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ABSTRACT We proposed a novel image enhancement framework to raise the visibility of the image’s con-
tent. Our primary concern is eliminating haze-like effects and simultaneously increasing images’ brightness.
Dehazing and luminance enhancement algorithms are considered standard techniques to overcome these
issues. However, natural environments usually involve several unfavorable conditions simultaneously, such
as insufficient illumination, blur caused by the haze, and color cast resulting from the sun or scattering; this
makes dehazing algorithms challenging to overcome environmental issues. Besides, dehazing algorithms
sometimes result in artifacts. The proposed framework solves these issues simultaneously by implementing
a double-side enhancement in contrast and brightness based on a new dehazing algorithm. We compare
the new dehazing algorithm with others using full-reference benchmarks to ensure performance stability.
Afterward, to show the advantage of using the new dehazing algorithm, we evaluate the compatibility
between the proposed framework and all dehazing algorithms using non-reference benchmarks. At last,
we pair dehazing and luminance enhancement algorithms and compare the combinations with the proposed
framework. Eventually, experimental results prove that the new dehazing algorithm outperforms others and is
better compatible with the proposed framework. Meanwhile, the proposed framework is superior in contrast
and brightness enhancements and outperforms the single dehazing algorithm or the combinations.

INDEX TERMS Image enhancement, contrast enhancement, brightness enhancement, low-visibility image,
haze removal, dehaze, fog.

I. INTRODUCTION
Image clarity was usually interfered with by haze, fog,
smoke, rain, and unideal illumination. Some of the above
phenomena resulted in haze-like effects and degraded vis-
ibility. These natural phenomena were all related to the
atmospheric impacts caused by the scattering, and dehazing
algorithms [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12] were the standard techniques to eliminate scattering
effects. The early design of dehazing algorithms focused
on visibility enhancement or haze-pattern analysis rather
than scene restoration [1], [2], [3], [4]. Researchers used
an atmospheric model that obeyed Koschmieder’s Law [1],
assuming the scene was composed of the global atmospheric
light and actual scene radiance; accordingly, the atmo-
spheric model helped eliminate haze-like effects. After that,
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machine-learning-based methods became the mainstream of
dehazing study. Some research [5], [6], [7], [8] still followed
Koschmieder’s Law; others [9], [10], [11], [12], [13] gen-
erated a clear image directly with the help of deep-learning
networks learned from hazy datasets. In this stage, dehazing
algorithms were commonly known as the image restoration
algorithm; thus, visibility enhancement was only a part of
the goals for dehazing algorithms, and full-reference bench-
marks [14], [15] became the most important standards to
evaluate the performance [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13].

Nevertheless, from the perspectives of applications, dehaz-
ing algorithms were usually considered the image enhance-
ment method to improve the clarity or quality of unfavorable
images, as reported in [16]. Sometimes, applications also
wished that dehazing algorithms could improve recognition
accuracy. As a significant trend, more and more researchers
evaluated the dehazing algorithm using non-reference
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FIGURE 1. Low visibility images caused by haze (a) during the day in a
high-light environment, (b) during the day in a low-lowlight environment,
(c) in the evening, and (d) at night.

benchmarks [17], [18], [19], which assessed the naturalness,
contrast, and brightness of images. As the pre-processing
algorithms, they played important roles in various fields,
such as semantic segmentation [20], object recognition [21],
[22], security sensor applications [23], airport control [24],
and auto-pilot [20], [25]. However, the performance of
dehazing algorithms was quite limited while dealing with
various haze conditions. According to the report in [8],
machine-learning-based dehazing algorithms were weak in
dense haze situations, thereby unsuitable for low-visibility
images. On the contrary, early dehazing algorithms could
remarkably eliminate thick haze situations. However, they
tended to over-enhance the result and generate artifacts
due to an instinct for luminance deductions. Besides, nat-
ural environments were so complicated that conventional
dehazing algorithms hardly overcame the compounded issues
caused by natural events. For convenience, we illustrated
low-visibility images captured in four unfavorable environ-
ments in Fig. 1. Dehazing algorithms usually worked well
when applied to the hazy image captured during the day,
such as an image illustrated in Fig. 1(a). However, dense
haze and chromatic atmospheric light may degrade visibility,
as shown in Figs. 1(b) and 1(c), respectively; generally,
these issues made dehazing algorithms fail luminance and
color restoration. Situations may become more complicated
at night with haze and artificial light sources, as shown
in Fig. 1(d).

Researchers proposed various methods to overcome the
shortages of dehazing algorithms. However, these meth-
ods needed a run-through summary because the functions
were sometimes similar and overlapped. For example, some
research aimed at nighttime images [26], [27], [28], [29].
Nighttime images usually contained compounded issues,
including non-uniform illumination resulting from artificial
light sources, haze-like effects, and glow effects caused by
the atmosphere and artificial light sources. Issues defined in
the research were quite different; some focused on haze-like

effects while others did not. On the other hand, some research
aimed at daytime images, such as dehazing-like algorithms
proposed in [30] and [31]. There was also research focused on
improving low-light environments without haze-like effects
[35], [36], [37]; the primary techniques of thesemethodswere
quite different. Some research adopted feature fusion tech-
niques [32], [33], [34]; some obeyed retinex theory [35], [36].
Meanwhile, some research focused on specific events; for
example, capturing low-light images with a camera brought
lots of noise in real-world situations owing to high ISO
(sensitivity) settings. Some research focused on this situa-
tion, providing an optimized Bezier curve to the mapping
scheme [38] or an additional denoise function while enhanc-
ing brightness [39]. Moreover, research in [40] concentrates
on daytime and nighttime conditions. There was also research
focused on estimating visibility [41].
Summarily, the problems associated with flawed images

were similar but slightly different. Hence, the recovering
algorithms’ functions were also similar but aimed at different
issues, making it challenging to have a distinct classification
regarding their functions. Nevertheless, the goals of the above
methods were the same: improving the visibility. In this study,
we concentrated on limited phenomena: haze-like effects and
natural illumination issues. Note that glow effects caused by
artificial light sources were not the primary concern in this
study; nevertheless, we used the image in Fig. 1(d) to test the
performance associated with luminance enhancement.

As previously discussed, using dehazing algorithms
to overcome complicated effects in natural environments
resulted in two problems. We ascribe artifact issues to unsta-
ble performance and brightness degradations to the instinct
of dehazing algorithms. Therefore, dehazing low-visibility
images required additional luminance enhancements [42],
[43], [44], [45]. Nevertheless, after some derivations, we con-
clude that dehazing algorithms can simultaneously solve
haze and illumination issues in theory. We propose a novel
framework to enhance low-visibility images and overcome
low-illumination and dense haze conditions by repeatedly
using a dehazing algorithm. The contributions of our research
include the following:
• We propose clear derivations and analysis to demon-
strate that dehazing algorithms can theoretically solve
haze and illumination problems at the same time.

• Based on our theory, we proposed a novel enhancement
framework.

• We also proposed a new dehazing algorithm with
a novel transmission thresholding method because
existing dehazing algorithms cannot stably produce
quality-enhanced results under the proposed framework.

II. RELATED WORKS
A. DARK CHANNEL PRIOR
An atmospheric model describing the effects of the single and
homogeneous scattering is formulated as follows:

I = Jt + A (1− t) , (1)
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FIGURE 2. (a) Low-visibility images caused by haze; (b) Dehazed image of
(a) obtained using DCP [1]; (c) Negative image of (a); (d) Dehazed image
of (c) obtained using our dehazing algorithm; (e) Positive image of (d);
(f) Final enhanced image of (a) obtained using the proposed framework.

where I is a hazy image, t is the transmission, A is the global
atmospheric light, and J is a dehazed image of the hazy
image. The first and second terms on the right side in (1)
are the direct attenuation and atmospheric terms, respectively.
When both sides of (1) are divided by A, the result is as
follows:

Î = Ĵ t + (1− t) , (2)

where the hat symbol denotes a variable divided by the global
atmospheric light. After considering the minimal operator
concerning the RGB color channels and a small patch in
images, (2) can be rewritten as follows:

min
�

min
c
Î = min

�
min
c
[ȷ̂ t + (1− t)]

= min
�

min
c

ȷ̂ t +min
�

(1− t), (3)

where � denotes a small patch, and c represents RGB color
channels. Dark channel prior (DCP) assumes that the lowest
responses within � in a clear image are close to zero; there-
fore, we can obtain a preliminary estimate of the transmission
roughly as follows:

t̃ = 1−min
�

min
c
Î , (4)

where t̃ denoted the preliminary estimate. However, t̃ needs
further refinement to solve edge alignment problems caused
by the patch-wise minima operator.

We follow the concept of DCP, except that we ignore
the patch-wise minima operator. Accordingly, we rewrite (3)

as follows:

min
c
Î = min

c
Ĵ t + (1− t). (5)

For convenience, we replace the minima operators in (5) with
more straightforward symbols, as follows:

Îmin = Ĵmint + (1− t), (6)

where Îmin and Ĵmin denote results obtained using the
pixel-wise minima operator on corresponding images. Note
that Îmin and Ĵmin are one kind of dark channel. Similar to (4),
we obtain our preliminary estimate of the transmission as
follows:

t̃ = 1− Îmin. (7)

However, the preliminary estimate also needs refinements
because of over-saturation problems. Refinements are usu-
ally implemented on Îmin; accordingly, we denote a refined
estimate of the transmission as follows:

tr = 1− Î rmin, (8)

where tr and Î rmin denote refined results of corresponding
variables.

B. CONTRAST AND LUMINANCE IN HAZE REMOVAL
Note that when the minima operator in (6) is replaced with
the maxima operator, the result is as follows:

max
c
Î = max

c
Ĵ t + (1− t). (9)

Similarly, we rewrite (9) in the previous style and obtain the
following:

Îmax = Ĵmaxt + (1− t) . (10)

Note that A and C are the HSV color space’s value chan-
nels, indicating the brightness of corresponding images. After
some derivations, (10) can be summarized as follows:

t =
1− Îmax
1− Ĵmax

=
SÎ
SĴ

, (11)

where SÎ and SĴ respectively denote the negative images of
Îmax and Ĵmax; therefore, SÎ and SĴ represent the darkness of Î
and Ĵ . Besides the brightness relation, we obtain the contrast
relation based on the gradient as follows:

SÎ
SĴ
∝
∇ Îmax
∇ Ĵmax

, (12)

where ∇ is the gradient operator. The situation was first
reported by Liu et al. [8], showing that when haze removal
algorithms generate a contrasting dehazed image, the dark-
ness of the dehazed image increases; otherwise, the dehazed
image remains bright but unclear. Accordingly, Liu et al.
proposed a theory that all dehazing algorithms based on the
atmospheric model in (1) involve a trade-off between contrast
rise and brightness degradation of the dehazed image.
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III. THE PROPOSED METHOD
An example of Liu’s theory is illustrated in Fig. 2. A low-
visibility image and its dehazed result obtained usingDCP are
shown in Figs. 2(a) and 2(b), respectively. The dehazed result
in Fig. 2(b) is more contrasting than the low-visibility image;
however, the brightness of the dehazed image degrades. As a
result, dehazing algorithms do not help overcome visibility
issues caused by lowlight environments in most cases.

A. THE PROPOSED FRAMEWORK
The proposed framework involves two-time dehazing pro-
cesses. According to (2), when dehazing the negative image
of the hazy image, the process can be demonstrated as
follows:

Ĵn= 1−
1− În

tn
, (13)

where În is the negative image of Î , and tn is the correspond-
ing transmission. To simplify (13), we use a fixed global
atmospheric light An of which all RGB values are defined as
one. Since RGB values of An are one, the above equation is
equivalent to the following:

Jn= 1−
1− In

tn
, (14)

where In is the negative image of I . We illustrated corre-
sponding experimental results in Fig. 2. A negative image and
a corresponding dehazed result obtained using our dehazing
algorithm are shown in Figs. 2(c) and 2(d), respectively. The
experimental results comply with Liu’s theory, so the image’s
contrast in Fig. 2(d) rises while brightness degrades. Note
that (14) can be rewritten when replacing the negative images
with corresponding positive images and is equivalent to the
following:

J∗ =
I
tn

, (15)

where J∗ is the positive image of Jn and also a
preliminarily-enhanced result of I . The fact that tn is less
than one guarantees that J∗ is more contrasting and brighter
than I . Therefore, we conclude that inputting a negative
image to dehazing algorithms helps raise contrast and bright-
ness. An example shown in Fig. 2(e) clearly illustrates this
phenomenon. The process of dehazing a negative image and
retrieving the positive image of the dehazed result using
(15) can be considered a particular case in Liu’s theory.
Since dehazing algorithms lower the brightness of the input
to enhance the contrast, they should raise the brightness to
improve contrast in an inverted case using (15). Therefore, the
positive image in Fig. 2(e) is brighter and more contrasting
than the original image in Fig. 2(a).

On the other hand, the dehazed result of J∗ can be obtained
as follows:

J∗∗ = A∗ −
A∗ − J∗

t∗
, (16)

where J∗∗ denote the dehazed image obtained from J∗.
Fig. 2(f) demonstrates a final result obtained using the pro-
posed framework. The final result is brighter and more
contrasting when compared with the low-visibility image in
Fig. 2(a); meanwhile, the final result is superior in visibil-
ity compared with the dehazed and preliminarily-enhanced
results in Figs. 2(b) and 2(e), respectively. However, unlike
dehazing the negative image in (14), the global atmospheric
light should be estimated accurately to overcome color devi-
ations caused by colorful scattered light.

B. OUR DEHAZING ALGORITHM
Previous discussions indicate that the proposed framework
improves the visibility degraded by haze and unideal illu-
mination. After some experiments, we found that the stable
performance of dehazing algorithms is the crucial bottleneck
of the proposed framework. Generally, deep-learning-based
dehazing algorithms aremore stable than conventional dehaz-
ing algorithms in performance, generating dehazed images
of consistent quality. However, deep-learning-based dehaz-
ing algorithms sometimes disobey Liu’s theory because they
use the end-to-end architecture not derived from the atmo-
spheric model in (1); therefore, they do not comply with
our theory and are incompatible with the proposed frame-
work. On the contrary, conventional algorithms lack stability,
usually resulting in over-enhancement when included in the
proposed framework. As a result, a configurable dehazing
algorithm able to control levels of dehazing intensity is nec-
essary.

The transmission is commonly assumed to be smooth in
a small region because the region is related to the object’s
surface, not the texture [1], [2], [3], [4]. According to (2),
we use the following equation to describe the gradient in a
small region:

∇ Î= ∇ Ĵ t ∀P, (17)

where P denotes pixels in a small region. The equation shows
that gradient degradations are highly related to the transmis-
sion at P; therefore, we can estimate transmission levels from
the gradient strength based on the high-frequency component
of the hazy image. We denote a high-frequency component
of I as Lh and conclude a relation as follows:

t ∝ Lh. (18)

The relation indicates that the transmission should positively
correlate to gradients within a small region. We compute the
pixel-wise geometric mean among RGB channels of I , and
the result Im can be obtained as follows:

Im,x = (
∏
y∈c

Ix,y)
1/3
∀x ∈ I , (19)

where x denotes a pixel, c denotes RGB color channels, and
y represents a color channel; note that we calculate Im from
the hazy image, not the normalized one. Low-frequency com-
ponents of Im can be obtained using smoothing algorithms.
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Algorithm 1 Estimate High-frequency Component
input: image I

parameters: Sr =3, η =0.005
output: high-frequency component Lh

Calculate Lm according to (19) and (20)
T 0
1 ← Lm
T 0
1 ← Lm

// Iterative Smoothing Step
for i = 1 to Sr
T i2← ϕi,(T

i−1
1 ,T i−12 , 2i)

T i1← ϕi,(T i2,T
i−1
1 , 2i)

end
Ll← LSrm1

Calculate Lh according to (23)

We conduct the following processes in the natural logarithm
domain to avoid negative values. Accordingly, Lm is defined
as follows:

Lm = ln (Im) . (20)

Similarly, Îmin is transformed into the natural logarithm
domain as follows:

Ldc = ln
(
Îmin

)
, (21)

where Ldc is an initial estimate of the final dark channel.
We import Shen’s method [46] as a smoothing algorithm.
Shen et al. reported that their algorithm could identify joint
edges simultaneously occurring in two inputs and preserve
the joint edges. Shen’s method relies on ridge regression,
which fits one image to another, and the core technology is the
guided image filter (GIF) [47]. The process of GIF is defined
as follows:

argminax , bx
∑
�

x
(
axM�x + bx − N�x

)2
+ η |ax |2 , (22)

where �x denotes a sliding patch in images M and N , x rep-
resents the center of �x , ax and bx are two parameters, and
η controls the shrinkage term. The output of GIF has similar
gradients as M and intensity levels as N . We denote GIF as
ϕ(M ,N , r), where r denotes the radius of �x and η is set
to a default value of 0.005. Shen’s method uses GIF and
iteratively switches the roles of the two inputs to obtain a
smooth result. The smoothing result, denoted as L l , is a low-
frequency component of Lm. After that, a high-frequency
component representing gradient changes on the object’s sur-
faces is obtained as follows:

Lh = Lm − Ll . (23)

Algorithm 1 demonstrates the detail of estimating Lh.
Although the two inputs of ϕ() are the same in Algorithm 1,
they both get smoothing because of the shrinkage term.

Algorithm 2 Refinement
input: initial estimate Ldc

preliminary estimate Pdc
parameters: SR =6, η =0.005

output: refined estimate L̃dc

T 0
1 ← Pdc
T 0
2 ← Ldc

// Iterative Refining Step
for i = 1 to SR
T i2← ϕi,(T

i−1
1 ,T i−12 , 2i)

T i1← ϕi,(T i2,T
i−1
1 , 2i)

end
L̃dc← T i1

We aim to estimate the object’s surfaces by eliminat-
ing gradient changes at the chosen scale. Accordingly,
the iterative smoothing step starts from small patches to
guarantee the input’s smoothness at the fine scale; this
helps the accuracy of the input’s smoothnes at the coarse
scale. Since gradient changes on the object surface cor-
relate to the transmission according to (18), we obtain a
preliminary estimate of the final result according to the
following:

Pdc = Ldc − α |Lh| , (24)

where Pdc denotes the preliminary estimate, and α controls
dehazing levels as a scale factor of Lh; the detail is based
on (8) and can be demonstrated as follows:

t̃ ∝ 1− ePdc = 1− Îmine−α|Lh|. (25)

The equation demonstrates that our dehazing algorithm
produces transmission estimates positively related to |Lh|;
this complies with (18). Moreover, α controls the level of
transmission estimate; this is very useful in preventing over-
enhancements. A refined estimate can be obtained using
Shen’s method, as demonstrated in Algorithm 2; we denote
the refined estimate as L̃dc. Afterward, our transmission esti-
mate can be obtained as follows:

t̃ = 1− eL̃dc , (26)

Eventually, we compute a dehazed image according to the
atmospheric model in (1).

C. ADAPTIVE THRESHOLD TO TRANSMISSION
As previously discussed, over-enhancements are a common
issue of dehazing algorithms, especially for those who can-
not adapt to the complexity of natural scenes. Accordingly,
the thresholding to the transmission is necessary [1], [2],
[3], [4], and a fixed threshold of 0.9 is commonly used to
prevent over-saturation in the sky or low-light regions. How-
ever, a fixed threshold is not adaptive enough to complicated
situations. Fortunately, sky regions are highly correlated to
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FIGURE 3. (a) (e)(i) Low visibility images containing vast sky regions, narrow sky regions, and no sky region, respectively; (b)(f)(j) Enhanced results
with a fixed threshold of 0.9 obtained from (a), (e), and (i), respectively; (c)(g)(k) Histograms of transmission of (a), (e), and (i), respectively;
(d)(h)(l) Enhanced results using thresholding obtained from (a), (e), and (i), respectively;.

the compositions of images. Vanishing points are the most
significant feature able to recognize scene structures. Images
containing vanishing points in the center have vast sky
regions, such as a low-visibility image illustrated in Fig. 3(a).
We enhance the low-visibility image using the proposed
framework based on our dehazing algorithm; as a result,
we draw the distribution of our transmission estimate in a
histogram in Fig. 3(c). The histogram skews to the right,
meaning that the transmission estimate gathers in an inter-
val from 0 to 0.1. The proposed framework over-enhances
sky regions with a fixed threshold of 0.9, as illustrated
in Fig. 3(d). Over-enhancements in sky regions are evi-
dent, needing further remedies to reduce noises, artifacts,
and the loss of brightness. In another case, sky regions in
a low-visibility image illustrated in Fig. 3(e) are narrow
and tend to over-expose after enhancing using the proposed
framework with a fixed threshold of 0.9, as demonstrated in
Fig. 3(f). The histogram of our transmission estimate based
on the low-visibility image is illustrated in Fig. 3(g) and is
a bimodal distribution. Transmission estimates’ distributions
of images in Figs. 3(b) and 3(f) are highly correlated to
the area of sky regions and depend on vanishing points.
A low-visibility image illustrated in Fig. 3(i) oppositely has
no vanishing points and sky regions. In an enhanced result
obtained using the proposed frameworkwith a fixed threshold
of 0.9, degradations from over-enhancements barely happen,
as demonstrated in Fig. 3(j). The enhancement case works

fine because of the smoother transmission estimate’s distri-
bution, as shown in Fig. 3(k).

In conclusion, different issues among the above-mentioned
enhancing cases result from the distribution of transmis-
sion estimates. Low-visibility images containing vast sky
regions involve transmission estimates of long-tail distribu-
tions skewing to the right. On the contrary, narrow sky regions
result in transmission estimates of bimodal distributions.
Since over-enhancements result from low transmission esti-
mates, the distribution of transmission estimates determines
the optimal thresholding. The k-means clustering algorithm
is thereby applied to the histogram of Îmin to cluster trans-
mission estimates into several categories as follows:

argminxi
∑
ni∈N

∑
xi∈ni

(xi − µi)
2
∀xi ∈ Îmin, (27)

where ni denotes a category in a set N ; xi indicates pixels
belonging to ni; µi is the mean of ni; i represents the number
of elements in N and is set to a default value of 3. Afterward,
the optimal threshold can be obtained as follows:

tth =
1
2
(µ1 − µ2), (28)

where tth denotes the transmission threshold, µ1 and µ2
respectively represent the first and secondary minima
among µi. Enhanced results based on our thresholding
method are illustrated in Figs. 3(d), 3(h), and 3(l). Our thresh-
oldingmethod suppresses over-enhancements in Fig. 3(c) and
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Algorithm 3 The Proposed Framework
input: love-visibility image I
parameters: s = 30, v = 90, an =12, ap =10

output: enhanced image J∗∗

Calculate Lh according to Algorithm 1
Obtained the negative image In from I

// Step 1 Compute the Preliminarily-enhanced Result J∗

// Dehazing Process to the Negative Image In

Define the global atmospheric light An as (1,1,1)
Obtain Inmin from I
Calculate Pndc according to (24) using an and Lh
Calculate L̃ndc according Algorithm 2
Calculate t̃n according to (26)
Calculate J∗ according to (15) and t̃n

// Step 2 Compute the fully-enhanced Result J∗∗

// Dehazing Process to J∗

Estimate the global atmospheric light A∗ from J∗

Obtain Ĵ∗min from J∗ and A∗

Calculate P∗dc according to (24) using ap and Lh
Calculate L̃∗dc according to Algorithm 2
Calculate t̃∗ according to (26)
Compute threshold according to (27) and (28)
Thresholding t̃∗

Calculate J∗∗ according to (16) and t̃∗

over-exposures in Fig. 3(g); meanwhile, in a well-enhanced
case, our thresholding method keeps image quality in 3(l).
With the help of our thresholding method, the proposed
framework enhances the visibility of images by all means.
The proposed framework prevents noise and artifact ampli-
fications and improves visibility without harming image
quality; this is the primary difference between conventional
dehazing algorithms and ours. Although some hazy regions
are still hazy in the corners or borders of the image, visibility
has risen substantially due to brightness improvements.

D. ESTIMATE GLOBAL ATMOSPHERIC LIGHT
A global atmospheric light’s estimate is conventionally com-
puted from the brightest pixels; however, many low-visibility
images have over-exposure issues, so the estimated global
atmospheric light may hugely deviate from the truth. To pre-
vent deviations caused by over-exposures, we estimate the
color of the global atmospheric light from pastel-color pixels
because these pixels are most likely to have the same color
as the global atmospheric light. First, we assess the pastel
color according to saturation defined in HSV color space as
follows:

S =
Imax − Imin
Imax + Imin

, (29)

where S is the HSV saturation. The color of the global atmo-
spheric light is then calculated as follows:

CA =
1
Ni

∑
i

Ii∀Si < Ps, (30)

where CA denotes the estimated color of the global atmo-
spheric light; i and Ni respectively denote a pixel set and the
number of the pixel set; Ps denotes the s-th percentile of the
HSV saturation channel. After that, we transform CA into the
HSV color space, and the result is denoted as Ahsv to await a
new brightness assignment. We choose pixels most likely to
lie in the deepest regions by thresholding Imin; afterward, the
average luminance of the selected pixels should represent the
brightness of the global atmospheric light, as follows:

VA =
1
Ni

∑
i

Imax,i ∀Imin,i > Pv (31)

where VA denotes the value channel’s estimate of the global
atmospheric light; i and Ni respectively denote a pixel set and
the number of the pixel set; Pl denotes the v-th percentile
of Imin. Eventually, we replace the value channel of Ahsv with
VA and transform Ahsv back to the RGB color space again as
the final atmospheric light estimate. Note that s and v are set
to default values of 30 and 90, respectively.

E. ALGORITHM
Algorithm 3 demonstrates the overall algorithm of the pro-
posed framework, which includes two steps. The first step
involves brightness and contrast enhancement; we calculate
the negative image of a low-visibility image and estimate
the transmission of the negative image based on (19)-(26).
After that, we calculate a preliminarily-enhanced result of
the low visibility image according to (15); note that the
preliminarily-enhanced result is a positive image. The second
step is a typical dehazing process, which reduces brightness
and raises contrast; we estimate the transmission of the pre-
liminarily enhanced result and use the transmission estimate
to compute the final enhanced result. Eventually, we obtain a
bright and contrasting enhanced result.

IV. EXPERIMENTAL RESULTS
A. GOALS AND SETUP OF EXPERIMENTS
The proposed framework involves dehazing processes twice,
as demonstrated in Algorithm 3; therefore, if a dehazing
algorithm we choose tends to over-enhance the inputs, out-
puts worsen twice. Thus, the performance associated with the
structure similarity and color deviations is essential for the
proposed framework and highly correlates to enhancement
quality; accordingly, we evaluate the performance of our
approaches in several benchmarks in this section. However,
the proposed framework is developed based on the intrinsic
property of the atmospheric model in (1), so our experiments
only focus on evaluations of corresponding dehazing algo-
rithms, including the dark channel prior (DCP) [1], boundary
constraint and contextual regularization (BCCR) [2], color
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TABLE 1. Quality evaluation of dehazing processes.

attenuation prior (CAP) [3], non-local image dehazing (NLD)
[4], DehazeNet (DN) [5], AOD-net (AOD) [7], and contrast
in haze removal algorithm (CIH) [8]. Moreover, we also
test four deep-learning-based dehazing algorithms, includ-
ing the multi-scale convolutional neural networks (MSCN)
[6], gated fusion network (GFN) [9], proximal Dehaze-Net
(PDN) [10] and contrast enhancement and exposure fusion
algorithm (CEE) [12]. We download codes of the dehaz-
ing algorithms mentioned above from the authors’ websites
and use several benchmarks to evaluate the performance of
each dehazing algorithm. Full-reference benchmarks include
the mean square error (MSE), the peak signal-to-noise ratio
(PSNR), the structural similarity index (SSIM) [14], and
the CIEDE2000 [15]. MSE is the L2-errors between the
ground truth and dehazed image, and PSNR indicates the
ratio between the maximal response and MSE. Note that
PSNR measures how the strength of the signal contributes
to the noise so that it can assess the ability of the noise con-
trol. However, according to the definition, MSE and PSNR
are not sensitive to artifacts, structural similarity, and color
deviation [49]; therefore, we use SSIM and CIEDE2000 to
evaluate the structural similarity and color deviations, respec-
tively. Besides, F&T is a feature-based assessment composed
of FSITM [50] and TMQI [51] and assesses features in
the frequency domain for comparison with benchmarks
functioning in the spatial domain. Moreover, we use the
regular DehazeFR [52] to evaluate the performance regard-
ing structure recovery, color renditions, and suppression of
over-enhancement. Non-reference benchmarks include the
perception-based image quality evaluation (PIQE) [17], non-
reference image quality assessment (NRIQA) [18], and blind
image quality evaluation (BIQE) [19]; these benchmarks
evaluate image quality in terms of contrast, brightness, and

image naturalness. All benchmarks are calculated using
MATLAB 2021a under Windows 10 environment. Eventu-
ally, we conduct the evaluations on two datasets, including
the synthetic objective testing set (SOTS) [21] and the
HazeRD dataset (HRD) [53]. Furthermore, we also collect
low-visibility images from previous research and the inter-
net. Our dataset comprises 20 low-visibility images and is
used to evaluate the proposed framework based on different
dehazing algorithms. Unless specifically mentioned, the pro-
posed framework uses default parameters, as demonstrated in
Algorithms 1-3.

B. EVALUATION OF DEHAZING PROCESS
We experiment to evaluate the performance of our dehazing
method, and we give α as a value of 9. In the exper-
iment, our and several conventional dehazing algorithms
are applied to hazy images in SOTS and HRD. Corre-
sponding dehazed images are evaluated using full-reference
benchmarks, and the benchmark results are demonstrated
in Table 1. Our dehazing algorithm is superior in quality
restoration regarding structural similarity and color because
of outstanding SSIM and CIEDE2000 results respectively.
The benchmark results indicate that our dehazing algorithm
results in accurate color and fewer artifacts; this is very impor-
tant to prevent color deviations and structural impairments.
On the other hand, our dehazing method is relatively weak
in MSE, while DN shows noticeable performance. How-
ever, the PSRN indicates that our dehazing algorithm has a
comparable ability to DN concerning noise control. Besides,
although results obtained usingDN show noticeable improve-
ments concerning MSE and PSNR, conventional dehazing
algorithms strongly tend to degrade brightness. We evalu-
ate several dehazing algorithms using our dataset. Tested
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FIGURE 4. (a) Comparisons associated with contrast and brightness between 20 low-visibility images (Raw) and corresponding enhanced results of
conventional dehazing algorithms. The size of circles indicates the performance associated with the geometric mean of PIQE, NRIQA, and BIQE;
(b)(c)(d)(e) Low-visibility images; (f) Comparisons associated with the performance of DCP; (g)(h)(i)(j) Enhanced results of DCP; (k) Comparisons
associated with the performance of MSCN; (l)(m)(n)(o) Enhanced results of MSCN; (p) Comparisons associated with the proposed framework; (q)(r)(s)(t)
Enhanced results based on the proposed framework.

TABLE 2. Quality evaluation of enhancement processes based on dehazing algorithms.

algorithms include DCP, BCCR, CAP, NLD, DN, AOD, CIH,
MSCN, and the proposed framework based on our dehaz-
ing algorithm. This experiment evaluates the corresponding
enhanced results’ contrast, brightness, and image quality.
Accordingly, we assess contrast levels by the mean of the
standard deviation from every 15*15 patch in YCbCr chan-
nels and brightness levels by the average of the Y channel;

meanwhile, we evaluate image quality by PIQE, NRIQA, and
BIQE; these represent the quality in contrast, brightness, and
image naturalness. Table 2 demonstrates the results of the
experiment.

Based on the experimental results, Fig. 4 illustrates crucial
differences between conventional dehazing algorithms and
the proposed framework. The first row in Fig. 4 shows four
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FIGURE 5. (a) Comparisons associated with contrast and brightness between 20 low-visibility images (Raw) and corresponding enhanced results
obtained collaboratively using the proposed framework and dehazing algorithms. The size of circles indicates the performance associated with the
geomean of PIQE, NRIQA, and BIQE; (b)(c)(d)(e) Low-visibility images; (f) Comparisons associated with enhanced results of NLD; (g)(h)(i)(j) Enhanced
results of NLD; (k) Comparisons associated with enhanced results of MSCN; (l)(m)(n)(o) Enhanced results of MSCN; (p) Comparisons associated with
enhanced results of DN; (q)(r)(s)(t) Enhanced results of; (u) Comparisons associated with the proposed framework; (v)(w)(x)(y) Enhanced results of
the proposed framework.

low-visibility images in our dataset with low illumination
or exposures, and the following rows show enhanced results
obtained using several methods, including DCP, MSCN, and
the proposed framework based on our dehazing algorithm.
The chart in Fig. 4(a) compares the contrast and bright-
ness evaluations between raw images (low-visibility images)
and corresponding enhanced results based on all dehazing
algorithms. We use blue to represent assessments for raw
images and red for enhanced results obtained using dehazing
algorithms. The scattered points of the same color indicate
evaluations of images in our dataset by a specific method
(or raw images), and the size of the scattered points repre-
sents the geometric mean among PIQE, NRIQA, and BIQE.

Accordingly, enhanced results obtained using the tested
dehazing algorithms are significantly darker than the raw
images while their contrast rises. As a result, the image qual-
ity of the enhanced results degrades when compared with that
of raw images. The same phenomenon occurs in enhanced
results obtained using DCP and MSCN, as illustrated in
Figs. 4(f) and 4(k). On the contrary, enhanced results based
on the proposed framework are brighter and more contrasting
than others. Fig. 4(p) illustrates the assessment associated
with the proposed framework. Our non-reference bench-
mark results demonstrated in Table 2 prove that contrast
and brightness improvements favor image quality signifi-
cantly; this can be observed from our enhanced results shown
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TABLE 3. QUALITY evaluation of compounded enhancement processes I.

TABLE 4. Quality evaluation of compounded enhancement processes II.

in Figs. 4(q)-4(t). In conclusion, our dehazing algorithms
outperform conventional algorithms in most restoration
assessments and all evaluations associated with image qual-
ity. Conventional dehazing algorithms result in brightness
degradation and sometimes harm image quality; however,
the proposed framework based on our dehazing algorithm
overcomes this issue, producing bright, contrast, natural, and
quality-enhanced results; this makes conventional dehazing
algorithms hardly comparable to the proposed framework.

C. EVALUATION OF ENHANCEMENT FRAMEWORK
We also test each conventional dehazing algorithm’s com-
patibility with the proposed framework. In this experi-
ment, we implement the dehazing process demonstrated in
Algorithm 3 with conventional dehazing algorithms, and
Table 3 shows corresponding experimental results. Contrast
improvements associated with BCCR, NLD, and CIH are
superior to our dehazing algorithm; nevertheless, the con-
trast improvements do not positively affect image quality
according to their PIQE, NRIQA, and BIQE results. A similar
situation happens in brightness evaluations; AOD produces
enhanced results of higher brightness but unsatisfactory
image quality. We illustrated some enhanced results in Fig. 5
to show the phenomenon. We present four low-visibility
images in the first row of Fig. 5; similar to Fig. 4(a), the chart
in Fig. 5(a) compares the contrast and brightness evaluations

between raw images (low-visibility images) and enhanced
results obtained by all dehazing algorithms based on the
proposed framework. The brightness of enhanced results
rises with the help of the proposed framework; however, the
size of the scattered points indicates that the average image
quality degrades. For example, NLD produces enhanced
results of high contrast; however, these results are usually
over-enhanced. Figs. 5(f)-5(j) show this phenomenon. Over-
enhancement is the decisive reason that NLD, BCCR, and
CIH fail in image quality assessments. Also, note that color
deviations in enhanced results cause errors in global atmo-
spheric light estimates, and the errors are amplified two
times according to Algorithm 3. Nevertheless, our thresh-
olding method overcomes these issues, helping our dehazing
algorithm to prevent over-enhancements.

D. MORE COMPARISONS
At last, we use several low-light enhancement algorithms to
collaborate with conventional dehazing algorithms, attempt-
ing to raise the brightness of corresponding enhanced
results. The low-light enhancement algorithms include
bio- inspired multi-exposure fusion framework (BIMEF)
[33], joint enhancement and denoising method (JED) [16],
fusion- based enhancing method (FBE) [32], and low-light
image enhancement via illumination map estimation (LIME)
[35]. Unfortunately, experimental results are unsatisfactory
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FIGURE 6. (a) (b)(c)(d) Comparisons associated with contrast and brightness between 20 low-visibility images (Raw) and corresponding enhanced
results obtained collaboratively using dehazing algorithms and low-light enhancement methods. The size of circles indicates the performance
associated with the geometric mean of PIQE, NRIQA, and BIQE; (e)(m)(s) Low-visibility images; (f)(i)(j)(k) Results of NLD enhanced using BIMEF, JED,
FBE, and LIME, respectively; (n)(o)(p)(q) Results of BCCR enhanced using BIMEF, JED, FBE, and LIME, respectively; (t)(u)(v)(w) Results of AOD enhanced
using BIMEF, JED, FBE, and LIME, respectively; (l)(r)(x) Enhanced results of the proposed framework. Note that we obtained (x) using an=3 to raise the
brightness.

because of the noise level and artifacts. Low-visibility images
are taken under unideal conditions and usually contain lots
of noise owing to the camera’s high ISO setting. Mean-
while, JPEG compression also results in unnoticeable but
complicated artifacts, so over-enhancements worsen the arti-
facts, especially those in dark or sky regions. As a result,
image quality degrades. Table 4 demonstrates the phe-
nomenon, and Fig. 6 illustrates the corresponding results.
The red points in Figs. 6(a)-6(d) represent each enhanced
result obtained collaboratively using conventional dehaz-
ing and low-light enhancement algorithms. The brightness
and contrast of these enhanced results are comparable
to ours; however, the size of these points indicates that
image quality degrades, as non-reference benchmark results
demonstrated in Table 4. Noise and artifacts result in the
phenomenon. The second, third, and fourth rows in Fig. 6
illustrate enhanced results obtained collaboratively using
NLD, BCCR, AOD, and low-light enhancement methods.
According to these images, enhancements have severely
amplified noise and artifacts in the raw images. Meanwhile,
dehazing algorithms may inaccurately estimate the global
atmospheric light, so the color of these images severely
deviates. We conclude that low-light enhancement algo-
rithms, such as BIMEF, JED, FBE, and LIME, do not favor
image quality when collaborating with dehazing algorithms

because the collaborations produce harsh noise and artifact
amplifications.

E. PENDING ISSUES
We still have two unsolved problems. First, parameter selec-
tion still needs simplifications for the proposed framework,
especially for selecting Sr and SR. The two parameters
decide patch sizes in Algorithms 1 and 2; empirically, this
depends on the image’s length and width. Our dehazing
algorithm is mainly based on (22) and can be solved using
the box filter [54]; this leads to a time complexity as O(n),
where n indicates the number of pixels. The time complex-
ity seems fine; however, the selected patch sizes are the
primary factor in determining the execution time. Accord-
ing to our experiment that repeatedly executes the proposed
method 100 times, the proposed method takes 2.1 seconds
with the help of Nvidia GeForce RTX 2060 to deal with a
one-megapixel image. Down-sampling the input to a half-
mega-pixel image and using the default setting may be a good
solution; this takes only 0.8 seconds. Alternatively, the image
pyramid and machine-learning technique may accelerate the
proposed framework, too.

The second is related to the adaptation. As discussed pre-
viously, the proposed framework does not consider the glow
caused by the atmosphere and artificial light sources. The
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glow is typical for nighttime images taken under fog or haze
environments; however, Figs. 6(s)-6(x) show that dehazing
algorithms barely remove or suppress the glow caused by
the street light. Therefore, it is not realistic to consider the
proposed method a solution to the nighttime image. However,
the proposed framework improves brightness and visibility
like other cases illustrated in Fig 6.

V. CONCLUSION
We propose a novel image enhancement framework to over-
come several visibility issues, which result in unclear image
content owing to limited visible distance. Low-visibility
images are taken under unideal illumination and usually
suffer from under-exposure, noise, and artifacts; moreover,
they may be affected by haze, fog, or rain. The proposed
framework can enhance luminance, reduce harmful effects
resulting from the environment, and raise visibility simulta-
neously; therefore, it is particularly suitable for hazy images
captured under low illumination. The proposed framework
implements a double-side enhancement in contrast and
brightness based on a new dehazing algorithm to increase the
visibility distance of the images. We solve over-enhancement
issues and successfully produce quality-enhanced images
using a novel thresholding method. Experimental results
prove that the performance of the proposed method outper-
formsmany algorithms and their combinations. The proposed
frameworkwill favor recognition accuracywhen dealing with
objects in low-visibility images. Therefore, our future work
focuses on accuracy improvements of object recognition
tasks.
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