
stride 2, and the stride dimension is (1,1) with the same
padding. To promote faster convergence, theGeLU activation
function is employed. It can be defined as the product of
the input value and the probability that a random variable
sampled from the standard normal distribution is less than or
equal to the input value. This probability is calculated using
the cumulative distribution function of the standard normal
distribution, denoted as P, and Equation 4 can be expressed
as follows:

GeLU (x) = x · P(X ≤ x) (4)

Here, P is the cumulative distribution function of the standard
normal distribution. Subsequently, the model integrates three
residual units meticulously devised to facilitate the training
of deeper networks by circumventing the vanishing gradient
problem. The model then employs a separable convolution
layer that performs spatial convolution on the input followed
by pointwise convolution on the output with the kernel of size
3 and various sizes of output channels. The model includes
a GC attention block featuring a self-attention mechanism
to enable the model to focus on varying parts of the image
during the forward pass. Additionally, the activations of
the preceding layer are normalized for each mini-batch of
data using batch normalization to maintain the stability
of the model during training and prevent activations from
exploding or vanishing. During training, the dropout layer
randomly drops out activations, thus preventing overfitting.
Finally, after passing through the fully connected layer, the
Softmax activation layer provides a probability distribution
over the final prediction. To enhance a model’s overall
performance, combining batch normalization and dropout
techniques is advantageous by incorporating an IC layer
[21]. The IC layer serves the purpose of decreasing the
mutual information between the outputs of any two neurons
within the model. This reduction in mutual information is
achieved by a factor of p2, where p represents the probability

of dropout. Additionally, the IC layer also reduces the
correlation coefficient between neurons by a factor of p. Thus
IC layer effectively reduces the amount of shared information
between neurons and decreases the interdependence among
them, resulting in improved model performance.

This work presents an attempt to implement the residual
unit by integrating {-IC-seperable_conv-GC attention block-
GeLU-} layers. The study focuses on three distinct types
of residual units and analyzes their unique short paths,
with the objective of determining the optimal residual
unit types: 1. 3×{GeLU-IC-seperable_conv-GC attention
block} 2. 3×{IC-seperable_conv-GC attention block-GeLU}
3. 3×{seperable_conv-GC attention block-GeLU-IC}.

In order to enhance the effectiveness of CBAM’s attention
mechanism by incorporating semantic information, we fused
the GC module, creating the GC attention block. The
primary purpose of the GC module is to capture the holistic
understanding and interpretation of the input image. Semantic
information holds significant importance in the task of
image classification as it empowers the model to grasp
the underlying meaning and contextual relevance of objects
depicted within the image. This goes beyond relying solely
on basic visual features like edges and textures. Integrating
the gc module into CBAM’s attention mechanism enables
the model to incorporate high-level semantic cues and global
context while attending to specific regions of interest. This
combination enhances the model’s ability to comprehend the
overall semantics of the image, leading to improved image
classification performance.

Our proposed GC attention block is composed of two
primary components: the attention module(CBAM) and GC
module. CBAM’s channel attention mechanism computes
the channel-wise importance of features in an input feature
map by rescaling them using a learned weight vector W and
the spatial attention mechanism computes the spatial-wise
importance of the features. It generates a spatial attention
map A. Given input feature maps X ∈ RH×W×C , where
H represents the height, W represents the width, and C
represents the number of channels in Equations 5-8:

1) GLOBAL CONTEXT MODULE

Fgc = fpool(X ) ∈ R1×1×C (5)

where fpool denotes the global pooling operation applied to
X , resulting in feature maps Fgc with spatial dimensions
reduced to 1 × 1 while preserving the number of channels,
the dimensions of the feature maps are represented using the
real number space R.

2) CBAM MODULE

Fcbam = fcbam(X ) ∈ RH×W×C (6)

where, the function fcbam represents the application of
channel-wise and spatial attentionmechanisms toX , resulting
in feature maps Fcbam with the same spatial dimensions
(H ,W ) and number of channels (C).
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FIGURE 3. The overall framework of the proposed method. (a) : CNN baseline architecture. (b): Reformulating residual unit. (c): IC layer. (d): GC
attention block. (e): Key showing important components.

3) CONCATENATION

Fconcat = [Fgc,Fcbam] ∈ RH×W×2C (7)

The operator [·, ·] denotes the concatenation along the
channel axis, combining feature maps Fgc and Fcbam to form
Fconcat with dimensions (H ,W , 2C). The first C channels
of Fconcat correspond to Fgc, and the subsequent C channels
correspond to Fcbam.

4) CONVOLUTIONAL LAYER

Ffused = fconv(Fconcat ) ∈ RH
′
×W ′

×D (8)

The function fconv represents the application of a convolu-
tional layer to Fconcat , resulting in fused feature maps Fused
with dimensions (H ′,W ′,D). The effect of GC attention
block on performance, parameter, MACs, inference time, and
FLOPs count is explained in this paper.

III. EXPERIMENTS
A. IMPLEMENTATION ENVIRONMENT
The experiments for this work were conducted using Python
v3.7 on a Colab Pro notebook, which is a cloud-based
platform that provides faster access to backend tensor
processing unit (TPU) runtime and offers up to 100 GB of
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storage capacity for creating and saving notebooks. Google
Colab Pro’s CPU clock rate is 2.30 gigahertz, signifying a
rapid processing capability of 2.30 billion cycles per second.
The hardware utilized in the experiments included an Asus
TUF Gaming A15 FA506ICB Ryzen 5 4600H RTX 3050
4GB Graphics with 8GB RAM, running on the Microsoft
Windows 11 operating system. The deep learning model was
developed using the Keras API with TensorFlow backend
using FastAI framework, while the scikit learn library,
Pandas, Numpy, cv2, Matplotlib, os were utilized for model
evaluation, scoring strategy, and numerical computation.

B. DATASET DESCRIPTION
In order to establish the validity of our proposed model,
we conducted experiments on multiple datasets, including
the LC25000 dataset [22], labeled colorectal adenocarcinoma
gland (CRAG) dataset [23], the self-generatedGGLCI dataset
of lung and colon cancer images created using GANs and
validated by an expert histopathologist, the GLaS dataset
[24], and the Kather Multiclass dataset [25].

1) LC25000 DATASET
In this current research, the LC25000 dataset is utilized
in [22]. The dataset consists of 25,000 images of lung
and colon tissues, which are classified into five categories.
The lung tissue images are divided into three categories:
adenocarcinoma, squamous cell carcinoma, and benign,
while the colon images are classified into two categories: ade-
nocarcinoma, and benign tissues. The dataset was increased
from 1,250 pathology images to 25,000 images through
image augmentation techniques such as flipping and rotating.
The images were resized to a square format of 768×768
by cropping. The images used have been validated for
privacy and comply with the Health Insurance Portability and
Accountability Act regulations. Some sample images from
the dataset are shown in Fig. 4.

2) GLaS DATASET
The dataset [24], encompasses a total of 165 images, which
have been procured from the examination of 16 histological
sections stained utilizing the Hematoxylin and Eosin (A&H)
technique. These sections, sourced from distinct individuals
and subjected to processing at different times in the labora-
tory, exhibit a pronounced inter-patient diversity in staining
patterns and tissue morphological composition. Patient No-
15’s samples are shown in Fig. 5.

3) CRAG DATASET
The CRAG [23] corpus was instituted with the intent of
facilitating segmentation; however, within the confines of
our investigative foray, we sought to tackle a challenge that
pertained to categorization. The visages within the CRAG
dataset were systematically partitioned and designated by
seasoned histopathologists into two distinct classes: Ade-
nocarcinomas of the colon and innocuous colonic tissue.

The compendium consisted of one hundred and forty-eight
specimens of malignant colonic neoplasms and forty-five
instances of innocuous colonic tissue. A few samples are
shown in Fig. 6.

4) THE KATHER MULTICLASS DATASET
The Kather Multiclass Dataset, an opus published in [25],
is comprised of two distinct subsets, both of which consist
of H&E stained tissue patches meticulously extracted from
86 colorectal tissue slides with the aid of manual delineation
of tissue regions. The KMI subset encompasses a total of
100,000 histopathological tissue patches obtained at 20x
magnification.

5) GGLCI DATASET
With the aim of addressing the challenge of image scarcity
and increasing the quantity of available images, the GGLCI
dataset was created by utilizing GAN. The configuration
of the GAN utilized to synthesize a new dataset of images
is represented in Fig. 7. The design of the generator
encompasses three convolutional layers and deconvolutional
layers and transforms a 100-dimensional random number
array derived from the input data into a 64×64 pixel
image. The deconvolutional layer featuring a 5×5 filter
is interspersed with subsampling layers, including max
pooling, GeLU activation, and batch normalization. The
discriminator, consisting of three convolutional layers with
5×5 filters, assesses the authenticity of the generated image.
The training of the GANwas accomplished by employing the
Jensen-Shannon divergence metric to quantify the divergence
between probability distributions. Adversarial networks serve
as a means of gauging the disparity between the probabilities
assigned to the generator’s outputs and the actual data. This
disparity assessment facilitates the training of the GAN,
propelling it toward the production of images that bear a
greater resemblance to the real data. The Jensen Shannon
divergence [26] proves to be a valuable tool in the training
of GANs due to its efficiency in optimization and its
ability to furnish a smooth metric of similarity, thereby
circumventing the obstacles posed by other divergence
measures, such as Kullback Leibler divergence. The formula
for Jensen-Shannon divergence is in Equation 9:

(X ,Y ) =
(KL(X ||M ) + KL(Y ||M ))

2
(9)

where, X and Y are two probability distributions, M =
X+Y
2

is the average of the two distributions, KL(X ||Y ) is the
Kullback Leibler divergence between X and Y .

To optimize the efficiency of the neural network, we set the
learning rate at 0.001 and performed training for 1000 epochs
utilizing a Lion optimizer, and we generated 2500 images.
These images were produced by the GAN generator, which
is trained to generate synthetic data samples that closely
resemble the real data distribution. The generated samples are
depicted in Fig. 8.
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FIGURE 4. LC25000 dataset sample images.

FIGURE 5. GLaS dataset patient no-15’s samples. (a) : Sample 1. (b):
Sample 2. (c): Sample 3.

C. PERFORMANCE METRICS
Evaluation metrics play a crucial role in evaluating the
resilience and effectiveness of deep learning or machine
learning models. In order to comprehensively assess the
performance of both scratch-trained and fine-tuned pre-
trained models, the evaluation process was meticulously
conducted by leveraging the five foremost evaluation metrics
outlined in Equations 10-14:

A =
TP + TN

TP + TN + FP + FN
(10)

P =
TP

TP + FP
(11)

S =
TP

TP + FN
(12)

F1 score =
2 × P × S
P + S

(13)

MCC =
(TP × TN) − (FP × FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(14)

where A, P, S, and MCC represent the accuracy, precision,
sensitivity, andMatthews correlation coefficient, respectively
and TP, FP, TN, and FN refer to true positive, false positive,
true negative, and false negative. In multiclass classification,
TP represents the number of instances correctly classified
as belonging to a specific class. TN represents instances
correctly classified as not belonging to that specific class
for all other classes. FP are instances incorrectly classified
as belonging to the specific class, while FN are instances
incorrectly classified as not belonging to the specific class.

Inference time is the amount of time it takes for a
model to process a new sample. FLOPs and MACs are

FIGURE 6. CRAG dataset samples.

essential metrics for evaluating computational complexity.
FLOPs quantify the speed of arithmetic operations, including
additions and multiplications with floating-point numbers.
In contrast, MACs focus solely on counting multiply-
accumulate operations, a critical element in various deep
learning computations. Using Equations 15-16 FLOPs and
MACs can be calculated:

FLOPs = (Number of multiply-add operations per element)

× (Number of elements processed) (15)

MACs = (Number of multiply operations per element)

× (Number of elements processed) (16)

Patient level accuracy is a commonly utilized evaluation
criterion in medical image analysis [27] and is calculated
as the fraction of patients that were correctly classified in
a dataset. Patient level accuracy was measured using the
Equations 17-18:

Patient_score =
PC
PT

(17)

Patient_accuracy =

∑
Patient_score

TT
(18)

where, PC, PT and TT represent respectively image of patient
P correctly identified, the total images of Patient P, and the
total number of patients.

In Equation 17, Patient_score is the ratio of correctly
identified images of a patient and total images of that

110172 VOLUME 11, 2023



M. A.-M. Provath et al.: Classification of Lung and Colon Cancer Histopathological Images

FIGURE 7. Proposed generative adversarial network architecture consisting of generator and discriminator.

FIGURE 8. GAN generated image samples.

patient. In the Equation 18, Patient_accuracy is calculated by
averaging patient scores.

IV. RESULTS AND DISCUSSION
In order to address the issue of limited availability of data
in the medical domain, we generated additional images from
our self-generated GGLCI dataset. We labeled the CRAG
dataset to construct a more extensive and diverse dataset for
the task of classifying lung and colon cancer histopathology
images. The resulting combined dataset in Table 2 was then
partitioned randomly into three distinct subsets, comprising
training, testing, and validation data, in a ratio of 70:15:15.
This enabled us to train and evaluate our proposed models
using a sufficiently large and diverse set of labeled images,
thereby enhancing the overall robustness and generalizability
of our approach for accurate cancer classification.

In order to reduce the computational complexity of the
framework, we modified the dimensions of the images to
64×64×3. To illustrate the impact of this resizing operation,
we provide representative examples of the rescaled images in
Fig. 9.
After employing normalization to enhance the convergence

speed of the model during its training, a performance com-
parison was conducted on both normalized and unnormalized
data, as shown in Table 3. The table’s results indicate superior
performance was achieved in both image and patient level
with batch normalization.

The categorical cross-entropy loss, with its intricate fusion
of logarithmic transformations, multivariate probabilistic
calculations, and intricate label differentiations, presents an
arduous and labyrinthine endeavor that delves deep into the
intricate nuances of image classification and is given by
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TABLE 2. Combined dataset summary.

TABLE 3. Performance impact of batch normalization, where BN denotes batch normalization.

FIGURE 9. Example of resizing. (a) : Original image. (b): Resized image.

Equation 19:

CCL = −log p(k) (19)

where CCL denotes the categorical cross-entropy loss, and
p(k) refers to the probabilistic value of the class k that is fired
up in the one hot vector.

We employ a comprehensive analysis to assess perfor-
mance, juxtaposing the outcomes achieved through the
conventional hyper-parameter training process with those
realized using the one-cycle policy [43].
Table 4 depicted a thorough and comprehensive illustration

of the intricately tuned hyperparameters using traditional
fashion. It is evident that a batch size of 256 and an epoch
value of 110 yielded the highest testing accuracy of 99.76%,
showcasing their effectiveness in optimizing the neural net-
work model. Additionally, the Lion optimizer and a dropout
rate of 0.45 also achieved the same remarkable testing
accuracy of 99.76%, highlighting their strong performance
in enhancing the model’s predictive capabilities.

A total of 110 epochs were used in order to evaluate the
classification accuracy of the proposed model in Fig. 10(a)
and revealed that the validation accuracy of the proposed
model achieved the best outcome of 99.76% at the last

epoch. Furthermore, after the 83rd epoch, the accuracy
remained stable, with the model consistently achieving the
same maximum accuracy as the last epoch. Conversely, the
training accuracy curve exhibited a gradual and almost steady
increase, ultimately reaching the highest accuracy of 99.81%
at the 85th epoch, and this value closely corresponds to
the accuracy achieved in the final epoch. In contrast, the
validation accuracy curve displayed occasional performance
declines, indicating a level of instability. However, these
declines were mitigated over time as the training process
continued. In addition, the validation accuracy remained
relatively stable after the 60th epoch, providing evidence
that the proposed model is capable of providing robust
and reliable classification outcomes. Fig.10(c) indicates
minimized generalization error by avoiding overfitting.

Now, one cycle policy involves cycling the learning rate
between specified bounds to avoid steep loss areas and
find flatter minima. The optimal learning rate is chosen
just before the loss begins to rise, while weight decay (L2
regularization) should be the largest that allows training at a
high learning rate. Through a grid search of weight decays
(0.0001,1e−5,1e−6) shown in Fig. 11(a), we select WD =

0.0001 for low loss and the highest learning rate before
divergence, setting the initial learning rate at 1e−2, close to
the loss bottom but still descending. Based on Fig. 11(b),
following a learning rate range test, we opt for a maximum
learning rate of 5e−4 and a minimum learning rate of 5e−5.
In Fig. 11(c), a conspicuous learning rate pattern emerges:
it begins modestly, surges to its zenith at the midpoint,
then gracefully tapers off towards completion. This strategic
maneuver entails a humble launch with a low initial learning
rate, gradually escalating it to a loftier level. This elevated
learning rate functions as a robust regulator, thwarting the
model from settling into constrictive and precipitous local
minima, thereby encouraging the exploration of broader,
more resilient ones. As we traverse the midpoint of the
learning rate cycle, we embark on a process of gradually
diminishing the learning rate, signaling our entry into
a promising, stable territory. Our objective at this stage

110174 VOLUME 11, 2023



M. A.-M. Provath et al.: Classification of Lung and Colon Cancer Histopathological Images

FIGURE 10. Combined dataset outcomes. (a) : Accuracy comparison curve (fixed lr). (b): Loss comparison curve (fixed lr). (c): Generalization loss curve
(fixed lr), which is the gap between validation and training loss. (d): Observation of super convergence (validation accuracy).

TABLE 4. Hyperparameter configuration for fixed learning rate.

TABLE 5. Class wise performance of combined dataset.

pivots towards pinpointing the optimal minima within this
dependable zone. Incorporating cyclical momentum (CM)
into this strategy begins at its zenith. It gracefully wanes
in tandem with the ascending learning rate, eventually

stabilizing at a value of 0.8 shown in Fig. 11(d). This
infusion of cyclical momentum, pairedwith the LR range test,
amplifies convergence stability, particularly when grappling
with more substantial learning rate values, surpassing the
benefits of a static momentum approach. In our performance
comparison of different batch sizes, including 128, 256, and
512, it becomes apparent that the 512 batch size stands
out as the superior choice within the one-cycle approach,
achieving a superior balance in regularization that leads to
enhanced performance. Observing Fig. 10(d), it is discernible
that the one-cycle policy achieves comparable validation
accuracy in a notably shorter timeframe, specifically within
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FIGURE 11. Hyperparameter tuning for one cycle policy. (a) : Tuning weight decay. (b): Learning rate range test. (c): Cyclical learning rate. (d): Cyclical
momentum.

FIGURE 12. Combined dataset outcome. (a) : Receiver operating characteristic curve. (b): Confusion matrix.

the 32nd epoch. In contrast, the conventional hyperparameter
training process attains the same accuracy level by the 110th
epoch. Given the substantial reduction in training duration
afforded by the one-cycle policy, we have opted to adopt this
hyperparameter configuration for the remaining sections of
our research paper.

The investigation presented in this work shows the
utilization of a proposed model, where the testing subset at
the 32nd epoch was classified, and the resulting confusion

matrix and receiver operating characteristic (ROC) curves
were analyzed, as displayed in Fig. 12. The assessment of the
confusion matrix exposed the presence of misclassification
in Lung_aca, with some Lung_aca erroneously classified as
Lung_squ. These observations were further validated by the
ROC curves, as the curves for Lung_ben and Colon_ben
approached the top-left corner, indicating a successful
classification of their respective samples. Nevertheless, the
classifier encountered difficulties in categorizing the samples
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TABLE 6. Performance evaluation for different Network configurations of scratch CNN where R, IT, F, MCC for the residual unit, inference time, F1-score,
Matthews correlation coefficient, respectively.

belonging to the remaining three classes. In sum, the
proposed model demonstrated a high level of efficiency,
as evidenced by its performance values. To gain a more
comprehensive understanding of the proposed model’s
performance, classification is provided in Table 5. Upon
analyzing the results presented in Table 6, it becomes evident
that among the three types of residual units, specifically
type 1, utilizing a combination of the 3×{GeLU-IC-
seperable_conv-GC attention block} architecture, exhibits
superior performance compared to the other types. In other
words, this particular configuration outperforms the rest in
terms of achieving better results, according to the metrics
evaluated. The assessment results demonstrate the integration
of different attention modules and a GC module with a
CNN baseline. The CNN baseline achieved image-level
accuracy of 90.01% and patient-level accuracy of 87.05%,
comprising 1.27 million parameters and 29.36 million
FLOPs. Incorporating the ECA-Net module resulted in an
improvement of 6.14% and 2.47% in image level and patient-
level accuracy, respectively. This came with an increase of
0.09 million parameters and 13.09 million FLOPs. Including
the CBAM module alone in the architecture led to an
accuracy improvement of 6.91% in image-level and 4.28%
in patient-level accuracy compared to Model 1. It also
introduced an increase of 0.54 million parameters and
62.09 FLOPs. The addition of the GC module in Model
2 not only reduced the number of parameters and FLOPs but
also increased both image level and patient level accuracy.
Finally, incorporating the GC and attention module resulted
in a reduction of 0.47 million parameters and 10.54 million
FLOPs. This module also improved the image level and
patient level accuracy by 2.84% and 3.17%, respectively,
compared to using CBAM alone. The GC attention module
effectively reduces the number of FLOPs through global
pooling while also experiencing a smaller decrease in param-
eters due to the introduction of an additional convolutional
layer. The global pooling operation fpool is applied to the input
feature maps X, resulting in feature maps fgc with spatial

dimensions reduced to 1×1 while preserving the number of
channels (C). This operation significantly reduces FLOPs
since it computes the average or maximum value across
all spatial locations. The GC module improves accuracy
by incorporating global semantic information through the
global pooling operation. By considering the entire feature
map during pooling, the module captures important GC,
which can aid in lung and colon cancer classification tasks.
Reducing the number of parameters and FLOPs in Model
5 provides benefits such as improved efficiency, faster
inference times, reduced overfitting, more accessible training
and deployment, model compression, and cost reduction.
However, upon meticulous examination of the tabulated
results, it becomes conspicuously evident that the proposed
Model 5, featuring the incorporation of a residual unit
connection 1 and combining a scratch CNNwith both CBAM
and GC attention blocks, has yielded an exceptional F1
score of 99.70% and a commendable MCC of 99.59%. The
utilization of F1 score and MCC as evaluation metrics is
particularly advantageous due to their ability to account for
both precision and recall, thereby offering a well-balanced
assessment of the model’s performance. Moreover, their
resilience in the case of class imbalance guarantees a faithful
reflection of the model’s capacity to detect instances of
the minority class while upholding a stringent standard
of precision. The results unequivocally manifest a notable
reduction in inference time when utilizing the GC attention
block is significant.

Through meticulous statistical analysis of Table 7, it’s
evident that Model 5 outshines the state-of-the-art mod-
els in histopathology image classification. The Matthews
correlation coefficient (MCC) of 99.59 achieved by Model
5 stands out significantly, indicating its superior ability to
handle both true positives and true negatives. Moreover,
the accuracy (A) of 99.4 attests to its exceptional overall
classification performance. While some transfer learning
models demonstrate strong results, they fall short of Model
5’s performance, even with their larger parameter counts and
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TABLE 7. Performance comparison of transfer learning models and our proposed model 5 on the test set where IT, A, MCC for inference time, accuracy,
Matthews correlation coefficient respectively.

FIGURE 13. Each row showing low-to-high level convolutional feature maps using the proposed model 5.

TABLE 8. Ablation study for scratch CNN where AI and AP denote image level accuracy and patient level accuracy, respectively.

computational requirements. Additionally, Model 5 manages
to maintain a competitive inference time of 0.95s, making it
a practical choice for real-world applications. This combina-
tion of high accuracy, balanced performance, and efficiency
underpins the compelling case for Model 5’s superiority
in histopathology image classification. This disparity can
be attributed to the incongruity in nature between the
benchmark datasets and the histopathology slides, leading
to the irrelevance of the low-level features retrieved through
transfer learning methods that are reliant on benchmark
datasets.

The feature map produced by the convolutional layer of a
CNN encapsulates complex representations of local patterns,
textures, and visual attributes, exhibiting spatial hierarchies
that encode high-level semantic information important for
cancer classification in lung and colon histopathological
images. The higher-level feature maps exhibit larger and less
comprehensible features than those typically processed by
humans. The arrangement of feature maps in Fig. 13, based
on the convolutional part of Model 5 from the lower level
to higher level layers, demonstrates that the convolutional
architecture of the model primarily captures irregular shapes,
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FIGURE 14. Examples of GradCAM visualization outcome. (a) : Lung cancer samples. (b): Colon cancer samples.

disorganized cell arrangements, abnormal cell size and shape,
hyperchromatic nuclei, increasedmitotic activity, and nuclear
to cytoplasmic ratio as features in the lower-level layers,
while deeper layers extract increasingly encoded features that
lack human readability.

The GradCAM visualization, a sophisticated tool utilized
by researchers to gain insight into the decision-making
mechanisms of deep neural networks, provides a means
to comprehend the inner workings of the network and
discover any potential biases or deficiencies when combined
with grayscale heatmaps, offering valuable insight into the
network’s prediction outcomes through the illumination of

the attention it pays to specific regions of the image,
as exemplified by a few representative samples of GradCAM
visualization and grayscale heat maps displayed in Fig. 14,
thus allowing for the fine-tuning of the network and
enhancement of its overall performance by directing attention
to critical areas of the image.

By implementing the same network configuration and
hyperparameters as used in the table of the combined dataset,
the performance evaluation of the proposed method was
conducted on the Kather Multiclass dataset. The dataset was
divided into 70%, 15%, and 15%portions for training, testing,
and validating the models, respectively. The obtained results
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FIGURE 15. Kather Multiclass dataset outcome. (a) : Receiver operating characteristic curve. (b): Confusion matrix.

revealed that the proposed method achieved the highest F1-
score of 97.5%, suggesting its competence not only on
specific datasets but also on other datasets. Furthermore,
the robustness of the proposed method’s performance across
various datasets is supported by the confusion matrix and
ROC curve displayed in Fig. 15. Conducting a series of
ablation experiments, we progressively incorporate enhanced
modules into the model alongside the scratch CNN to assess
their dependability and significance. These experiments aim
to evaluate the model’s performance based on different
assessment criteria. The results of these rigorous investiga-
tions are presented in Table 8, providing a comprehensive
summary of our findings. From the table, the baseline model,
without any additional modules, achieved an accuracy of
86.4 at the image level and 83.5 at the patient level while
experiment 1 introduces stage-based enhancement, resulting
in 3% and 3.7% at image and patient levels, respectively
improvement in performance compared to the baseline.
In experiment 2, in addition to stage-based enhancement,
GGLCI and labeled images are used, further improving
the performance and in experiment 3 attention module is
introduced, leading to a significant boost in performance
with an accuracy of 96.9% and 93.1% at image and patient
level respectively. Finally, experiment 4 combines stage-
based enhancement, GGLCI, and GC attention module and
achieves the highest performance among all experiments,
with an accuracy of 96.9% and 93.1% at the image and patient
level, respectively. at image and patient level, respectively.
and the improvement over the baseline is substantial at 13.3%
and 13% at image and patient levels, respectively.

In this work, the effectiveness of the proposed multiclass
classification model was assessed and compared to the results
obtained by previous researchers in the field, as depicted in
Table 9. Despite the non-uniformity of the datasets utilized
by these researchers, a comparison was drawn based on
the common objective of the task. Our model exhibited

exceptional performance with a remarkable classification
accuracy of 99.76%, effectively reducing the discrepancy
between the two forms of cancer, lung adenocarcinoma,
and lung squamous cell carcinoma, and signifying a relative
improvement. Prior studies neglected to incorporate residual
blocks, which are crucial components for constructing deeper
network configurations and alleviating the vanishing gradient
issue. The implementation of skip connections within resid-
ual networks also facilitates the efficient flow of information
across the network, thereby enabling optimization. Despite
this, the shallow network architecture of CNN models
results in restricted feature extraction and an inclination
towards overfitting. Our proposed model consists of three
residual blocks and employs separable convolution layers.
Furthermore, the IC layer in our model promotes greater
autonomy among neurons and counteracts the occurrence of
wandering optimization patterns that could be produced by
the singular usage of batch normalization.

In the medical image analysis domain, patient-level
accuracy is considered as a primary evaluation metric, and
the results demonstrate exceptional performance, with a
classification accuracy rate of 96.5% for the GLaS dataset.
It is crucial to report patient-level accuracy as it provides a
more comprehensive understanding of the model’s overall
performance beyond individual image accuracy calculation,
which is particularly significant in the medical imaging
domain, where the objective is to make precise diagnoses
at the patient level. Furthermore, the proposed method
was compared to a CNN-based classification technique
for the Kather Multiclass dataset, achieving a notable
improvement of 1.1% in accuracy, indicating its potential
to accurately classify images. Table 10, establishes the
efficacy of the proposed approach in accurately classifying
images and highlights its potential to make a significant
contribution to the advancement of the image classification
field.
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TABLE 9. Author accuracy comparison.

TABLE 10. Kather multiclass dataset accuracy comparison.

Our work is associated with a number of notable
limitations. Firstly, despite our best efforts to generate a
comprehensive dataset for training the model, the possibility
exists that further expansion of the dataset with additional
histopathological slides may be required to optimize the
overall performance of the model. Secondly, although the
developed methodology demonstrated impressive perfor-
mance, misclassification continued to occur due to the
intrinsic similarity in features. Thirdly, the dataset did not
include images of adenosquamous carcinoma lung cancer
subtypes, a combination of squamous cell carcinoma and
adenocarcinoma, due to unavailability, making it difficult
to determine how the classification of these subtypes may
impact the overall accuracy of the model.

V. CONCLUSION
Lung and colon cancer histopathological image classification
is performed in this paper through a fresh lens by contem-
plating how to capture both channel and spatial attention
with semantic information from the image in order to further
improve the performance of existing works. An attention
module called the GC attention module for CNN backbone
is proposed, which results in a significant improvement in
accuracy, attaining 99.76% and 96.5%, respectively, at the
image and patient level. Moreover, it reduces 0.47 million
parameters, 10.72 million MACs, 10.54 million FLOPs, and
0.03s inference time. This work is the first, to the best
of our knowledge, to address both patient and image-level
accuracy. Furthermore, a notable F1 score of 99.7% and an
MCC of 99.59%, both considered as the preferred evaluation
metrics for imbalanced datasets, are attained by increasing the
dataset size with the help of GAN, labeling CRAG by expert

histopathologist. In the future, the dataset can be expanded
to include even more challenging types of histopathological
images. There is room for improvement by fine-tuning the
GC attention block and experimenting with various vision
transformers. Additionally, we can tap into multiple data
sources, including genomics, radiomics, and clinical data,
combining them with the power of deep learning models to
discover new biomarkers. This approach could lead to a shift
in how we approach personalized medicine.
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