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ABSTRACT Generating high-quality, real-world, well-labeled datasets for radio frequencymachine learning
(RFML) applications often proves prohibitively cumbersome and expensive, leading to the low availability of
high-fidelity, low-cost datasets. Specific emitter identification (SEI) in particular requires a hardware setup
capable of supporting transmitting using many different radios, while automated modulation classification
(AMC) performance is primarily driven by SNR, channel effects, and the similarity of modulation types.
These factors give rise to the need for scalable methods of inexpensive dataset generation. This paper
describes the design considerations and a proof-of-concept implementation of a blind user reconfigurable
platform capable of creating SEI and AMC datasets throughout a variety of real-world conditions. This
paper additionally describes the reliability and performance of the platform relative to existing real-world
data generation methods and compares generated datasets to those already present in the literature. This work
also describes the software post-processing steps taken to isolate, label, and cull captured data and transform
these into a high-quality dataset.

INDEX TERMS Specific emitter identification (SEI), automated modulation classification (AMC),
RF fingerprinting, radio frequency machine learning (RFML), radio emitters, real-world dataset generation,
dataset generation.

I. INTRODUCTION
Machine learning (ML) has resulted in advances in the state-
of-the-art in the fields of computer vision, voice recognition,
natural language processing, medical imagery, and finance.
Notably absent from this list is the area of radio signal
processing [1]. Applying ML to radio applications, referred
to as radio frequency machine learning (RFML), shows
increasing promise for the augmentation of capabilities
for signal detection, classification, and estimation [2], [3],
enabling enhanced security and radio spectrum sharing
techniques [4], [5]. ML is used to build correlations and
draw relationships between large sets of data. However,
this data is only useful when it is relevant and tailored
to the resulting application. Depending on the application,
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application-specific data can often be difficult and costly to
procure [6].

Internet of Things (IoT) applications particularly benefit
from additional security measures made possible through
RFML [7], [8]. The continuous expansion of IoT networks
presents a growing attack surface even while adhering to
best security practices [7], [9]. As the number of lightweight
and rudimentary authenticated wireless devices within a
network grows, the susceptibility to, and likelihood of,
common network attacks also grows [7]. Increasing size
of a network further increases the attack surface for node
impersonation, eavesdropping, or denial of service (DoS)
attacks that compromise the confidentiality, integrity, and
availability of the network.

Solutions to the problem of specific emitter identification
(SEI) present a possible mitigation to these concerns. SEI is a
process of determining the identities of individual emitters by
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comparing radio frequency (RF) fingerprints. These RF fin-
gerprints, which are the unavoidable distinguishing features
that arise from the analog components in each emitter, are
orthogonal to the actual information being transmitted [10],
[11], [12], [13]. The main goal is to augment the security
provided by software and firmwaremeasures, which typically
occur at Medium Access Control (MAC) or Network layers
and are vulnerable to manipulation and impersonation,
by incorporating observation of nondeterministic and unclon-
able aspects of the hardware. Through the measurement
of subtle and unintentional modulations on pulse (UMOP)
caused by manufacturing tolerances and non-idealities, SEI
systems aim to identify features that indicate the identity
of each wireless transmitter [14], [15], [16] that may be
used as an additional layer of identity confirmation in IoT
networks on top of traditional cryptographic authentication
protocols.

SEI and RF fingerprinting have applications in a broader
security context, such as wirelessly detecting anomalies
which could indicate an adversary attempting to mimic
or impersonate a node using captured legitimate security
credentials or detecting attempts of intrusion and spoofing
with forged MAC addresses [17], [18]. Additionally, SEI and
RF fingerprinting can be used in military applications, where
they are useful in early warning systems and locating and
tracking emitters [19]. These models also have utility for
cognitive radio, where a software defined radio (SDR) may
adjust its behavior according to its RF context [20]. Context-
dependent behavior is useful for enforcing dynamic spectrum
access (DSA) rules for future wireless communication proto-
cols that are designed to more efficiently utilize allocated RF
spectrum resources [15].
One of the earliest successful approaches to RFfingerprint-

ing, PARADIS, was intended to be used as an extra layer
of security for 802.11 networks [16]. A common feature of
this and similar approaches to both RF fingerprinting and SEI
is their tendency to use hand-crafted algorithms that rely on
expert features to identify transmitters. These expert features
include estimated frequency, received power, phase error,
I/Q offset, SYNC correlation, packet inter-arrival time [16],
[17], [20], [21], [22], and derived features of the power-on
transient energy envelope [23]. These expert features that are
often used, however, suffer from a lack of flexibility that
impedes future progress in development of these algorithms.
Instead, deep learning (DL) and neural network (NN)-
based approaches that operate on raw I/Q data may be
preferred since they can offer greater flexibility in identifying
features of a signal that a designer would otherwise be
unable to notice or manually describe [7], [9], [17], [19].
Part of this desire for ML-based features derives from the
difficulty to precisely model the non-ideal analog circuitry
in the RF signal chain over all ranges of environmental
and operating conditions. Additionally, attempts to spoof or
subvert an SEI or RF fingerprinting unit will likely account
for first order RF nonlinearities, making the higher-order

effects of interest for detection of anomalies or mimicked
signals.

DL and NN approaches, including convolutional NNs
(CNNs) and recurrent NNs (RNNs), require a great deal
of training data to function adequately. Unlike in the areas
of audio or image recognition, standardized datasets for
RFML application spaces are largely lacking, partially due
to the extreme variances in potential transmitter hardware,
channel conditions, and receiver assumptions. A majority of
previous works address this problem by creating their own
dataset [14], [15], [16], [18], [20], [22], either simulated,
real-world captures, or augmented [8]. Simulated data can
be created quickly and efficiently, but engineers lack the
ability to completely model all non-idealities present in
any given transmission. Real-world data must be similar in
nature to the deployment environment, which is often costly,
time consuming, and potentially impossible to gather [24].
An observed risk in prior SEI work with ML techniques is the
learning of the differences in propagation channel between
emitters rather than the RF hardware characteristics, leading
to the need to generalize that propagation path in future
experimentation [25], [26].
To cope with limited availability, existing real-world

datasets are often augmented to increase the amount of useful
data available and to generalize across channel conditions and
propagation environments [27], [28]. For SEI applications,
it has been observed that differing channel conditions and
propagation environments between training and evaluation
datasets can lead to a significant degradation of model
performance [29], yet many of the augmentations do not
apply since the RF fingerprints cannot be synthetically
modified without distorting the learned behaviors. For AMC
applications, augmentation methods can be employed to
create much larger effective datasets. As desired, various
augmentation methods to produce data suitable for the
training of channel-insensitive models remains an active area
of research [30], [31].

Efforts to collect real-world data are confounded by
practical scaling difficulties; while it is easy and inexpensive
to collect a small amount of data from two radios in
one channel environment, it is exceedingly difficult and
expensive to collect a large quantity of data from several
hundred radios in a wide variety of channel environments.
In training generalized SEI models, captures are required
from possibly hundreds or thousands of emitters so that it
may accurately discriminate between known and unknown
emitters; this scaling problem is a distinct challenge.
Furthermore, in a high-quality dataset, the emitter source of
every transmission must be labeled with perfect accuracy,
lest mislabeled entries poison the overall quality of the
dataset [32]. The problem of coordinating labeling becomes
more complex as the number of possible permutations of
receivers, transmitters, and channel environments increases.
In contrast to existingML applications, such as those in image
processing, a robust implementation of an SEI model requires
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capture of non-idealities and subtle differences in received
signals that could otherwise be discarded as noise. The closest
existing modality of comparison would be natural language
processing (audio) with the intent to identify the speaker, but
not necessarily the speech.

Due to these considerable impediments, it is common for
RFML researchers to use MATLAB, GNURadio, or other
similar toolkits to generate simulated datasets [1]. DeepSig
Inc. hosts a few popular freely-available simulated datasets
for AMC [33], but they are from early academic research,
are no longer maintained, and even the authors suggest sim-
ulating new data or using real-world captures. Northeastern
University’s Institute for Wireless Internet of Things hosts
5 categories of datasets for RF fingerprinting with captured,
simulated, and augmented data. Included in these are data
from Wi-Fi, LTE, and 5G stationary emitters and mobile
emitters that are attached to airborne UAVs [25], [29], [34],
[35], [36].

Perhaps the highest quality existing real-world dataset is
the DARPA RFMLS dataset [37], which has over 103 million
labeled transmissions from over 53 thousand Wi-Fi devices
and over 3.5 million transmissions from over 10 thousand
ADS-B transponders. To generate a dataset with the same
number of examples, it is estimated that it would take a
single instance of this approach with one receiver around
82,000 hours. This estimate is calculated based on the
performance characteristics of the proof-of-concept model
and discussion for how this was derived is located in
Section IV-B1. The scalability of the platformmeans that this
duration is easily reduced by running several multi-receiver
setups in parallel. The DARPA RFMLS dataset is subject to
U.S. export restrictions and is therefore exclusively available
to a narrow pool of researchers.

More widely available are the datasets cataloged by the
CRAWDAD resource [38], a majority of which are either
not properly labeled for SEI, not large enough to capture
diverse channel conditions, or have too few labeled emitters
to be applicable to a general SEI model. Available on this
resource is the uw/sigcomm dataset [39], that is a collection
of miscellaneous 802.11 wireless monitoring traces along
with corresponding tcpdump data. A comparatively larger
dataset for Wi-Fi is ‘‘Massive-Scale I/Q Datasets for Radio
Fingerprinting’’ [40], which has 2 TB of collected data from
20 sample devices.

For IoT and low-cost devices, the DroneRF dataset [41]
is a typical example of a small dataset that has 227 dif-
ferent collection segments from 3 different commercially-
available drones. The Device Identification dataset, featured
by the IEEE Communications Society Machine Learning
For Communications Emerging Technologies Initiative [42],
is intended to serve as a common benchmark for IoT SEI
models, but has seen limited adoption thus far with only
one mention in a survey paper [43], but has not yet been
cited by any other works. The IoT SENTINEL dataset [44]
features captures from 31 smart home IoT devices. The
IoT device identification dataset [45] provides 50 GB of

FIGURE 1. General visual overview of the parameters contributing to the
quality of a dataset for the two RFML tasks of this work’s focus. These are
not direct relationships, but rather serve as a general intuition how
‘‘valuable’’ each aspect may be for the creation of a performant model.

863-870 MHz radio spectrum measurements from different
rooms of the same building. A common observation between
the freely-available datasets is their tendency to include data
on the order of 10s of GB from on the order of 10s of devices.

From this survey of datasets and past work assessing the
quality of datasets [6], Fig. 1 shows a quick-guide for a
general impression of the main takeaways on how various
characteristics of a dataset affect its ‘‘goodness’’ for SEI
and AMC applications. It should be stressed that a good
dataset is well-rounded when it comes to these criteria and
the figure instead means to communicate that any sacrifices
when it comes to absolute label accuracy is particularly
degrading to the overall quality of the dataset and the resulting
performance of models trained on it.

The Blind User-Reconfigurable Platform (BURP), the
subject of this work, is not a dataset, but rather the design
of a semi-portable hardware testbed that provides the means
of creating robust datasets for around 100 software-defined
devices over a long period of time and in a variety of
environments. BURP is intended to automate parts of the
process of transmitting, receiving, and cataloging RF data.
This processing is performed in a single-blind fashion, where
a report of groundtruth for the emitters, including fram-
ing sequences and metadata characteristics of the signals,
is retained for scoring the performance of SEI algorithms.
The platform hosts low-end, inexpensive transmitters such as
those used for IoT applications, but could easily be extended
to host other radios of interest, potentially even wrapping the
radios in a shared application programming interface (API)
that enables heterogeneous architecture or co-channel signal
environments.

The choice of low-cost YARD Stick One devices, dis-
cussed in Section II-A, comparable to those used in IoT
applications is especially useful for the later development
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FIGURE 2. High-level diagram of the major components of BURP. The
transmitter host manages an array of transmitters, and is connected to
the receiving ‘‘collection nodes’’ through the control (green) and data
(blue) back-planes.

of SEI algorithms for the IoT space. These SEI algorithms
could possibly be used as a physical-layer security measure
to detect and prevent the introduction of counterfeit devices.
Large datasets, such as those produced by BURP, are
imperative to compensate for the vast quantities of devices
that these models will encounter in diverse propagation
environments. In the creation of BURP, the goal is to
create well-labeled datasets with higher population sizes than
what is otherwise available in existing literature. The same
core software infrastructure presented in this work offers
extension to support other RF emitter types, whether better
quality RF transmitters, RADARs, or other devices.

BURP overcomes the challenge of coordinating a large
number of devices and multiple receivers to transmit,
collect, and label data. The system’s chief design goals are
hands-off operation and scalability. Therefore, to improve
stability, the system features remote monitoring, automatic
error checking, and recovery procedures which include the
ability to control the power available to connected devices.
A high-level diagram of the proof-of-concept BURP setup is
shown in Fig. 2. The individual components of the platform
are explained in detail in later sections. The use of the
USB protocol and the incorporation of software abstraction
layers enables the system to generalize for a variety of
communications, RADAR, and other RF-based applications.

The paper is structured as follows. In Section II, the
requirements and desirable characteristics of the platform are
discussed, culminating in an overall experimental framework
in Section III. Section III focuses on the design of the
experimental hardware setup, addressing many of the lessons
learned and constraints of low-cost components. Section IV
describes the testing and validation results, performance
measurements, and support for potential future RFML
experimentation, including, but not limited to, modulation
recognition and specific emitter identification. Section V

gives a summary and conclusions, along with plans for future
work that will include open publication of a series of RFML
datasets using the BURP machine.

II. GENERATION REQUIREMENTS
The primary requirement of BURP is to provide a modular
platform that is extensible to support an arbitrary number
of low-cost wireless devices with an abstraction layer to
allow the user to easily generate datasets consisting of
short RF energy bursts to their specifications. This is to
reduce the time, complexity, and monetary cost of generating
a large amount of data for use in development, training,
and testing of RFML systems. Moreover, many of the
anticipated RF fingerprint features occur during the turn-on
and turn-off transients of the RF burst, lending a preference
towards the ability to generate short bursts. As a proof-of-
concept, we chose a reconfigurable platform, supporting up
to 120 low-cost USB-based software-defined radios (SDRs).
This limitation is a consequence of the USB protocol’s
indexing, which only supports up to 127 devices on a bus,
including hubs [46].
BURP is intended to be flexible and configurable enough to

support the creation of datasets for a variety of RFML experi-
ments. More specifically, BURP is capable of producing data
suitable for a wide range of RFML use-cases, including signal
detection, AMC, and SEI, with varying channel conditions,
center frequencies (CFs), data rates, sampling rates, burst
contents, burst lengths, transmit powers, and modulation
schemes. Currently of interest are experiments related to
evaluating RF transfer learning (TL) performance under such
changes in channel conditions, transmitter/receiver hardware
configuration, and use-case, extending recent research [47],
[48] from synthetic to captured data. Such experiments aim
to identify how the channel, transmitter/receiver hardware,
and use-case impact learned behavior and facilitate or prevent
successful TL. Future work facilitated by BURP data also
includes development of frequency and data rate agnostic
RFML algorithms, and examining the impacts of transients,
preambles, temperature, humidity, and RF front ends on
RFML performance.

A. TRANSMIT
For transmitting RF bursts, the radio chosen was the
YARD Stick One (YS1), based on a Texas Instruments
CC1111 MCU. This was chosen for its relatively low
unit cost, and its ability to transmit on a range of CFs
(300-348 MHz, 391-464 MHz, 782-928 MHz) with different
modulation schemes (ASK/OOK, GFSK, 2-FSK, 4-FSK,
MSK), and at a range of power levels (-30 to +10 dBm) [49],
[50]. The central component which the YS1 is constructed
around, the Texas Instruments CC1111Fx MCU, is responsi-
ble for communication with the transmitter host through its
USB header, control, and signal modulation [51]. A diagram
of the YS1, its layout, and its major components is shown
in Fig. 3. The BURP transmitter host system should provide
power and control to the entire array of YS1 transmitters used
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FIGURE 3. Layout and components of the YARD stick one wireless test
tool.

for data generation. Using the YS1 is just a proof of concept,
as the platform should be able to support more than just these
specific transmitters. The platform, therefore, needs to be
constructed in such a way that it may be adapted to support
any such low-cost SDR device or wireless emitter with a USB
connector.

When the user wishes to generate data according to
their specifications, such as any arbitrary combination of
supported center frequencies, bandwidths, and modulation
schemes, the transmitter host should be able to read and
interpret the given specifications and use this to build a
‘‘groundtruth’’ for a particular run. This groundtruth file
includes relevant information such as framing sequences,
timestamps, payloads, CFs, data rates, modulation schemes,
etc. The metadata labels in the groundtruth file are nec-
essary for training and evaluating the performance of SEI
models.

An important consideration for the transmitter host is
the detection, identification, and amelioration of errors and
hardware failures, which were much more prevalent than
originally expected in the case of the YS1. This should
extend to include capabilities to notify the user of failed
transmitters and either exclude failed transmitters from the
program flow, or automatically attempt to recover failed
devices and continue normal operation. The transmitter host,
therefore, needs to be aware of its hardware status at all
times, what transmitters are connected, and where they are
connected.

B. RECEIVE
The receive end of the BURP platform needs to host the actual
data collection facilities. For this purpose, there should be
multiple receiving-end ‘‘collection nodes’’ (CNs). These CNs
need to be capable of hosting much higher resolution radios
than the transmitter host, such as USRPs or other SDRs,
and be portable enough to easily be moved, re-oriented,
and re-configured to create datasets more generalized over
channel conditions and multi-path effects from different
rooms or locations within a room.

Each CN handles its own data collection, labeling, tagging,
and storage. This process should happen in coordination
with the transmit end of the platform. Collections should

begin and end when prompted by the transmit end of the
system through a control back-plane, where the transmit end
will be expected to provide information such as expected
radios for collection, CF, sample rate, bandwidth, and gain.
The CN should then configure its attached devices based
on the received parameters and begin collection. Periodically,
the CN will receive updates such as the timing of the
beginning of a new run or frame, or changes in collection
parameters such CF or bandwidth.

Back-plane-communicated timing information should be
used to label the collected data so that theymay bemore easily
correlated with the groundtruth, and changes in collection
parameters should be used to re-configure connected radios
and label relevant portions of the collected data. The collected
data is written and annotated in the SigMF file format.
Additional information, such as detected receiver anomalies,
and atmospheric conditions of temperature, dew point,
and pressure could also be used to annotate the collected
data.

III. EXPERIMENTAL SETUP
The BURP system is the coordination of the transmitter
host and receiver hosts – CNs to create a real-world dataset.
The transmitter host waits for receivers and performs a
handshake to start a data collection task. The transmitter
host instructs connected radios to send bursts while CNs
save RF measurements using their connected receiver radios.
The collected data is compared with the groundtruth in a
post-processing step to create a labeled dataset of RF bursts.
An overview of this process is shown in Fig. 4.

A. SCENARIO ORCHESTRATOR
The configuration for a particular type of run is specified in a
JSON formatted file. Here, the user may specify the sample
space for the possible data rates, CFs, modulation schemes,
burst payload sizes and contents, bursts per frame, and where
to save data captures. The user may choose for the run to cycle
through each permutation of the specified parameters or to
instead sample from these possibilities until a set number of
bursts is reached. If the latter is chosen, they are expected to
also specify the total number of frames.

In these configuration files, the user is also expected to
supply additional information about the experiment itself.
Examples of such configuration files are shown in Listing 1
and Listing 2. This information includes metadata, such as
whether the conducted experiment is interior or exterior, and
the specific room, and hardware configuration information
about the transmitters – which antennas are connected to
which transmitter, the method by which the antennas are
connected (either directly or through an extension cable),
and whether any have inline attenuators between itself and
the antenna. The configuration file also includes run-time
instructions to pass along to the receivers, such as the
RX gain, bandwidth, and sample rate. This additional
overhead on the part of the user is required because this
information is impossible for the BURP transmitter host
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FIGURE 4. Overview of process of dataset creation with the BURP platform from start to finish.

LISTING 1. An example of a configuration file for the scenario
orchestrator. The keyword ‘‘assume’’ means to use default values such as
0 for ‘‘dev-attn’’ (inline attenuation between transmitter and antenna),
‘‘direct’’ for ‘‘dev-at-conn’’ (transmitter-antenna connection method),
or the same number as device ID for ‘‘dev-ant’’ (transmitter connected
antenna id). Arrays, denoted by [], indicate that any of the elements may
be chosen for a particular burst.

machine to automatically determine independently. A full list
of available parameters and their meanings is included in
Table 1.

When a data collection is initiated, the scenario orches-
trator reads every provided configuration file and generates
a groundtruth for each run that conforms to the described
specifications.

LISTING 2. An example of possible alterations to the configuration file in
Listing 1. GFSK and OOK modulation schemes are added, the antennas
corresponding to devices 6 and 1 are swapped, device 3 is connected to
its antenna via an extension cable, and device 7 has an attached 3dB
inline attenuator.

FIGURE 5. The organization structure of data creation and
synchronization of transmissions.

B. TRANSMIT SOFTWARE
The transmit software manages the radios connected to the
transmitter host, publishes updates about its current status,
and subscribes to updates about the status of collection
nodes – the machines hosting the SDRs that are collecting
measurements. Upon user prompting, the transmitter host
waits for subscriptions from the specified number of collec-
tion nodes before it may begin. Once this condition is met,
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FIGURE 6. Program flow of the BURP system when operating with a
transmitter host and one or more receiver host(s). A box with a dotted
outline denotes an entry-point. Colors are used to denote the current
rung of the synchronization structure (see Fig. 5), with blue for a run,
green for a frame, and red for a burst.

the transmitter host enqueues the specified number of tasks.
Transmissions are organized where each task is a collection
of runs, each run is a collection of frames, and each frame is
a collection of bursts. This structure is shown in Fig. 5. The
flow of operations of the transmitter host software with the
receiver host software from the start to the completion of a
run is shown Fig. 6.
A burst is defined as a labeled time periodwith distinct start

and end times where an emitter is transmitting. A single frame
is a sequence of bursts with a transmitted header and trailer
for synchronization between the transmitting and receiving
ends of the system. A header is a 300 baud 2-FSK modulated
sequence of 1023 ones, 1 zero, the unique frame ID, then
1 zero and 1023 ones. The baud rate is set to 300 to reduce
the probability of errors when detecting the final bit. Since the
header and footer are intended to be pure tones, the baud rate
is irrelevant during the majority of the signal. This, in effect,
creates a pure-tone marker that can be used to cross-reference
between receivers the exact time when frames begin.

The received signal for an example frame in the frequency
domain is shown in Fig. 7. The frame header, frame footer,

TABLE 1. All available parameters for configuring a run. A single
configuration file specifies the behavior of both transmitter and receiver.

and 16 bursts sandwiched between them are visible and
annotated. The same sort of frame, instead with 6 bursts,
is shown from the perspective of a receiver in the time domain
in Fig. 8. The exact CF of this signal is dependent on the run
configuration file.

The same structure of signal for the header is sent for the
trailer, with the beginning and ending tones carrying inverted
data as compared to the header, so the marker tone is at a
different frequency than the header. A run corresponds to a
singular ‘use’ of a configuration file from start to finish, so
a task may therefore indicate the specification of multiple
uses of a configuration file.

The transmitter host publishes that a run is beginning,
and waits for subscribers to send a ‘ready’ signal. The
software now begins the ‘radio setup’ phase, where it logs all
connected transmitters and performs a recovery sequence if
any faults are detected. Then, it uses the scenario orchestrator
to generate a groundtruth sequence for this run and begins
the first frame, transmitting the frame header. Within the
frame, the transmitter host conducts individual bursts, where
the parameters of each burst are published so that collected
data may be annotated in real-time by the receivers. Once
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FIGURE 7. Annotated spectrogram of example frame with respective
headers, sequence of bursts, and then footers.

FIGURE 8. Example power vs. time of 6-burst example frame. The y-axis
represents relative received power (uncalibrated). Segments 1 (yellow)
and 8 (cyan) contain the header and footer, respectively. Segments 2-7
contain individual bursts with data modulated in 2-FSK.

all bursts in a frame are complete, the trailer is transmitted
to indicate the end of a frame. Within a frame, the software
may detect that some transmitters are unresponsive or not
working properly. Between frames, the software cycles power
to faulty devices to automatically recover them so the runmay
continue as normal. When all frames have been transmitted,

the current run ends and the next run begins. This cycle
repeats until all tasks are completed and the transmitter
software exits.

C. TRANSMIT HARDWARE
The BURP transmitter host is a specially constructed PC
to support the maximum possible number of USB devices
at once on a single bus. A diagram of how the significant
components of the system are connected is shown in Fig. 11
and photographs of the assembled machine are shown in
Fig. 9 and Fig. 10. The transmitter host machine uses an Intel
i7-12700 CPU with 64GiB DDR4 RAM @ 4800MHz in a
ASUS Prime Z690-P motherboard with Intel Z690 chipset
with a 14TB HDD and 2× 2TB Samsung 970 Evo SSDs
in RAID 1 configuration. A tree of internal USB hubs,
3× 4-port hubs connected to a 4-port hub that is connected
to the motherboard, support an array of 12 externally-facing
drive-bay-mounted 10-port USB-A hubs, culminating in a
total of 120 externally-facing USB-A ports on the front panel
alone.

Each of the externally-facing hubs is ‘‘dumb’’ in that it
contains no internal memory, serial number, or otherwise
identifying information. An indexing flash storage drive with
a unique serial number is connected to each hub to allow
the system to ascertain a certain USB ‘‘coordinate system,’’
where each device connected to the system may have its
logical location as the operating system sees it correlated to
a physical location on the front panel. This information is
used within the transmit software to label data within the
groundtruth so that possible patterns of received power level
or multi-path effects may be later accounted and controlled
for by any user of the generated data. It is possible to index
the system once, in a setup stage, then remove the indexing
flash drives to make space for additional radio devices.
Testing has shown, however, that the USB coordinate system
will occasionally and unpredictably re-arrange itself, and
therefore this processmust be done after each full power cycle
of the motherboard.

Since all of the YS1s are connected simultaneously
through USB, it is possible to give instructions to multiple
devices for overlapping co-channel or adjacent channel
transmissions where more than one radio is transmitting at
a time. This can be used to generate more varied datasets
and train SEI or AMCmodels in less predictable or favorable
conditions. The transmitter host also has the portability of a
typical desktop computer, meaning it can be relocated and
set up in different areas of the same room to achieve variable
harmonic and multi-path effects.

The system has a custom-built power delivery system
with two power supplies; a diagram of this arrangement is
shown in Fig. 11. There is a 1000W main power supply
for the motherboard, CPU, storage, additional sensors, and
typical peripherals, and a 300W auxiliary power supply
for the exterior USB hubs. This auxiliary power supply is
required because the 5V rail of the main power supply is
unable to supply enough current to exterior USB hubs
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FIGURE 9. Side profile of the transmitter host machine with the side
panel removed. The motherboard occupies the back of the case and the
main PSU (not visible) is in the bottom compartment. On top of the
bottom compartment is the auxiliary PSU, which is connected to the USB
hub relays near the top-front of the case. The tip of the atmospheric
probe is visible on the top front of the case above the bank of antennas.

when more than a couple hubs are fully populated with
transmit devices. The power distribution from the auxiliary
power supply is shown in Fig. 12. The power distribution
to the 12 exterior USB hubs is routed through a Numato
Lab 8 Channel USB solid-state relay module [52], which can
connect and disconnect power to the USB hubs depending
on software control. Routing power through relays allows
the transmit software to attempt to automatically recover
misbehaving or unresponsive devices by simulating removing
and re-inserting the device through a power cycle of
the hub the device is hosted on without the associated
mechanical wear or required operator intervention of physical
re-insertion.

Also connected to the transmitter host is a Dracal PTH-200
USB temperature, humidity, and atmospheric sensor [53].
This sensor allows the transmit software to measure and log
temperature, dew point, and atmospheric pressure, which are
used to label each data frame.

D. RECEIVE HARDWARE
Each of the receive-end CNs are ITX form-factor computers
with an Intel i5-11600K processor, 64GiB RAM, 2TB
NVMe solid-state drive, and 14TB 7200 RPM hard disk
drive, along with a PCIe expansion card for 10GbE SFP+

networking. The SFP+ network expansion card is necessary
for collections using certain high-data-rate SDRs such as an
Ettus Research USRP X310 or N320. Each CN can host
a single SDR receiver and is re-configurable to accept any
radio that can communicate with GNURadio through USB
or Ethernet through SFP (up to 10 GbE) or RJ45/8P8C (up
to 1 GbE). For the initial proof-of-concept model, the system
was designed to support the Ettus Research USRP B210 and
E310 and SignalHound SM200C.

FIGURE 10. Front bank of USB hubs on the transmitter host machine
with 20 Yard Stick One devices distributed throughout.

E. RECEIVE SOFTWARE
The receive software subscribes over ZeroMQ to an ongoing
session of the transmit software. Each of the CNs manage
their own connected radio receiver and react to notifications
received from the transmit software through the control back-
plane. When the receive software receives a notification
that a run is starting, the connected radio receiver is
turned on and then a ‘‘ready’’ message is sent back to
the transmitter host. While the system is running, the CNs
monitor and re-configure their connected radio on-the-fly.
When a notification for a frame barrier or a burst is received,
the CN instructs the connected radio to adjust the CF to best
capture this data. Since the data is output in the SigMF file
format, these changes are captured in annotations. When the
run finishes, the radio is switched back off.

Post-processing is split into two primary steps, as shown
in Fig. 13: signal detection and burst isolation/labeling. Both
are entirely implemented in Python.

1) SIGNAL DETECTION
The signal detection stage uses a simple energy detection
algorithm to identify the location (i.e. start/stop indices) of
each burst within the provided SigMF data file, and does not
distinguish between header, footer, and bursts. Detection is
performed as follows: after loading the complex IQ data from
the SigMF data file and calculating the magnitude of each
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FIGURE 11. Data and control structure for BURP system.

FIGURE 12. Power distribution diagram showing relay control of USB hub power.

sample, we perform iterative smoothing of the magnitude
array. The magnitude of the noise floor is estimated from
the first n samples of the smoothed magnitude, where n is
a tunable hyperparameter. Then, looping over the smoothed
magnitude, when the value of the smoothed magnitude is

greater than the noise floor plus some threshold (a tunable
parameter), we denote the start of a burst. When the value
of the smoothed magnitude returns below the noise floor
plus threshold for at least m samples (a tunable parameter),
we denote the end of the burst. Any extra or missed bursts
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FIGURE 13. An overview of the BURP post-processing stages.

detected are removed during the second stage of post-
processing: burst isolation and labeling.

2) BURST ISOLATION & LABELING
The burst isolation and labelling stage uses the output
of the previous signal detection stage, along with the
SigMF data, metadata, and BURP groundtruth files to save
each individual burst in separate SigMF data files with
associated metadata containing the timestamp, estimated
signal-to-noise ratio (SNR), estimated CF offset (CFO),
modulation scheme, transmitter/receiver ID, temperature,
dew point, and atmospheric pressure measurements, and
all other parameters denoted in the configuration file.
To prevent exceeding available memory, we process up
to 106 samples at a time, each in a separate process,
with optional multi-threading. First, header/footer bursts are
identified using the groundtruth timestamps, and the location
of each non-header/footer burst is verified by extrapolat-
ing from the header/footer timestamps using the sample
rate. Any extra or missed bursts detected in the previous
stage are identified through a mismatch in groundtruth
timestamp and extrapolated time, and are removed from
the detections or groundtruth lists. All headers and footers
are also removed from the detections list, so as not to be
included in the dataset. Then, for each verified burst in the
detections list, the contents of the burst is saved to a SigMF
data file with the name ‘runID_frameID_timestamp.sigmf-
data’. All other available metadata (i.e. modulation scheme,
transmitter/receiver ID, temperature/humidity) are collected
from the groundtruth files and saved in the associated
‘runID_frameID_timestamp.sigmf-meta’ file along with the

FIGURE 14. Each burst can be ingested and split into segments or
examples of desired length within the ML framework of choice (PyTorch,
Tensorflow, etc). To ensure each example is distinct from one another,
we encourage placing a buffer between each example taken from the
data file.

estimated SNR of the burst, which is calculated using the
noise floor before and after the burst, and the estimated
CFO.

For RFML model training/evaluation, each burst can be
filtered by metadata parameters, ingested, and split into
segments of desired length within a framework of choice
(PyTorch, Tensorflow, etc). For example, we can select
only bursts transmitted by device 37, received by CN 2,
or transmitted and collected at 434.2MHz, and split these
bursts into examples of 1024 IQ samples. To ensure each
training example is distinct from one another, we encourage
placing a buffer between each example taken from the data
file, as shown in Fig. 14.

IV. TESTING AND VERIFICATION
The primary goal of the verification process was to determine
if the datasets produced by BURP adhered to the speci-
fications in the configuration files. For this, transmission
parameters were set to specific values and the measured
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outputs were compared to the desired results. In the testing
process, the goal was to determine the overall stability
and performance of the system in terms of realized data-
generation capabilities.

A. VALIDATION OF OUTPUTS
It is critically important that data is representative of
the desired learned behaviors for ML applications. Future
inference performance will only meet expectations if training
data is similar to the intended deployment environment.
As previously discussed, sets of bursts, over-the-air transmis-
sions, are structured into frames and parsed to be inputs for a
chosen NN structure. When parsing, data validation included
verification that (1) energy on the expected frequency is
detected well above the noise floor and formed into a
distinct envelope with a defined start time and end time,
(2) timestamps and time-duration of each burst aligned with
that recorded in the groundtruth files, (3) no YS1 emitters
from a previous burst within the same frame are stuck ON
and continuing to transmit during the same time period, and
(4) no other observable anomalous conditions are present.

These validation steps were performed using traditional
signal processing techniques, assuming the truth of the
recorded groundtruth files. A future extension of this
validation process, not yet fully implemented in the current
iteration, is to use a dedicated RX node in Fig. 2 as a co-
located ‘‘point blank’’ local monitor of the generated signals
for a high fidelity, high SNR capture without most channel
perturbations. This would also enable a real-time closed
feedback loop where the BURP transmitter host would be
able to detect and mitigate the situation where a YS1 emitter
is continuing to transmit past the expected end time of an
assigned burst – currently a source of degradation in collected
data.

B. STABILITY AND PERFORMANCE
The BURP framework required substantial debugging effort
to achieve nominal operations. Most of the challenges
revolved around the unpredictability of the chosen low-cost
YS1 emitters and practical limitations of the number of
xHCI USB endpoints available with the Intel Z690 chipset.
Nevertheless, the initial iteration of BURP has proven to be
capable of generating real-world datasets of sufficient size
for medium-scale experimentation for both AMC and SEI at
a faster rate than most existing capabilities. Future planned
incarnations of the platform are also discussed, addressing
identified limitations.

1) DATA GENERATION RATE
To achieve distinct envelopes around transmissions that can
be isolated in time, each burst is conducted in serial with
a brief wait period in-between. Taking into account various
delays and fault-recovery procedures, the theoretical rate of
data generation for the initial revision of BURP is a relatively
slow 1,380 bursts per hour. Given a theoretical target SEI
dataset at just one location with 1M bursts (100 devices

with 10k bursts recorded per device) it would take this
configuration an estimated 724 hours (30 days) of continuous
operation to complete. Given a theoretical target AMCdataset
at just one location with 50k bursts (5 modulation schemes
with 10k bursts recorded per modulation scheme), it would
take this configuration an estimated 36 hours (1.5 days) of
continuous operation to complete.

The rate of data generation could be further increased for a
single transmitter host with the substitution of higher-quality
and more capable radios. Higher quality radios could be
used to provide near continuous timestamped bursts since
the precision of the recorded start and stop times would be
increased considerably, reducing the required wait time to aid
in signal processing (tdelay). This would also reduce the time
required to recover failed devices between frames to nearly
zero, since most radios rarely fail as frequently as the chosen
YS1s. Anticipated upgrades with better radios with reliability
comparable to USRPs, minimized inter-burst latencies, and
payload symbol rate increased to 500k baud would result
in a 10x speed-up for a theoretical data generation rate of
13,900 bursts per hour. With these anticipated upgrades,
to complete the aforementioned theoretical SEI and AMC
datasets it would take 72 hours (3 days) and 3.6 hours,
respectively.

Experimentally, during continuous operation, the data
generation rate of the initial iteration of BURP was measured
to be closer to 1,300 bursts per hour. This rate does
not hold constant, but decreases over time as the rate
of failures increases and overall performance decreases
(See: Section IV-B2). Furthermore, continuous operation
must be occasionally interrupted to copy collected data from
the collection nodes to another location where analysis is
performed.

The theoretical rate of data generation (rtx) is calculated as
follows, where each symbol and its meaning is described in
Table 2:

tburst = tconfig + twait +
lburst
fburst

(1)

theader = tfooter = tconfig +
2 × lflag + 4 × lid

fflag
(2)

tframe = tgt + theader + nbursts(tburst + tdelay)

+ tfooter + trecover (3)

trun = tsetup + (nframes × tframe) (4)

rtx =
nbursts × nframes

trun
(5)

2) STABILITY AND PERFORMANCE DECAY
The emitters connected to the transmitter host are prone to
random and unpredictable failures, that may be categorized
into two types: ‘‘bad transmissions,’’ where a dropped packet
when issuing instructions to the radio causes the radio to
repeatedly and infinitely transmit the contents of its buffer
instead of the intended message, and ‘‘unresponsive radio,’’
where the radio stops responding to messages from the host
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TABLE 2. Definitions of and values for variables used in calculating the
theoretical continuous data generation rate of BURP. Entries whose
values are in italics are derived from other values in the table according
to the described relationships. Entries whose values are in bold are
parameters set by the user before a run. All other values of entries are
either hard-coded or observed properties of the system.

FIGURE 15. Encountered failures over the course of normal
data-collection runs. Each bin represents the ratio of failures to total
attempted bursts over a 2m 53s time period. The trend line is the line of
best fit in the least-square sense.

system, causing USB timeout errors. The trend is captured
in Fig. 15, where the number of anomalies attributable to
these two causes are shown to generally increase over time,
leading to a decrease in overall system stability as time goes
on. The failure rate across the population of devices varies,
as shown in Fig. 16, with some devices having near-perfect
reliability and others having an anomaly arise in over 7% of
the attempted transmissions.

C. LIMITATIONS
1) HARDWARE CONSIDERATIONS
While technically possible to fully populate the USB array
with YS1 transmitters as shown in Fig. 17-A, the connected
antennas have vertical footprints that are too large to stack

FIGURE 16. Histogram of observed failure rates of devices. The
distribution has a mode around 2% and superficially resembles a normal
distribution, but with clipping at 0% and several ‘‘lemon’’ devices not
included in this figure that have a greater than 99% failure rate.

FIGURE 17. Three different USB hub population patterns of transmitters.
Each colored rectangle shows the footprint of each YS1 PCB when viewed
from the front and each colored circle shows the footprint of the
connected antenna. Pattern A is full-density and has ‘‘crushing’’ while
Patterns B and C are half-density and do not have crushing.

neatly and the YS1s are ‘‘crushed’’ askew. This crushing
places strain on both the connectors of the YS1s and the USB
ports, causing damage over time to the components. Instead,
to preserve the devices and USB ports, the devices were
placed in a ‘‘W’’ or ‘‘M’’ pattern as shown in Fig. 17-B and
Fig. 17-C, respectively. This reduces the number of supported
devices with 10 USB hubs from 100 to 50.

When connected through a USB interface, a single YS1
was observed to draw, at a steady-state, 9 mA (45 mW)
at idle. Active power draw varies depending on CF and
modulation scheme. The highest power draw at steady-state
while actively transmitting was measured to be 61 mA
(305 mW) when the modulation scheme was 2-FSK with a
CF between 429MHz and 444MHz. Additionally, the marker
flash drives were observed to draw a steady-state 41 mA
(205 mW).

Therefore, the fully populated BURP transmitter host USB
hub array with 1 active transmitter, 89 idle transmitters, and
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10 marker flash drives draws around 1.3 A (6.3 W) from
connected devices alone. The total power draw is increased
further by the connected relays, USB hubs, and parasitic
resistances. While this power draw seems relatively small,
it was still enough to overwhelm the 5 V rail of the main PSU,
a 1000 W consumer PC power supply. When connected to
a typical PC PSU, the turn-on transient power consumption
of this many connected devices trips protection circuitry and
causes power to be cut to the entire system. If individual
relays are turned on gradually, the 5 V rail of the main PSU
is still unable to supply enough power in the steady-state
and the YS1 behavior becomes significantly more erratic and
less reliable due to brown-outs. To mitigate this, we chose to
include an auxiliary 5V power supply as discussed previously
in Section III-C.

2) TRANSMITTER LIMITATIONS
The chosen transmitter, the Yard Stick One, is not an SDR as
traditionally defined, and is instead marketed as a ‘‘wireless
test tool,’’ and this paper describes using them in ways never
intended by the manufacturer [49]. The firmware, RfCat,
is open-source and is available online [54]. The firmware
required modifications for flashing unique serial numbers,
device IDs, to each device and to allow addressing by this
serial number for a large number of connected devices.

The YS1 is limited to the transmitting within the
300-348 MHz, 391-464 MHz, and 782-928 MHz frequency
bands, with ASK/OOK, GFSK, 2-FSK, 4-FSK, and MSK
modulation schemes, at power levels from -30 to +10 dBm.
The tool can transmit up to 255 bytes at 500k baud, but
was found to be limited to an upper limit of around 230.4k
baud for payloads of up to 65535 bytes. The device is unable
to transmit messages larger than 65535 bytes. Only one
transmitter may be ‘‘active’’ at a time when connected to
the same host and the system is incapable of utilizing more
than one YS1 simultaneously, (e.g., multiple threads each
managing one YS1). When operating within specifications,
the device is still prone to random and unpredictable failures;
these manifest as a dropped packet when communicating
with the device, causing the device to continue transmitting
the last received packets indefinitely, or the device outright
refusing to respond to communication, causing USB timeout
errors. When used in its intended role, these issues are minor
annoyances, but when used to generate large amounts of
data as part of an automated testbed, they compound to
become a major design consideration, lest the system become
completely unreliable.

D. SAMPLE DATASET
The sample dataset includes transmissions from 30 YARD
Stick One emitters at multiple CFs (346.3 MHz, 416.4 MHz,
783.7 MHz). Each run, repeated 3 times at different CFs,
included 64 frames of 64 bursts, each of which had a payload
of 1024 bytes of randomized data transmitted at 31,250 baud.
The 3 co-located receivers were configured with a 250 kHz

sample rate and 250 kHz bandwidth with a gain of 50 dB.
Each radio, emitter and receiver, was connected to an L-com
900 MHz 3 dBi rubber duck antenna which remained the
same throughout the course of the collections. Each set of
3 runs at each CF used randomized emitter positions across
the transmitter host USB hub array. At this baud rate and
payload length with this sample rate, each capture of a burst is
65,536 samples per receiver that may be fed into the front-end
of an SEI or AMC model.

The data was collected at three locations as follows:
• TX and RXs in the same room, direct line of sight:

~150k bursts (~29.5G samples)
• TX and RXs in the same room, metal furniture
obstructing line of sight:~150k bursts (~29.5G samples)

• TX and RXs in different rooms, separated by wall:
~150k bursts (~29.5G samples)

The sample dataset is forthcoming and will be published
for other researchers after we validate it in ongoing SEI and
AMC experiments. We have already performed preliminary
training of SEI and AMC models using the data to indicate
the quality of the generation process. We intend to make
a subsequent review of BURP to increase stability and
reliability before eventually publishing datasets as large as
permitted by IEEE DataPort.

E. FUTURE WORK
The core goal of the BURP framework is to support data
generation for a wide variety of RFML experiments where
previously only simulated data was available. To maximize
the rate of data generation and minimize downtime of the
platform, its performance and reliability are the subject
of ongoing development. One such measure to increase
reliability is the addition of a co-located receiver on the
transmitter host able to provide measurements as a local
monitor of emitted signals for high-fidelity, high-SNR
captures before most channel and multipath effects occur.
In addition, a local monitor would provide an important
role in self-correction of transmission hardware and software
anomalies that tend to occur at run time.

The possibilities of extensions to the platform for increased
capability include modifications to support:

• Heterogeneous emitters
• Higher or lower quality receiver and transmitter SDRs
• Non-communication emitters (RADAR, etc.)
• Multiple, dispersed, transmitter hosts
• More receiver hosts
• Modular transmitter hosts
• Weatherproofed outdoor transmitter and receiver hosts
• Miniaturized transmitters hosted on commercial drones

Switching to higher quality transmitter SDRs would espe-
cially improve the resolution of groundtruth labels to provide
near continuous timestamped bursts. The inclusion of more
than one transmitter host in the system would also require
additional infrastructure in the form of a central management
server and monitor to coordinate all nodes in the system.

110036 VOLUME 11, 2023



B. P. Muller et al.: Real-World Dataset Generator for Specific Emitter Identification

On top of hardware modifications, the rate of useful dataset
generation may be further increased through the addition of
a dataset augmentation step. The merits and limits of this
process are discussed in a previous work [27], where it is
shown that augmentation can drive a performance increase
in trained AMC algorithms. Augmentation for SEI algorithm
training is expected to be limited unless extremely high
fidelity RF transmit chain models are integrated.

The platform may be used to generate data for experiments
to better understand and account for real-world conditions
whose effect on RFML algorithms are not currently well
understood, such as interference, multipath, fading, and
thermal effects. Assessing the effect of factors on SEI and
AMC performance are the subject of future publications.

V. CONCLUSION
This approach to generating well-labeled real-world RF
datasets is cost-effective for the amount of high-quality data
that is produced and is easily extensible. The initial sample
use-case focused on just one type of emitter and just a few
modulation schemes, but the system is easily augmented
to be conducive to a large number of RFML applications.
The current system can scale to an arbitrary number of
receiver nodes, but will require additional infrastructure to
be developed to scale to multiple transmitter node cases.
This could then potentially be extended to a point where
100 transmitter and receiver nodes with diverse emitters
and receivers are present within a system allowing the
development of very generalized RFML models.
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